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Quantum revivals and many-body localization
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We show that the magnetization of a single “qubit” spin weakly coupled to an otherwise isolated disordered
spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization
at infinite time. We demonstrate that the revival rate is strongly suppressed upon adding interactions after a
time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from
Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on
the time scales studied. The suppression of quantum revivals of local observables provides a quantitative,
experimentally observable alternative to entanglement growth as a measure of the “nonergodic but dephasing”
nature of many-body localized systems.
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The study of the dynamics of closed quantum many-body
systems has enjoyed a recent renaissance, driven in part
by the ability to cool and trap large collections of atoms
and molecules, tune interparticle interactions, and probe the
resulting phases and their dynamics with high spatial and
temporal resolution [1]. An implicit assumption often made
in applying the standard tools of many-body theory and
quantum statistical mechanics to these isolated systems is the
eigenstate thermalization hypothesis (ETH) [2,3]. The idea of
the ETH is that while the dynamics of a quantum mechanical
eigenstate are of course not ergodic, individual regions will,
in the limit that their size remains much smaller than the
whole in the thermodynamic limit, display behavior expected
of an ergodic system at a temperature proportional to their
initial energy density. However, there exists a class of generic,
nonintegrable systems that fail to thermalize [4–6] in the sense
of ETH, and instead exhibit many-body localization (MBL)
[7,8].

In a seminal work, Basko et al. [7] gave strong arguments
for the existence of an MBL phase by examining the stability
of the Anderson-localized (i.e., noninteracting) phase of
disordered electrons [9] against delocalization by interactions.
Apart from the fundamental interest in understanding quantum
systems for which the notion of equilibrium is intrinsically
absent, many-body localization offers the ability to realize phe-
nomena forbidden by thermodynamic arguments, such as long-
range order below the lower critical dimension [10,11], and
topologically protected quantum coherent behavior [10,12–14]
at nonzero energy density. Several other questions, such as
whether MBL can arise in translationally invariant systems
[15–18] or survive in situations where the single-particle
spectrum includes a set of extended states [19], remain subjects
of active study (see also, e.g., [20–22] for recent mathematical
developments).

A corollary of the breakdown of ETH is that an MBL system
cannot act as a thermalizing bath for an otherwise isolated
quantum impurity. Considering MBL systems as quantum
reservoirs defines a set of unusual quantum impurity problems
[23], in which the impurity remains weakly perturbed by the
reservoir even when the latter is at infinite effective tempera-

ture. Therefore, in this Rapid Communication we analyze the
dynamics induced in a single, initially magnetized test qubit
when it is coupled to a disordered spin chain. We study the
dynamics following this “quench” via numerical studies and
analytical arguments, and demonstrate the distinctive nature
of dissipation and dephasing induced in the qubit depending
on whether the spin chain is ergodic, Anderson localized, or
MBL.

We focus on revivals (returns of a time-dependent observ-
able “sufficiently close” to its initial value after deviating
“sufficiently far” from it, to be made precise below) of the
magnetization of a single qubit. Specifically, we demonstrate
that the constant qubit revival rate in the Anderson insulator
is changed to a universal logarithmic decay upon adding
interactions. This in turn can be precisely related to the
dephasing mechanism responsible for the slow, logarithmic
growth of entanglement in the MBL phase [24–28], compared
to saturation in the Anderson case. Famously, the existence
of revivals in a system of finite phase space is required by
Poincare’s theorem [29] for (classical) Hamiltonian systems;
for systems that move ergodically over some subregion
of phase space, the rate of revivals depends inversely on
the volume of phase space explored. It is this volume
that differs between Anderson-localized, MBL, and ergodic
phases.

Several prior studies have shed some light on the nature
of the many-body localized phase: the existence of a sharp
MBL transition and its persistence to infinite temperatures
[30,31], area- rather than volume-law entanglement of MBL
eigenstates [13,32], and a phenomenology in terms of
quasilocalized conserved quantities [33–35]. Unfortunately,
much of the intuition about MBL comes from measures,
such as entanglement [24–27] or two-point measurements
[36], that are challenging to probe experimentally; therefore,
improving the understanding of exactly how much information
can be extracted from more conventional measurements is
crucial.

The model. We will consider a system with a total of L sites,
consisting of a single spin- 1

2 impurity �S (the qubit) weakly
coupled to an (L − 1)-site disordered spin- 1

2 XXZ chain [see
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FIG. 1. (Color online) Quench protocol and magnetization dy-
namics. (a) We consider the postquench dynamics of a two-level
“qubit” S coupled to a one-dimensional chain of atoms with strength
λ [see Eq. (1)]. (b) Time series for a single instance of disorder, and
influence of the interactions strength Jz = 0.0, 0.025, and 0.05 on
the revivals. (c) Averaged time evolution in the ergodic and MBL
phases. Observe that the disorder-averaged magnetization 〈Sz(t)〉 is
only slightly diminished with little or no finite-size scaling in the
MBL phase, in contrast to the ergodic phase where the magnetization
is significantly lower at long times, scaling to zero as L → ∞. Note
that the weak oscillations in the MBL phase scale with λ−1, and were
found to be apparently independent of any localization physics.

Fig. 1(a)], described by the Hamiltonian

H = HXXZ[{σi}] + λ

4
(S+σ−

1 + S−σ+
1 ),

HXXZ =
L−1∑

i=1

J⊥
8

(σ+
i σ−

i+1 + σ−
i σ+

i+1) + Jz

4
σ z

i σ z
i+1 + hi

2
σ z

i ,

(1)

where the σi are Pauli matrices, and the random fields hi

are drawn randomly from the interval [−W,W ]. Throughout,
we will set J⊥ = 1, and restrict ourselves to even L. This
problem is equivalent, via a Jordan-Wigner transformation, to
a model of spinless fermions hopping in the presence of on-site
disorder and nearest-neighbor interaction Jz, with the end of
the chain coupled to a single impurity level. For Jz = 0 and
arbitrarily small W , every eigenstate is Anderson localized,
as appropriate to a one-dimensional noninteracting disordered
system. We will study the different phases of (1) and their
corresponding dynamics as the strength of disorder and the
interactions are varied. We note that it is crucial to be able
to address the qubit and polarize it in the initial state, and
subsequently tune its on-site field to zero, in order to study
the magnetization dynamics in the fashion probed here. In this
sense the qubit is distinct from the rest of the chain; from now
on we set λ = 0.2.

We simulate [37] the time evolution governed by (1),
following a global quench from an initial condition in which
the qubit is initialized to be “up,” while the “bulk” spins are
initially in a state |ψ0〉:

|�(t = 0)〉 ≡ |�0〉 = |↑〉Sz
⊗ |ψ0[{σi}]〉. (2)
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FIG. 2. (Color online) Phase diagram of the disordered XXZ
chain, obtained by finite-size-scaling analysis of infinite-time qubit
magnetization Sz∞. Inset: Sample finite-size scaling for two represen-
tative cuts, shown. The dashed extrapolations are shown to guide the
eye; see [37] for a detailed finite-size analysis.

We consider two different alternatives for |ψ0[{σi}]〉: either a
completely random σ z

i product state, or else a random product
state constrained to have total magnetization Sz

tot = 0; while
the latter choice results in significantly smaller error bars, the
results are otherwise independent of this choice, and indeed we
expect that any initial state of sufficiently high energy density
should yield similar results to those reported here.

Phase diagram. As a first step, we establish the phase
diagram of the disordered XXZ chain by examining the long-
time behavior of the qubit magnetization (see also Ref. [38]).
To do so, we use the numerically computed exact eigenstates
|α〉 of (1) for a given disorder realization and then average over
disorder to obtain

Sz∞ ≡
∑

α

〈α|Sz|α〉 |〈�0|α〉|2, (3)

where |�0〉 is one of the choices of the initial state above, and
the bar denotes disorder averaging. In the MBL phase, finite-
size extrapolation of Sz∞ to L → ∞ yields a nonzero constant
for the infinite-time qubit magnetization. In contrast, in the
ergodic phase Sz∞ exhibits strong system-size effects [37], and
decreases to zero with increasing size, as predicted by ETH for
an effectively free spin. The phase diagram as extracted from
this measurement is shown in Fig. 2. In the remainder, we will
work at a fixed disorder strength W = 3.0, chosen sufficiently
high that the system remains in the localized phase for all
interaction strengths studied, with almost no finite-size effects
(L � ξ , with ξ the localization length).

Revivals. After simulating the dynamics following the
quench, we analyze the time series for the qubit magnetization
〈Sz(t)〉 [see Fig. 1(c)], identifying revivals in the magnetization
[37] (see also [39] and [40,41] for related proposals in the
context of quantum phase transitions). Figure 3 shows the
resulting number of revivals N (T ) on the total time of
evolution T for an L = 10 site chain for the specified disorder
strength (W = 3.0) and for relatively strong interactions
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FIG. 3. (Color online) Quantum revivals. Disorder-averaged re-
vival rate N (T )/T as a function of total time, T . Upon adding
interactions of strength Jz, revivals are suppressed beyond T ∗ ∼ J −1

z .
Inset: The same data collapses onto a universal curve when plotted
against JzT , with N0(T ) = N (T )|Jz=0.

Jz � 0.4. Clearly, the results depend sensitively on the pres-
ence of interactions. In the noninteracting, Anderson-localized
phase, the revival rateN (T )/T grows with time until it reaches
a constant value. Upon adding interactions of strength Jz,
the revival rate is strongly suppressed, beginning at a time
T ∗ ∼ J−1

z (Fig. 3, and inset); this is also the time scale
corresponding to the onset of logarithmic entanglement growth
previously reported. Finally, and most strikingly, the data
collapses onto a universal curve when time is measured in
units of J−1

z .
We now demonstrate that the suppression of revivals traces

its origin to the same dephasing mechanism that is responsible
for entanglement growth. Following Refs. [13,33–35], the
MBL phase can be understood in terms of a set of conserved
integrals of motion. (Quantum integrable systems that have
an infinite set of conserved local integrals of motion also fail
to obey ETH [42,43] for sufficiently large subsystems (see,
e.g., Refs. [44,45]) but arbitrarily weak generic perturbations
restore ergodicity to these [46]). The τ zs are exponentially
localized in terms of their overlap with the original degrees of
freedom σ

μ

j (physical bits or “p-bits”), and hence are termed
localized bits (“l-bits”). Dephasing occurs solely due to the
exponentially weak interactions between the spins, so that an
effective Hamiltonian for the MBL system is

HMBL =
∑

i

ωiτ
z
i +

∑

i,j

Jij τ
z
i τ z

j + · · · , (4)

where Jij ∼ Jze
−|i−j |/ξ and the ellipsis denotes higher-order

[(n � 3)-body] interactions. (Here and below, we take �σ0 ≡ �S
for conciseness of the resulting expressions.) Neglect of the
higher-order terms is strictly justified deep in the MBL phase,
but we find that the functional forms to be derived from (4)
apply numerically over nearly the whole phase.

To study the suppression of revivals it suffices to ob-
serve that the noninteracting revivals are governed only by
frequencies ωi of the N ∼ ξ l-bits τ z

i [see Eq. (4) with

Jz = 0] that have significant overlap with the qubit (N will
change depending on the specific choice of observable).
Since the spectrum in the noninteracting limit is additive, it
suffices to consider these N levels, and require, for instance
[47],

∑N
i=1 |1 − cos(2πωit)| < δ with δ a small parameter

in order that the many-body wave function experiences an
(approximate) revival. We will denote the corresponding
disorder-averaged revival rate �0(T ,N ) defined as the ratio
of the number of such revivals in the time window [0,T ]
to the total time T . This is clearly a decreasing function
of N , but the dependence of �0(T ,N ) on the time T is
complicated and depends on the statistics of the ωi . If we
now turn on interactions, then nearby orbitals experience
random Hartree level shifts as a consequence of the Jij term.
The corresponding energy splitting of levels ωi,ωj takes the
form δωij ∼ Jze

−|i−j |/ξ . For times T � J−1
z , the splitting is

unimportant and does not significantly conflict with the revival
criterion. However, for T � J−1

z , the Hartree shift of each
nearest-neighbor pair is appreciable enough that, in effect,
an additional frequency enters the revival criterion. As T

increases further, each pair separated by distance x leads to an
additional frequency entering the revival criterion when T �
ex/ξ /Jz, so that at time t the appropriate revival rate is roughly
�0(T ,N + α ln JzT ). Thus, we find for the suppression of
revivals relative to the noninteracting case N−N0

T
≈ �0(T ,N +

α ln JzT ) − �0(T ,N ). This is not a universal function of
ln(JzT ), due to the explicit dependence of �0 on T . However,
we argue that for strong disorder this dependence is only
due to the randomness in the frequencies and as such is only
weakly dependent on the number of independent frequencies,
N . Therefore, we may write �0(T ,N ) ≈ γ (T ) + ν(N ) up to
small corrections, so that

N − N0

T
≈ ν(N + α ln JzT ) − ν(N ), (5)

which is a universal function of ln JzT , consistent with the
collapse in Fig. 3. For α ln JzT ∼ ξ ln JzT � 1, we see that
N − N0/T ≈ −α|ν ′(N )| ln JzT .

Clearly, aspects of the preceding analysis are
nonuniversal—for instance, the precise value of N (T )
will depend on the specific choice of time step �t and our
algorithm for counting revivals. Note that this argument does
not depend on precisely how the revival rate depends on the
number of frequencies, although in the long-time limit one
expects an exponential dependence. However, the mechanism
behind the revival rate suppression traces its origin to the
same hierarchical structure of the dynamics responsible for
entanglement growth and leads to a similar logarithmic time
dependence. Thus, the suppression of revivals by interactions
is a universal signature in accord with the caricature of MBL
systems as “localized but dephasing” [34], and as such reveals
the intrinsically interacting nature of the MBL phase.

Experiments. As we have already observed, ultracold
atomic gases provide a natural experimental setting in which
to explore the question of many-body localization, as they
circumvent the problem, endemic to solid-state systems, of
isolation from external sources of equilibration [1,49–55]. In
addition, they possess a high degree of tunability: the strength
of the interactions may be controlled by utilizing Feshbach
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TABLE I. Differences between MBL, Anderson-localized, and
ergodic phases in terms of dephasing and dissipation, and their
asymptotic effective phase space volume N (t) governing revivals
and growth of bipartite entanglement entropy SEE(t) in the limit
L → ∞. Deep in the MBL phase, the latter two quantities experience
logarithmic growth attributable to dephasing. In the ergodic phase,
α > 0 could depend on the details of the system, e.g., whether it is
ballistic or diffusive, while the entanglement grows linearly [48].

Type Dephasing Dissipation N (t) SEE(t)

Anderson ins. × × ∼ξ ∼ξ

Many-body loc. � × ∼ ln Jzt ∼ ln Jzt

Ergodic (ETH) � � ∼tα ∼t

resonances, and quenched disorder may be implemented by
using a “speckle pattern” generated by a stationary configura-
tion of laser intensity distributions [56]. It is also possible to
selectively tune the fields at selected sites of an optical lattice,
enabling the identification of one or more sites as the qubit
in our analysis. It should be noted that solid-state systems are
starting to achieve a similar level of tunability at least in small
systems: up to five interacting “transmon qubits” can now be
manipulated with high fidelity [57].

In order to study quantum revivals in either setting, we
must measure the state of the spin at the selected site at time
t , which is an inherently destructive measurement. Therefore,
many repetitions of the experiment will have to be performed
with a single realization of disorder. As the speckle pattern
can be reproduced and changed on demand, the necessary
repetition does not pose a fundamental obstacle beyond the
additional time required to make multiple measurements. It is
worth also noting that we expect the revival pattern to persist
even if the initial state of the system is not exactly the same
between repetitions. We remark that the distinct behavior of
quantum revivals in ergodic, MBL, and Anderson-localized
systems persists even for a single typical disorder configuration
[see Fig. 1(b)].

Discussion. In this Rapid Communication, we have con-
nected a fundamental feature of many-body dynamics in
a finite phase space—namely, the quantum “Poincare” re-

currence probability—to the question of thermalization in
isolated systems. We have shown that revivals of a single qubit
weakly coupled to a disordered “reservoir” allows one to dis-
tinguish between Anderson-localized, many-body localized,
and ergodic phases of the reservoir. The interaction-induced
dephasing characteristic of MBL systems is responsible for the
distinction in the “effective phase space volume” for dynamics
in the two different localized phases: in the MBL case, it
leads to a logarithmic growth in time of the effective number
of frequencies that must synchronize in order for the qubit
to revive. In the ergodic phase, the revival probability is
exponentially small as L → ∞ on the time scales studied,
and thus N (T ) is nearly vanishing. Table I summarizes the
distinctions between ergodic (satisfying ETH), MBL, and
Anderson-localized phases in terms of their revival dynamics
and entanglement growth at long times.

We were led to consider revivals initially because they were
found to be a more sensitive probe, both of localization as
well as the nature of the localized phase, as compared to
measures such as the power spectrum of local observables
(i.e., the Fourier transform of the time series of 〈O(t)〉)
or other standard quantities [58]. As an added bonus, the
revival probability is simple to define and depends only on
the magnetization which is straightforward to measure. An
appealing feature of using such dynamical probes is that they
allow a single measurement to establish both the nature of
dephasing—via revival analysis—and dissipation, encoded in
the long-time steady-state average magnetization. Given the
paucity and technical complications of existing probes of
ergodicity breaking in general and many-body localization in
particular, we expect that these features make revival analysis
an appealing route to establishing the existence of the MBL
phase in real systems.
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