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Partially ordered vortex lattices in the high-field low-temperature mixed state
of quasi-two-dimensional organic superconductors
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We report the results of high-field, low-temperature μSR measurements of the quasi-two-dimensional organic
superconductors κ-(ET)2Cu(NCS)2, and κ-(ET)2Cu[N(CN)2]Br. The μSR lineshapes for these compounds
indicate the existence of partially ordered vortex lattice phases in the high-magnetic-field regime, up to 2.5 T for
the former compound and 4 T for the latter compound. The observed sharp loss of order is found to be consistent
with a vortex-lattice melting transition that is predicted by numerical simulations of weakly coupled layers of
pancake vortices. It is argued that the robustness of the partially ordered vortex lattice phases could be due to
strong flux-line pinning by a dilute ensemble of defects.
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I. INTRODUCTION

In quasi-two-dimensional (2D), extreme type-II su-
perconductors, such as the organic charge-transfer salts
(ET)2X [1,2], and the high-transition-temperature (Tc) com-
pound Bi2Sr2CaCu2O8 (BSCCO) [3], the existence and extent
of highly ordered three-dimensional (3D) vortex lattice states
are known to be strongly dependent on the coupling between
the underlying 2D superconducting (SC) layers. In such
compounds with weakly coupled SC layers (via very small
Josephson tunneling currents) subjected to a magnetic field
applied perpendicular to the layers [4], the vortex system con-
sists of stacked layers of pancake-like vortices [5]. For applied
magnetic fields not far below the upper critical field (Hc2),
the relatively strongly coupled intralayer pancake vortices can
form well-ordered 2D lattices, whereas the pancake vortices
in adjacent layers couple very weakly by the electromagnetic
dipole interaction. Consequently, while at low temperatures
straight magnetic flux lines threading weakly coupled pancake
vortices may essentially form a 3D ordered lattice, these flux
lines can be easily distorted by thermal fluctuations at elevated
temperatures. This leads to a loss of 3D order, which occurs
at a dimensional crossover field (H2D) far below Hc2. Further
disordering of the flux lattice, by strong thermal fluctuations
within the individual layers of vortices, can occur at much
higher magnetic field, causing a complete loss of order (vortex-
lattice melting) at an intermediate field H2D � H < Hc2

[6–8]. These order-disorder transitions have been extensively
studied in BSCCO, via, for example, small-angle neutron
scattering (SANS) [9], muon spin rotation (μSR) [10,11], and
irreversibility-line [12] and magnetization [13] measurements.
Similar vortex-lattice transitions have also been investigated
in the low-Tc, quasi-2D organic superconductors (see Ref. [2]
for a review), with applications of the μSR technique focusing
on the charge transfer salts κ-(ET)2Cu(NCS)2 [14,15] and
κ-(ET)2Cu[N(CN)2]Br [16].

*maniv@tx.technion.ac.il

Theoretical estimates of the 3D-2D crossover field H2D,
based on a continuum elastic description of the vortex lat-
tice [17,18], yield characteristic values in the range of H2D ∼
�0/λ

2 (where �0 is the magnetic flux quantum, and λ is the in-
plane magnetic penetration depth), which is about three orders
of magnitude smaller than Hc2. These estimates have been con-
firmed in a number of μSR experiments performed on the rel-
evant compounds [10,11,15]. However, in some cases the loss
of order deduced from changes in the μSR lineshape with in-
creasing magnetic field was incomplete [19], indicating the ex-
istence of partially ordered 3D flux-line networks at magnetic
fields well above the theoretically predicted values of H2D. The
existence of such partially ordered 3D vortex phases at mag-
netic fields H � H2D has been demonstrated by transport [20]
and SANS measurements [21] of BSCCO single crystals.

In the present paper we provide clear μSR evidence for
the existence of a partially ordered vortex lattice phase in
the quasi-2D organic superconductors κ-(ET)2Cu[N(CN)2]Br
(κ-Br) and κ-(ET)2Cu(NCS)2(κ-CuNCS) at magnetic fields
much higher than the values of H2D predicted by the continuum
elastic model. We also show that the observed sharp changes of
the μSR lineshape, generally associated with the loss of flux-
line order, is consistent with melting of pancake vortex lattices
within the layers, rather than a 3D-2D crossover. We suggest
that, in the low-temperature, high-magnetic-field region of the
phase diagram investigated, small concentrations of defects
that pin flux lines perpendicular to the SC layers effectively
resist the breakup of the entire 3D vortex lattice by thermal
fluctuations.

II. EXPERIMENTAL

Transverse-field (TF) μSR measurements with applied
magnetic fields in the range 1.0 < H < 4.5 T were carried
out on the M15 muon beam line at TRIUMF by using a
spectrometer consisting of a top-loading Oxford Instruments
dilution refrigerator (DR). The magnetic field was applied
perpendicular to the highly conducting layers, i.e., parallel
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to the b axis or to the a∗ axis of each sample, which
were mosaics consisting of tens of single crystals of κ-Br
or κ-CuNCS. The use of a mosaic was necessary, due to
the small size of the individual single crystals—typically
less than 1 mm wide and 100 μm thick. The crystals were
mounted on a pure Ag sample holder by using Apiezon grease.
The single crystals were grown by standard electrochemical
crystallization according to the literature methods [22,23].
The superconducting transition temperature Tc determined by
thermodynamic methods is 9.3 ± 0.1 K and 11.5 ± 0.1 K for
κ-CuNCS and κ-Br, respectively.

A fast Fourier transform (FFT) of the TF-μSR signal closely
resembles the internal magnetic-field distribution P (B) [24].
The measurements reported here were typically done by first
cooling the sample from room temperature to T = 20 mK
in a magnetic field of H = 1 T and subsequently measuring
the field dependence of the TF-μSR signal. For each value
of the applied field, measurements were also performed at
T = 10 K, which is well above the irreversibility lines for
both compounds [25,26], and hence at a temperature where
the vortex structure has no influence on the μSR lineshape.
The measurements at T = 10 K (henceforth referred to as the
reference signal) provide a visualization of the broadening of
the TF-μSR lineshape by the sample nuclear dipole moments,
the field inhomogeneity of the external magnet, and the
background from muons stopping in the sample holder and
other places outside the sample.

III. RESULTS

Figure 1 shows typical FFTs of the TF-μSR signals for κ-
CuNCS at T = 20 mK, and the corresponding probability field
distribution, P (B), obtained by deconvoluting each FFT in the
frequency domain with respect to the reference signal. Figure 2
shows results of similar measurements for the sister compound
κ-Br. The most striking feature of the deconvoluted TF-μSR
lineshapes shown in Figs. 1 and 2, is their clear asymmetry,
which is characterized by a positive skewness parameter
α = 〈�B3〉1/3/〈�B2〉1/2, where �B = B − 〈B〉 and 〈B〉 is
the average internal field [24,27]. This is clearly observed in
a broad field range, up to a H = 2.5 T for κ-CuNCS, and
up to H = 4 T for κ-Br—above which α changes sign rather
abruptly. As shown in Fig. 3, at T = 20 mK positive values
of the skewness parameter in the range 0.5 < α < 1.0 reflect
the striking existence of partially ordered 3D vortex-lattice
states at magnetic fields H � H2D in both materials, which are
comprised of very weakly coupled 2D conducting layers [28].
At higher temperatures, the field range of the ordered phase
shrinks considerably, as shown in Fig. 3 for κ-Br at T = 1 K,
where the onset of a negative α is observed above H = 2 T.
Note that previous TF- μSR lineshape measurements on
κ-CuNCS performed at T = 1.8 K [14,15] showed positive
values of the skewness parameter β = 〈�B〉/〈�B2〉1/2, which
drops to zero in fields of 10 to 20 mT, consistent with the
continuum elastic theory [17,18]. As we discuss in the next
section, the rapid precooling of the samples that occurred
when they were loaded into the dilution refrigerator may have
resulted in intrinsic structural disorder. Pinning associated with
this disorder may be responsible for the observed robustness

FIG. 1. (Color online) Probability magnetic field distribution,
P (B), for κ-(ET)2Cu(NCS)2 (magenta solid curves and left-hand
scale) at T = 20 mK and different external magnetic fields, obtained
by deconvoluting the FFTs (blue dashed curves and right-hand scale)
of the TF-μSR signals. An order-disorder transition is observable
between H = 2 T and H = 3 T. These measurements were performed
after field cooling to T = 20 mK at H = 1 T. The curves are
offset vertically for visual clarity. The reference signals used in
the deconvolution process (not shown) were measured on the same
sample at T = 10 K, well above the irreversibility line.

FIG. 2. (Color online) Probability magnetic field distribution,
P (B), for κ-(ET)2Cu[N(CN)2]Br (magenta solid curves and left-hand
scale) at T = 20 mK and different external magnetic fields, obtained
by deconvoluting the FFTs (blue dashed curves and right-hand scale)
of the μSR signals. A disordering transition is observed between
H = 3 T and H = 4.5 T. These measurements were performed after
field cooling to T = 20 mK at H = 1 T. As in Fig. 1, the reference
signals recorded at T = 10 K are not shown.
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FIG. 3. (Color online) Field dependence of the skewness param-
eter (α) for κ-(ET)2Cu(NCS)2 at T = 20 mK (red solid circles), and
for κ-(ET)2 Cu[N(CN)2]Br at T = 20 mK (black solid squares) and
T = 1 K (blue open squares). The lines connecting the data points
are guides to the eye.

of the vortex lattice against thermal fluctuations up to high
magnetic fields.

IV. DISCUSSION

For the first time, the high-field, low-temperature region of
the vortex state of the quasi-2D organic superconductors, κ-
CuNCS and κ -Br, have been investigated by μSR. At the low-
est temperature considered (T = 20 mK), an order-disorder
crossover field, as determined from the sign change of the
skewness parameter α, is found for both materials—occurring
near H = 2.5 T and 4 T for κ-CuNCS and κ-Br, respectively.
These values are of the order of the respective irreversibility
fields extracted from low-temperature magnetization measure-
ments [25,26], and much larger than the 3D-2D crossover fields
for electromagnetically coupled layers of pancake vortices that
have been reported for these materials (e.g., H2D ∼ 10−2 T
for κ-CuNCS [14]). Furthermore, the observation of positive
values of α in κ-Br for magnetic fields up to H = 2 T
at the higher temperature of T = 1 K reflects a robustness
of the 3D vortex lattice to thermal fluctuations of pancake
vortices in the individual SC layers. Analytical calculations
based on a 2D Ginzburg–Landau theory [7,8], which agree
well with numerical Monte Carlo simulations [6], show, for
material parameters characteristic of κ-CuNCS [see Fig. 3(b)
in Ref. [29]], that melting of an ordered vortex lattice at T =
0.1Tc ≈ 1 K, in each individual 2D SC layer, occurs around
H = 0.4Hc2 ≈ 2 T. Moreover, the irreversibility field [25],
which may be associated with a critical field for depinning
of vortices, follows closely the 2D vortex-lattice melting field
[also shown in Fig. 3(b) of Ref. [29] ]. Numerical simulations
of the skewness parameter α, performed for weakly coupled
layers of pancake vortices [30], show that a 3D-2D crossover
reduces α to about 30% of its (positive) low-field value,
whereas melting of the constituent 2D vortex lattices causes the
sign of α to abruptly change from positive to negative. Since the
values of α shown in Fig. 3 below the order-disorder transition
fields are larger than that predicted for a disordered multilayer

of 2D vortex lattices (i.e., α 	 0.3) [30], it is conceivable that
no 3D-2D crossover takes place in the low-field region. Instead,
it appears that the only order-disorder transition that occurs in
the entire field range investigated is melting of a partially
ordered 3D vortex lattice. This conclusion is consistent with
the single first-order vortex lattice melting transition predicted
in a Monte Carlo study of the Lawrence–Doniach model for a
layered superconductor [31].

It should be noted that the values of the skewness parameter
extracted from our measurements in the high-field regimes,
i.e., 0.5 < α < 1.0, are quite similar to those predicted recently
for glassy vortex phases in BSCCO [32], where interlayer
vortex correlations are substantially reduced with respect to
the fully ordered 3D vortex-lattice state. The transition from
the low-field 3D ordered vortex-lattice state to such high-field
vortex-glass phases, revealed by the μSR measurements in
Ref. [32], was found to depend on the doping level of the
crystals. In the optimally doped crystal the transition occurred
through an intermediate phase consisting of a pinned-vortex
liquid, characterized by a negative value of α, whereas in the
over-doped crystal a direct transition between the two vortex
solid phases took place. In both cases no indication of a 3D-2D
crossover, similar to that proposed for κ -CuNCS in Ref. [14],
was observed.

The apparent absence of a low-field 3D-2D crossover in our
measurements suggests that the observed 3D partially ordered
vortex lattice is probably stabilized by strong pinning due to a
small concentration of defects. This scenario is supported by
the proximity of the irreversibility (depinning) transition to the
melting transition, previously observed for κ-CuNCS [29]. It
should be noted that the negative values of α, attributed here
to the presence of vortex liquid phases in both materials, arise
from some nontrivial intralayer three-body correlations [32],
which were also shown to yield negative α values for glassy
phases in much less anisotropic superconductors, such as
La1.9Sr0.1CuO4−δ [33].

The primary source of flux-line pinning may be a conse-
quence of the high rate at which the samples were precooled
when loaded into the dilution refrigerator. During the pre-
cooling stage, the sample is cooled from room temperature to
4.2 K in about 15 to 20 minutes, passing through the glass-like
structural transition at Tg ∼ 75 K, which—for the κ-phase ET
salts with polymeric anions Cu(NCS)2 and Cu[N(CN)2]Br—is
related to a certain degree of disorder in the orientational
degrees of freedom of the ET molecules’ ethylene end groups
(EEGs) (see Ref. [2] for an overview). The EEG orientations
are thermally disordered at room temperature and, for kinetic
reasons, become frozen in a nonequilibrium configuration
depending on the cooling rate at Tg [34]. The precooling rate
in our experiments was about 20 K/min, which corresponds to
a random lattice potential associated with structural disorder
in 3% to 4% of the sample [35]. Clustering of metastable EEG
configurations in this volume fraction of the sample and into
domain sizes exceeding the in-plane coherence length [36] is a
likely source of the strong flux-line pinning that accommodates
the partially ordered vortex lattice.
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