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Continuous and discontinuous dark solitons in polariton condensates
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Bose-Einstein condensates of exciton-polaritons are described by a Schrödinger system of two equations.
Nonlinearity due to exciton interactions gives rise to a frequency band of dark soliton solutions, which are
found analytically for the lossless zero-velocity case. The soliton’s far-field value varies from zero to infinity
as the operating frequency varies across the band. For positive detuning (photon frequency higher than exciton
frequency), the exciton wave function becomes discontinuous when the operating frequency exceeds the exciton
frequency. This phenomenon lies outside the parameter regime of validity of the Gross-Pitaevskii (GP) model.
Within its regime of validity, we give a derivation of a single-mode GP model from the initial Schrödinger system
and compare the continuous polariton solitons and GP solitons using the healing length notion.
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I. INTRODUCTION

Exciton-polaritons are matter-light quasiparticles that arise
from the coupling between excitons and photon modes in
a semiconductor microcavity and can form Bose-Einstein
condensates (BEC) at relatively high temperatures [1–4].
Polariton condensates are sustained by laser pumping of
photons in a two-dimensional quantum well. In a mean-field
approximation, their wave functions produce a rich variety
of localized quantum states in the micrometer scale: dark
solitons [5–8,10], bright solitons [5,11–13], vortices [14,15].
Solitons in polaritonic condensates have potential for applica-
tions in ultrafast information processing [16] due to picosecond
response times and strong nonlinearities [11,12].

In this work, we report a frequency band of dark polariton
solitons whose exciton wave function develops a discontinuity
as the frequency is increased beyond the exciton frequency
(Fig. 1). At the point of discontinuity, the photon field vanishes
while the exciton field experiences a phase jump of π .

We investigate a one-dimensional condensate of polaritons
in a strongly coupled exciton and photon system. Our deriva-
tion depends crucially on the use of the classic model that
retains separate wave functions for the excitons and the photon
modes, and thus illuminates phenomena outside the regime
described by the Gross-Pitaevskii model. Exciton interactions
are modeled by a nonlinear term, while photons are dispersive.
Neglecting both pumping and losses (which are due to
radiation and thermalization) and thus focusing on the synergy
of exciton interaction (nonlinearity) and photon dispersion
allows us to produce analytical formulas for polariton solitons.
A remarkable property of the solitons we derive is that
the operating frequency can be tuned to produce a far-field
baseline amplitude ranging from 0 to an arbitrarily large
value.

We use the term “soliton” (instead of solitary wave or
localized structure) in the spirit of conforming to the prevailing
language. The term “soliton” was coined in the 1960s to
describe nonlinear solitary waves that interact cleanly (without
radiating). Since then, the use of the term has been broadened,
especially in the physics literature, to encompass more general
localized wave forms.

Section II presents the derivation of dark solitons for the
conservative polariton equations, Sec. III draws a comparison
with the standard Gross-Pitaevskii model, Sec. IV contains a
description of soliton solutions as bound states in a potential
well, and Sec. V contains concluding remarks.

II. POLARITON SOLITONS

We consider a one-dimensional semiconductor microcavity
in which a photon field ψC(x,t) interacts with an exciton
field ψX(x,t). One-dimensional or nearly one-dimensional
polariton structures have been observed in [6,10,17] and in [18]
(for radial fields). The pair (ψX,ψC) is a polariton field and its
dynamics are modeled by the system [1,19–21]

i∂tψX = (ωX + g|ψX|2)ψX + γψC, (1a)

i∂tψC =
(

ωC − 1

2
∂xx

)
ψC + γψX. (1b)

The coupling constant is half the Rabi frequency γ = �R/2;
ωX is the frequency of a free exciton, and ωC is the photon
frequency at zero wave number. All these are normalized to
a reference frequency γ0. One could set γ0 =γ ; however,
we prefer to keep γ as an explicit parameter. The spatial
variable x is normalized to �0 = √

�/(γ0mC) , where mC is the
effective photon mass. The system of Eqs. (1) is conservative
(it conserves energy and total number of particles: excitons
and photons) as we have neglected losses. Losses are typically
included by adding an imaginary part to ωX and ωC .

The wave functions ψX,ψC are normalized to
√

N0/�0,
where N0 is a reference number of particles. The nonlinearity
parameter g is normalized to N0/(�2

0γ0). We consider only the
case g > 0 in this paper.

We seek stationary harmonic polariton fields

ψX(x,t) = φX(x)e−iωt ,
(2)

ψC(x,t) = φC(x)e−iωt ,

with operating frequency ω and wave number zero. Letting


X = ω − ωX, 
C = ω − ωC (3)
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FIG. 1. (Color online) Dark polariton soliton envelopes
(φX(x),φC(x)) for exciton frequency ωX = 0 and photon frequency
ωC = 1, which gives a threshold frequency ωLP ≈ −0.618 for the
onset of the soliton, a transition frequency ωX = 0 at which φX

becomes discontinuous, and a blowup frequency ωC = 1 at which
the far-field values of φX and φC become unbounded as shown
in Fig. 3 (right). These graphs demonstrate the increasing soliton
amplitude as ω increases through four values. When ω < ωX , φX is
continuous, and when ω > ωX, φX is discontinuous. The values of
φX and φC are related by Eq. (4b).

and inserting (2) into (1) yields

−1

2
φ′′

C − 
CφC + γφX = 0, (4a)

φC = 1

γ

(

X − gφ2

X

)
φX. (4b)

Multiplying Eq. (4a) by φ′
C and Eq. (4b) by γφ′

X and adding
the two integrates the system (4) exactly. The cubic algebraic
relation (4b) allows one to eliminate φC in favor of φX to obtain
a first-order ODE for φX(x). It is then convenient to use the
scaled exciton density

ζ (x) := g φX(x)2 (5)

which eliminates g from the equation and results in

1

2
ζ ′2 = 4 ζQ(ζ )

(3ζ − 
X)2
, (6)

where Q(ζ ) = −
C[ζ 3 − 1
2 (3ζ∞ + 
X)ζ 2 + ζ∞
Xζ + K],

K is an arbitrary real constant of integration, and

ζ∞ = 
X − γ 2


C

(7)

corresponds to the nonzero equilibrium solution of (4).
Equation (6) has the structure of an energy equation of a
conservative system and admits a rich set of solitons and
periodic structures. In this work, we focus on continuous and
discontinuous dark solitons for g > 0.

For a dark soliton ζ (x) to exist, the cubic polynomial Q(ζ )
must have a double root that serves as the soliton’s far-field
value. The value of the constant of integration K that provides

FIG. 2. (Color online) The cubic relation (4b) giving the photon
field envelope value φC vs the exciton field envelope value φX .
Left: The pair (φX(x),φC(x)) travels continuously along the graph
of the monotonic cubic between its far-field values as x increases
from −∞ to ∞. Right: The pair jumps discontinuously between the
points (−φ0,0) and (+φ0,0), with φ0 = √


X/g . The transition from
continuous to discontinuous φX occurs when ω = ωX . Graphs of the
fields φC(x) and φX(x) are shown in Fig. 1. The singularity of the
ODE (6) occurs at the critical points ±φ1.

such a nonzero double root equals

K =− γ 6

2
 3
C

(η − 1)2, (8)

where η is a convenient dimensionless parameter

η = 
X
C

γ 2
. (9)

We calculate the double root to be equal to ζ∞, given in (7).
The fact that this is also the value of the far field justifies
the notation. As x is varied, ζ (x) varies continuously down to
its minimal value (nadir) ζ = 0, which is a simple root of the
potential in (6). We may assume that the nadir occurs at x = 0.

The soliton field (φX(x),φC(x)) traces the graph of the
cubic relation (4b) as x increases. Figure 2 shows the graph
of this relation for the two cases ω < ωX and ω > ωX. The
equilibrium points (φX,φC)−∞ and (φX,φC)∞ correspond to
the calculated value ζ∞.

The parameter η is convenient for expressing the soliton
nonlinear dispersion relation at zero wave number, that relates
the soliton amplitude ζ∞ to the operating frequency ω, which
is embodied in η and 
C ,

ζ∞ = 
X

η − 1

η
= γ 2


C

(η − 1). (10)

We restrict our attention to 
C < 0, which also implies η < 1,
given the fact that ζ∞ > 0. Under these conditions, one can
show that Q(ζ ) > 0, a necessary condition for Eq. (6) to have
real solutions.

A dark soliton appears at η = 1 (ζ∞ = 0) corresponding to
a threshold frequency ωLP. This constitutes the linear limit of
the soliton that emerges as the frequency increases; it is thus no
surprise that the frequency ωLP coincides with the lower end
point of the well-known lower band (ωLP,ωX) of homogeneous
linear (g = 0) polaritons of the form (φX,φC)ei(kx−ωt), with
φX and φC constant [14]; ωLP corresponds to k = 0. As the
frequency is increased from its threshold, the amplitude of the
soliton increases until it blows up at the photon frequency
ωC (η = 0, ζ∞ = ∞). Figure 3 displays the far-field and
nadir values of the soliton vs the frequency in the band from
threshold to blowup, in the cases of negative detuning and
positive detuning.
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FIG. 3. (Color online) The threshold frequency ωLP marks the
onset of a dark polariton soliton, and the photon frequency ωC is
the blowup frequency, at which the far-field amplitude of the soliton
becomes unbounded. Left: (ωC < ωX). As the operating frequency
ω traverses the soliton band (ωLP,ωC), the far-field amplitude of the
exciton field φX goes from 0 to ∞ according to (7). The nadir (low
point) is zero. Right: (ωX < ωC). The free exciton frequency ωX is
the transition frequency from continuous to discontinuous solitons.
The nadir of the discontinuous soliton is pushed upwards to the
value 
X .

In the case of positive detuning, ωX <ωC (i.e., 
C < 
X),
the frequency ωX lies within the soliton frequency band
(ωLP,ωC). This marks the transition frequency above which the
soliton field φX becomes discontinuous when the obstructing
singularity ζ = 
X/3 in (6) becomes positive, breaking into
the soliton range [0,ζ∞). The nadir of the soliton is pushed
upward from ζ = 0 to the value ζ = 
X, which is now
positive, leading to a jump of the exciton field between
the values ±φ0 = ±√


X/g. Figure 2 traces the path of
the pair (φX(x),φC(x)) along the graph of the relation (4b)
both for negative detuning and positive detuning. The system
equations (4) remain valid, as the jump in φX is balanced by
a jump in φ′′

C . Physically, the photon field φC which mediates
the coupling between neighboring excitons through the term
γφC in (1a) vanishes when ζ takes the special value 
X

[corresponding to φ0 = √

X/g in Fig. 2(b)]. The vanishing

of the photon field turns off the coupling between neighboring
excitons thus making the jump permissible. The formulas (7)
and (10) for the far-field value ζ∞ remain the same.

Figure 1 presents four instances of the soliton profile that
show the progress towards the discontinuity (top) and the
progress past the discontinuity of the exciton field (bottom).
The photon field remains continuous. Its second derivative
has a discontinuity at x = 0, as discussed earlier, although
this is too subtle to observe in the figure. Notice the monotonic
increase of the far-field amplitude as the frequency ω increases.

It is interesting to visualize the mechanism of the formation
of the discontinuity of the exciton field φX(x) by following the
slope of this field at x = 0, as one lowers the dimensionless
parameter η from its value η = 1 at which the dark soliton is
born. In order to calculate this slope, we express |φ′

X(0)| in
terms of ζ and ζ ′ from the relation ζ = gφ2

X. We then insert
the value for ζ ′ from the differential equation (6) and, finally,
set ζ = 0. We obtain

[φ′
X(0)]2 = γ 2(η − 1)2

g η2
. (11)

For positive detuning and as ω ↗ ωX, the parameter η ↘ 0
and thus, the slope φ′

X(0) tends to infinity, while φX remains
finite. The jump discontinuity of the exciton envelope profile
sets on as η becomes negative.

III. HEALING LENGTH AND COMPARISON
WITH GROSS-PITAEVSKII EQUATION

Adopting the slope of the profile at the origin x = 0 as an
indicator of the scale of the slope of the profile we define the
healing length of a exciton field profile by

ξX = 2

∣∣∣∣φX(x = ±∞)

φ′
X(0)

∣∣∣∣, (12)

with a similar equation for the photon field. From the field
envelope Eq. (4a), and the far-field Eq. (10), we obtain
φC(∞)/φX(∞) = γ /
C and φ′

C(0)/φ′
X(0) = 
X/γ . Thus,

the healing lengths ξC and ξX are related by

ξ 2
C = ξ 2

X

η2
. (13)

Combining Eqs. (10), (11) and ζ∞ = gφ2
∞, we obtain for the

continuous soliton the healing lengths

ξ 2
X = 4η2


C(η − 1)
, ξ 2

C = 4


C(η − 1)
. (14)

When ωC < ωX, near the blowup frequency 
C = 0 (η =
0) the healing length of the excitons approaches zero, while
the photon healing length diverges to infinity. At the same time
the far-field value goes to infinity. At the transition frequency

X = 0 (η = 0) (obtained only for positive detuning) ξX goes
to zero linearly in η which one can view as a precursor to the
discontinuity. The photon healing length converges to ξ 2

C =
4/(ωC − ωX). Figure 1 exemplifies these observations.

In the region near the value η = 1, at which the continuous
soliton begins its life, the exciton and the photon fields are
nearly proportional to each other and ξC ≈ ξX. The photon
field is described well by a Gross-Pitaevskii (GP) model that
is derived as a simplification of the two-equation model (4).
We solve Eq. (4b) for φX as a power series in φC up to the third
degree term and we insert this value of φX into Eq. (4a). There
seems to be no analogous way to derive a GP equation for the
exciton field. The GP model derived for the photon field is

1
2φ′′ − ε
C φ − g̃φ3 = 0. (15)

The notation φ is a convenient abbreviation of the more
descriptive notation φGP,C. The parameter ε > 0 measures the
deviation from the linear problem and equals

ε = 1 − η

η
, (16)

while g̃ = ( 
C


X
)2g.

Multiply by 2φ′ and integrate to obtain

1
2φ′2 − ε
C φ2 − 1

2 g̃φ4 = E0, (17)

where E0 is a constant of integration. Like Eq. (6), this has
the structure of a conservative system. The left side can be
considered as the sum of a kinetic and a potential energy.
It produces the GP approximation of the photon profile of
the soliton we are investigating. The potential has two equal
maxima at ±φ∞ where

φ2
∞ = −ε
C

g̃
. (18)
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These are the far-field values (φ′ = 0) for soliton solutions
obtained from Eq. (17) at the peak of the potential

E0 = −ε
Cφ2
∞ − 1

2 g̃φ4
∞ = − 1

2ε
Cφ2
∞. (19)

We obtain from Eq. (17) φ′(0)2 = 2E0 = −ε
Cφ2
∞. Tak-

ing, as before, the slope |φ′(0)| as an indicator of the slope of
the profile, the healing length for the photons is

(
ξGP
C

)2 = 4φ(±∞)2

φ′(0)2
= 4φ2

∞
φ′(0)2

= 4η


C(η − 1)
. (20)

The photon healing length for the approximate equation (GP)
underestimates the healing length derived for the full system
in (14) by a factor of η. The two agree at the linear limit η = 1.

IV. SOLITON AS A PHOTON FIELD
IN A POTENTIAL WELL

Returning to the system involving both the photon and the
exciton fields, one can write Eqs. (4) as a Schrödinger equation
for the photon field envelope φC ,

− 1
2φ′′

C + V (x)φC = 
CφC, (21)

in which the effective potential V (x) depends on the exciton
field:

V (x) = γ 2


X − gφX(x)2
. (22)

For the dark soliton derived above, V (x) exhibits a single
symmetric well with far-field value V∞ = 
C < 0, as shown
in Fig. 4. For the continuous soliton, V has a minimal value
of Vmin = γ 2/
X. For the discontinuous soliton, the well
becomes infinitely deep at the point of discontinuity.

In an experimental setup, one expects that losses will allow
some photons to be trapped by the potential well (22) in the
form of bound states at discrete energy levels which lie below

C . As long as a small enough fraction of the energy of the
photon field of the coherent polariton structure is transferred
into lower energy states, the exciton field φX(x) and therefore
also the potential V (x) will not be significantly altered and can
be considered a fixed potential.

This scenario is consistent with experimental observa-
tions [17], in which a polariton field is sustained by continu-
ously injecting photons at two pump spots, one on each side

FIG. 4. (Color online) The effective potential well V (x) that
confines the photon field of an exciton-polariton soliton. Left: When
the exciton field is continuous (ω < ωX), V (x) has a finite minimal
value. Right: When the exciton field is discontinuous (ω > ωX), V (x)
is unbounded at the point of discontinuity x = 0. (ωX = 0, ωC = 1,
and ωLP ≈ −0.618, as in Fig. 1.)

of the potential well. A fraction of the polariton population
descends to lower energy states of the well.

V. CONCLUDING DISCUSSION

The present study offers an analytic approach to the
understanding of exciton-polariton condensates, which we
believe is a welcome complement to experiment and numer-
ical simulations. Our computations analytically demonstrate
stationary solitons, and the prediction of a discontinuous band
of dark solitons demonstrates a limitation of the single-field
Gross-Pitaevskii model.

We have presented a detailed study of dark polariton
soliton solutions of a system of equations for strongly coupled
excitons and photons in the lossless case. One type of dark
soliton studied is of the standard type where the fields vanish
at the soliton center. This corresponds to complete depletion of
the condensate at that point. In the positive detuning case, we
have also reported a discontinuous soliton where the exciton
field exhibits a jump at the soliton center, so the exciton density
does not vanish. We have shown that these two types of soliton
can be unified in one branch, joined at the frequency where the
discontinuity in the exciton density smoothly increases from
zero.

The discontinuity of the soliton profile should not be
considered unnatural. It is the result of neglecting the small
excitonic dispersion, an approximation that provides a lot
of calculational simplicity without compromising the phe-
nomenology. If the excitonic dispersion is taken into account
the jump discontinuity is replaced by a steep front. Integrability
persists in this more precise calculation.

The solitons that we derive apply for a time interval
after the pumping is removed and while the losses have
not yet been significantly manifested or the solitons lie
outside the pump spot. For example, in Refs. [6,10] quasi-
one-dimensional structures are observed outside the pump
spots. This suggests that the rate of attenuation can be slow
enough to allow for the formation of solitons, thus making the
zero-loss assumption reasonable. The possibility to emulate
lossless exciton-polaritons with a photonic system has been
proposed [9], and a dark soliton is computed analytically for
that system. In a different realization, polariton condensates
can be created at two pump spots [17] and localized structures
can be sustained in the region between the two spots where
there is no pumping.

Coupled systems with nonlinearities serve as models for
systems with two kinds of interacting particles when at least
one of them is treated in a mean-field description. They
elucidate phenomena such as conservative soliton structures
in an atomic condensate interacting with light [22] or vortex
patterns in condensates with two atomic species [23]. The
analysis in this article elucidates a nonlinear phenomenon
that relies crucially on the coupling of two systems: While
one field is continuous and vanishes at a point of sym-
metry, the other may develop a discontinuous phase, thus
allowing the associated density to remain strictly positive
everywhere.

The solitons that we calculate are standing structures; they
have zero velocity. They arise from the model equations by
an exact calculation which is possible because the system
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can be integrated. Apparently they are the static members
of families of traveling solitons. The calculation of traveling
solitons would provide information on the dynamical behavior
of polaritonic systems, particularly on the survival of dis-
continuous solitons. These calculations entail a significant
broadening of the scope of the present work. The analytical
challenge is to extract such solitons from a system of
ordinary differential equations that is considerably more com-
plicated than the integrable system that describes stationary
solitons.

Polariton condensates emerge as a fertile ground for soli-
tonic structures. Our results provide an analytic understanding
of these structures and can lead to more accurate methods
to describe dynamical behavior in polaritonic systems. For

example, losses could be included within the framework of a
perturbation theory on the conservative model.
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