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Thermal conductivity of IPA-CuCl3: Evidence for ballistic magnon transport and the limited
applicability of the Bose-Einstein condensation model

Z. Y. Zhao,1,* B. Tong,1 X. Zhao,2,† L. M. Chen,3 J. Shi,4 F. B. Zhang,1 J. D. Song,1 S. J. Li,1 J. C. Wu,1

H. S. Xu,1 X. G. Liu,1 and X. F. Sun1,5,6,‡
1Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei,

Anhui 230026, People’s Republic of China
2School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

3College of Electronic Science Engineering, Nanjing University of Post and Telecommunication, Nanjing,
Jiangsu 211106, People’s Republic of China

4Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
5Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei,

Anhui 230026, People’s Republic of China
6Collaborative Innovation Center of Advanced Microstructures, Nanjing, Jiangsu 210093, People’s Republic of China

(Received 1 January 2015; revised manuscript received 4 April 2015; published 17 April 2015)

The heat transport of the spin-gapped material (CH3)2CHNH3CuCl3 (IPA-CuCl3), a candidate quantum magnet
with Bose-Einstein condensation (BEC), is studied at ultralow temperatures and in high magnetic fields. Due
to the presence of the spin gap, the zero-field thermal conductivity (κ) is purely phononic and shows a ballistic
behavior at T < 1 K. When the gap is closed by magnetic field at H = Hc1, where a long-range antiferromanetic
(AF) order of Cu2+ moments is developed, the magnons contribute significantly to heat transport and exhibit a
ballistic T 3 behavior at T < 600 mK. In addition, the low-T κ(H ) isotherms show sharp peaks at Hc1, which
indicates a gap reopening in the AF state (H > Hc1) and demonstrates limited applicability of the BEC model to
IPA-CuCl3.
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I. INTRODUCTION

Low-temperature thermal conductivity (κ) can probe the
transport properties of various elementary excitations in
solids [1–3]. At very low temperatures, the phonon transport is
known to exhibit a ballistic behavior since all the microscopic
scatterings are smeared out and phonons are only scattered by
the sample surface or boundary. This is the so-called boundary
scattering limit and the κ shows a simple T 3 dependence [1–3].
The magnon excitations of an antiferromagnetically ordered
material are known to have the same statistic law as the
phonons. In addition, since the low-energy antiferromagnetic
(AF) magnons also have linear dispersion, they are able to
show the same T 3 dependence of thermal conductivity at very
low temperatures [1–3]. However, this ballistic transport of
AF magnons has been rarely observed [4]. One reason is that
the low-energy magnons and phonons can easily couple to
each other [5–7]. More serious is that the acoustic magnons
are almost always gapped in the real antiferromagnets. In
this regard, it is possible to switch on the magnon heat
transport by applying a magnetic field to close the anisotropy
gap [4,8,9]. For example, in the AF insulator Nd2CuO4, a
10-T-field-induced increase of κ was found to show a T 3

behavior at ultralow temperatures, which was discussed to be
the first observation of the AF magnon ballistic transport [4].
However, this explanation is not well grounded since the
anisotropy gap can be closed only at the spin reorientation
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field (much lower than 10 T for Nd2CuO4) and it will be
reopened at higher field [8,10].

It might be easier to probe the ballistic transport of the
AF magnons in those quantum magnets that can exhibit the
Bose-Einstein condensation (BEC) [11–19]. BEC denotes a
collective occupation of bosons to the lowest single-particle
state when temperature approaches zero. In some spin-gapped
quantum magnets, the XY-type AF state induced by the
magnetic field that closes the spin gap can be described as
a BEC state. The spin Hamiltonian of these quantum magnets
must contain the U (1) symmetry, which requires a continuous
uniaxial symmetry. In the field-induced BEC state, the U (1)
symmetry spontaneously gets broken and, as a consequence, a
gapless Goldstone mode is acquired. If this type of low-energy
AF magnon is not strongly coupled with phonons, they are
likely to contribute to transporting heat.

Probing the magnon heat transport of BEC materials
has been tried for the organic compound NiCl2-4SC(NH2)2

(DTN), an S = 1 chain system [20,21], and the oxide
Ba3Mn2O8 [22]. It has been found that along the chain
direction of DTN, the κ shows a distinct enhancement when
increasing field across the BEC phase boundary [20,21].
However, the reported data could not separate the magnon
thermal conductivity from the total κ , mainly because the
measurements have not been carried out at low-enough
temperatures [20,21]. In the case of Ba3Mn2O8, the magnons in
the BEC state are scattering phonons rather than transporting
heat [22]. In this work, we choose another BEC candidate
(CH3)2CHNH3CuCl3 (IPA-CuCl3) [23–29] to study the ther-
mal conductivity. IPA-CuCl3 crystallizes in a triclinic structure
and the Cu2+ spins (S = 1/2) form ladders along the a axis,
with rungs along the c axis, as shown in Fig. 1. The zero-field
ground state is quantum paramagnetic with a spin gap of
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FIG. 1. (Color online) Schematic H -T phase diagram of IPA-
CuCl3 according to the magnetization, specific heat, magnetocaloric
effect, and neutron scattering measurements [23,25–27,29]. PM rep-
resents the low-field quantum paramagnetic state and AFM represents
the field-induced antiferromagnetically ordered state, which has been
discussed to be a possible BEC state. The solid line is the phase
boundary (Hc1) of the above two states. Note that the critical fields
(∼10 T at T → 0) slightly differ for different field directions and from
different experiments. Inset: Schematic plot of the ac-plane structure,
including the magnetic Cu2+ (big and red circles) and the bridging
Cl− (small and cyan circles) ions. Other atoms are omitted for clarity.

1.17 meV. When the magnetic field closes the gap at μ0Hc1 ∼
10 T, an AF state is developed. This has been proposed as
a BEC state since the neutron scattering indicated a gapless
mode [25,26]. Here, we study the heat transport of IPA-CuCl3
single crystal at very low temperatures down to several tens of
millikelvin. At H = Hc1, a T 3 magnon thermal conductivity
is observed at T < 600 mK, which is the clearest experimental
evidence of the ballistic magnon heat transport in the AF state
until now. However, the low-T κ(H ) isotherms indicate that
the spin gap is closed only at Hc1. The reopening of a small gap
at H > Hc1 demonstrates that the BEC model is not strictly
applicable to IPA-CuCl3.

II. EXPERIMENTS

IPA-CuCl3 single crystals were grown by a slow evapora-
tion of ethanol solution mixed with CuCl2, isopropyl amine,
and concentrated HCl in an appropriate proportion [30]. The
as-grown crystals are dark brown with size up to 15 × 5 ×
0.6 mm3, with the length and width nearly along the c

and a axis, respectively. The specific heat of an IPA-CuCl3
single crystal was measured by the relaxation method in the
temperature range from 2 to 30 K using a commercial physical
property measurement system (PPMS, Quantum Design). For
anisotropic κ measurements, the long-bar shaped samples
were cut from the as-grown crystals along either the a

or c axis, respectively. The κ was measured using a “one
heater, two thermometers” technique in a 3He refrigerator at
300 mK < T < 30 K and a 3He-4He dilution refrigerator at

70 mK < T < 1 K, equipped with a 14 T magnet [7,31,32].
In these measurements, the magnetic field is parallel to the
heat current (JH ), which is along the lengths of the samples.
It should be noted that the crystals are so fragile that cutting
and polishing can easily produce some damages inside the
samples; furthermore, some samples were even broken after
cooling and warming cycle. Thus, the data presented in this
paper were taken on several different samples.

III. RESULTS

Figure 2(a) shows the specific heat of an IPA-CuCl3 single
crystal with 2 � T � 30 K. Our data are consistent with the re-
ported data [29]. It is notable that the temperature dependence
strongly deviates from the well-known T 3 behavior of phonon
specific heat. A fitting of low-T data to Cp = βT 3 is shown
by a dotted line in Fig. 2(a). Furthermore, the data cannot be
well fitted by a more complicated formula of phononic specific
heat,

Cp = βT 3 + β5T
5 + β7T

7, (1)

which is the low-frequency expansion of the Debye function
with β, β5 and β7 the T -independent coefficients [33].
The reason is mainly due to the contribution of magnetic
excitations. As suggested by Ref. [29], since the existence
of a spin gap of magnetic excitations, the low-T specific heat
can be described as a T 3 phononic term plus a Schottky term,
that is,

C = βT 3 + 1

3
A

(
�

kBT

)2
e�/kBT

[1 + (1/3)e�/kBT ]2
, (2)

where � is the spin gap separating the singlet ground state
and the triplet first-excitation state and A is an adjusting
parameter. The factor 1/3 is related to the triple degeneracy
of the first-excitation state [33]. This formula can fit the
low-T specific heat data well with the parameters β = 4.81
× 10−3 J/K4mol, �/kB = 22.1 K, and A = 0.88 J/Kmol, as
shown in Fig. 2(a). These parameters are also consistent with
the results in the earlier literature [29]. However, the fitting
parameter � differs from the size of the spin gap (13.6 K)
obtained from neutron measurements [24]. If we fit the data
using formula (2) with a fixed parameter �/kB = 13.6 K,
the fitting is much worse, as shown by the dashed line in
Fig. 2(a). This discrepancy should be due to the complexity
of low-T specific heat. Some other factors, such as the spin
disorders or magnetic and nonmagnetic impurities, may give
small additional contributions to the specific heat.

Figure 2(b) shows the temperature dependence of κ of an
IPA-CuCl3 single crystal in zero field with the heat current
along the c axis. Due to the spin gap of 1.17 meV (13.6 K) in the
ground state of IPA-CuCl3 [23,24], the magnetic excitations
can hardly be thermally excited at very low temperatures.
Therefore, the low-T κ(T ) is the pure phonon conductivity.
Indeed, the low-T κ(T ) behaves as a common insulator,
with a phonon peak at about 6 K. The magnitude of peak
exceeds 10 W/Km and is comparable with some other organic
low-dimensional magnets [20,34,35].

A notable phenomenon is that the κ(T ) follows a perfect T 3

dependence at T < 700 mK. In principle, the phonon thermal
conductivity can be expressed as a kinetic formula κp =
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FIG. 2. (Color online) (a) Low-temperature specific heat of an
IPA-CuCl3 single crystal in zero field. The solid line is a fitting to
the data using Eq. (2) with adjustable parameters β = 4.81 × 10−3

J/K4mol, �/kB = 22.1 K, and A = 0.88 J/Kmol. The dashed line
is a different fitting using Eq. (2) with the fixed parameter �/kB

= 13.6 K and adjustable parameters β = 7.18 × 10−3 J/K4mol
and A = 0.19 J/Kmol. The dotted line is a simple T 3 fitting with
coefficient of 7.92 × 10−3 J/K4mol. The inset shows data in a broader
temperature range from 2 to 30 K. (b) Temperature dependence of
thermal conductivity of an IPA-CuCl3 single crystal in zero field and
at 300 mK–30 K. The heat current is applied along the c axis. The
dimension of this sample is 4.6 × 1.74 × 0.88 mm3. The dashed line
indicates T 3 temperature dependence. Inset: The low-temperature
data in a linear plot for κ vs T 3. The thin line is a fitting to κ = bT 3

with the parameter b = 0.32 W/K4m for T < 700 mK.

1
3Cvplp, in which C = βT 3 is the low-T specific heat, vp is
the averaged sound velocity and is nearly T independent at low
temperatures, and lp is the mean free path of phonons [1]. With
decreasing temperature, the microscopic scattering of phonons
is gradually smeared out and the lp increases continuously
until it reaches the averaged sample width W = 2

√
A/π ,

where A is the cross-sectional area of the sample [1]. This
boundary scattering limit of phonons can be achieved only

at very low temperatures and the T dependence of κp is the
same as the T 3 law of the specific heat [1,2]. The well-known
T 3 ballistic behavior of phonons, however, has been rarely
observed in the transition-metal compounds, including the
high-Tc cuprates, the multiferroic manganites, and the low-
dimensional quantum magnets [7,20,22,31,32,34–39].

In the boundary scattering limit, the phonon thermal
conductivity of an isotropic system is given by [2]

κp = 2π2

15

lp

v2
p

kB

(
kB

�

)3

T 3. (3)

The averaged phonon velocity vp can be extracted from the
specific-heat coefficient using the relations β = 12π4

5
Rs

�3
D

and

�D = �vp

kB
( 6π2Ns

V
)

1
3 [33], where �D is the Deybe temperature,

N is the number of molecules per mole and each molecule
comprises s atoms, V is the volume of crystal, and R is the
universal gas constant. For phonons in a three-dimensional
(3D) lattice, the anisotropy of phonon velocity is usually not
very strong and formula (3) can describe the κp rather well.

The present low-T data fit well to κ = bT 3 with b =
0.32 W/K4m, as shown in the inset to Fig. 2(b). Thus, with
the parameter β = 4.81 × 10−3 J/K4mol, the mean free path
is calculated to be 0.017 mm. This value is much smaller than
the geometry size of this sample, W = 1.40 mm. Since the
T 3 behavior is a robust signature of the boundary scattering
limit, it seems that the sample has some small cracks that act
as the boundaries of phonon transport. As mentioned above, it
is likely that this kind of crack is not intrinsic but are produced
in the cutting, polishing, and cooling processes.

Figure 3 shows the magnetic-field dependencies of κa and
κc at low temperatures for two IPA-CuCl3 single crystals. The
data exhibit two remarkable features. First, the κ are field
independent at low fields but exhibit a sharp peak at μ0Hc1 ∼
9.95 and 9.75 T for H ‖ a and H ‖ c, respectively, particularly
at very low temperatures. It is noted that at T → 0 the peak
positions coincide with the transition field of the field-induced
AF state [23,25–27,29]. Since the magnons can be easily
excited when the spin gap is closed at Hc1, the increase of
the κ at Hc1 is direct evidence of the magnon heat transport.
Note that the small anisotropy (9.95/9.75 = 1.02) of critical
fields between H ‖ a and H ‖ c is due to the anisotropy of
g values. The electron spin resonance (ESR) measurements
showed that the g values along the a and c axes are 2.05
and 2.11, respectively [40]. This anisotropy (2.11/2.05 =
1.03) explains the anisotropy of Hc1. Second, the peak feature
demonstrates that the gap is closed only at Hc1 and is reopened
above Hc1, which results in the vanishing of magnon transport
in high fields.

To probe the T dependence of the magnon heat transport,
the κa(T ) and κc(T ) at Hc1 of these two samples are measured
and compared with their zero-field data, as shown in Fig. 4.
Both the κa and κc in H = 0 follow the κ = bT 3 dependence
at low temperatures, with b = 0.82 W/K4m for κa and
0.50 W/K4m for κc, respectively. The phonon mean free paths
in the ballistic regime are calculated to be 0.043 and 0.026 mm
for the κa and κc samples, respectively, which are also smaller
than the sample sizes (W = 0.94 and 1.03 mm). All these are
consistent with the result of another sample shown in Fig. 2.
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FIG. 3. (Color online) Magnetic-field dependencies of the κa (a)
and κc (b) of two IPA-CuCl3 crystals at subkelvin temperatures. Since
the magnetic fields are applied along the direction of the heat current,
the demagnetization effect is negligibly small for these long-bar
shaped samples.

The most important finding is that the κa (κc) at 9.95 (9.75)
T also follow the T 3 dependence at T < 600 (700) mK. The
κ = aT 3 fittings yield a = 2.90 W/K4m for κa in 9.95 T
and 0.79 W/K4m for κc in 9.75 T, respectively. Therefore,
the magnon thermal conductivity at Hc1 can be obtained by
subtracting the zero-field data from the critical-field curves,
which gives κm = 2.08T 3 (W/Km) and 0.29T 3 (W/Km)
along the a and c axis, respectively, as shown in Figs. 4(c)
and 4(d). This nearly perfect T 3 dependence is actually
the clearest experimental evidence of the magnon ballistic
transport in the AF systems until now.

There are several notable details about the field and
temperature dependencies of κ . First, for both field directions,
the transition field determined by the peak positions of κ(H )
isotherms is nearly temperature independent and slightly shifts
to lower fields with increasing temperature. This T dependence
of Hc1 is actually not the same as the transition field closing
the spin gap probed by other measurements [23,25–27,29].
A very similar phenomenon has been found in another BEC

FIG. 4. (Color online) (a) Temperature dependencies of the κa

in zero field and 9.95 T (‖ a). (b) Temperature dependencies of
the κc in zero field and 9.75 T (‖ c). The data are taken on two
IPA-CuCl3 crystals, of which the κ(H ) data are shown in Fig. 3. The
dimensions of the κa and κc samples are 4.5 × 1.29 × 0.55 mm3 and
3.91 × 1.54 × 0.55 mm3, respectively. [(c) and (d)] Data shown in the
κ vs T 3 plot. The solid lines are linear fittings to the experimental data.
The dot-dashed lines denote the magnon thermal conductivity, κm,a =
2.08T 3 (W/Km) and κm,c = 0.29T 3 (W/Km), obtained by subtract-
ing the zero-field data from the κ(T ) curves in the critical fields.
The dashed lines show the calculated curves κm,a = 2.27T 3 (W/Km)
and κm,c = 0.26T 3 (W/Km), using formula (5) with appropriate
parameters, that are closest to the experimental data of κm,a

and κm,c.

material, DTN [20]. The possible reason is that the magnetic
excitations may not only transport heat but also scatter
phonons. Since these two factors contribute oppositely to
κ , the field dependence of κ is rather complicated and the
maximum could appear at the fields in a manner that slightly
differs from that of the phase-transition fields. In particular,
this discrepancy is stronger at higher temperatures where the
scattering between phonons and magnons are stronger and
the peak becomes broader. Second, at the critical fields, κ(T )
show some deviations of the T dependence from the exact
T 3 behavior at both high and low temperatures. At high
temperature (>500 mK), the T dependence becomes a bit
weaker, which is a usual phenomenon of heat transport if the
scattering between magnetic excitations and phonons cannot
be neglected [5–7,20,22]. That is, it is a simple deviation
from the boundary scattering limit. Another possible reason
for this deviation is a dimensional crossover of spin system
to the two-dimensional (2D) regime, as found, for example,
in a 2D antiferromagnet RbFe(MoO4)2 [41]. In this regard,
there seemed to be no experimental result indicating such a
dimensional crossover in IPA-CuCl3 [23,25–27,29]. On the
other hand, κa(T ) at 9.95 T shows stronger T dependence
than T 3 at the lowest temperature regime. So far, the reason
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is not very clear. Probably some decoupling between phonons
and magnons occurs, like the electron-phonon decoupling in
high-Tc cuprates [42,43].

IV. DATA ANALYSIS AND DISCUSSIONS

Similarly to the case of phonons, the ballistic magnon
thermal conductivity of an isotropic system can be written
as [1–3]

κm = 1

3
× 2

15
π2kB

(
kBT

�

)3

v−2
m lm, (4)

where vm is the averaged magnon velocity, and lm is the
T -independent mean free path of magnons (see the Appendix).
It is easy to find that Eq. (4) of the isotropic system cannot
quantitatively describe the experimental results of κm,a and
κm,c. Note that at ultralow temperatures, the lm is also
determined by the boundary scattering and is actually the same
as the mean free path of phonons. The calculation using Eq. (4)
gives the magnon velocities of 920 and 1930 m/s along the a

and the c axes, respectively. They are apparently unreasonable
since the magnon dispersion is stronger along the a axis (the
ladder direction) [23–28]. It is simply due to the fact that Eq. (4)
is established for the isotropic system and cannot be valid for
the low-dimensional spin systems. As shown in the Appendix,
for the anisotropic system the magnon thermal conductivity
along a certain direction i is expressed as

κm,i = 1

3
× π3

30
kB

(
kBT

�

)3

v̄m,i lm,iα
′, (5)

where v̄m,i , lm,i , and α′ represent the averaged magnon velocity
along the direction i, the T -independent mean free path, and
the coefficient of frequency density distribution, respectively.
Here α′ is written as

α′ =
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)v−3(θ,φ) sin φdφ∫ π/2
0 dθ

∫ π/2
0 W (θ,φ)dφ

, (6)

while W (θ,φ) is an assumed velocity-weighting function with
an exponential form,

W (θ,φ) = e
v(θ,φ)

v0 , (7)

with v0 an adjustable parameter and θ and φ the space angles.
The magnon dispersions along the a and c axis of IPA-

CuCl3 have been known from the earlier neutron measure-
ments, which gave vm,a = 2050 m/s and vm,c = 790 m/s
[24–26]. The magnon dispersion is known to be very weak
along the b axis [24]. Here we use Eq. (5) to calculate the κm,a

and κm,c with the experimental values of vm,a and vm,c and
adjustable parameters vm,b and v0. According to this formula,
these two parameters have different impacts on the value of
κm,a and κm,c. The magnitudes of κm,a and κm,c increase with
decreasing vm,b and their ratio (or anisotropy) hardly changes
with vm,b. In contrast, κm,a and κm,c decrease with decreasing
v0. Furthermore, the ratio of κm,a/κm,c increases with decreas-
ing v0. Therefore, only with appropriate values of vm,b and
v0 can we get calculated κ close to the experimental data
for both κm,a and κm,c simultaneously. The best calculations
of κm,a = 2.27T 3 (W/Km) and κm,c = 0.26T 3 (W/Km), as

shown in Figs. 4(c) and 4(d), are obtained with vm,b = 150 m/s
and v0 = 220 m/s. Note that the parameter vm,b is about one
order of magnitude smaller than the velocities along the other
axes, which is reasonable for IPA-CuCl3 [24–26]. Therefore,
the ballistic magnon heat transport of a low-dimensional
quantum magnet can be well described by an anisotropic
formula (5).

Another important result of this work is the peaklike
feature of κ(H ) at Hc1, which becomes clearer and sharper
with lowering temperature. As already mentioned above, this
indicates that the spin gap is closed only at the critical field and
is reopened in the field-induced AF state. Therefore, the lowest
excitation in the field-induced AF state is the non-Goldstone
mode. The gap size cannot be determined precisely by the
present data, but we can take a rough estimation from the
high-field behavior of κ(H ). In the high-field state with small
gap, the magnons can still be easily excited and contribute to
transporting heat if kBT is not smaller than the gap. As shown
in Fig. 3, it seems that the κ tends to recover its zero-field value
at the high-field limit of H ‖ a (H ‖ c) when T � 380 mK
(252 mK) but tends to increase at the high-field limit when
T � 520 mK (380 mK). Therefore, the gap is estimated to
be about 500 mK (≈0.043 meV) and 300 mK (≈0.026 meV)
for H ‖ a and c, respectively. Apparently, such small gaps are
beyond the resolution of the earlier neutron measurements.
Similarly, TlCuCl3 was the first BEC candidate that showed a
gapless Goldstone mode in the field-induced AF state by the
neutron scattering measurement [13] but lately has been found
to have a small gap of 0.09 meV by the ESR measurement
[44,45].

A characteristic of BEC is the presence of U(1) symmetry,
which corresponds to the global rotational symmetry of the
bosonic field phase [11,12]. In field-induced XY -ordered state,
the U(1) symmetry spontaneously gets broken and thus a
gapless Goldstone mode is acquired. However, the reopening
of the gap is clear evidence for a broken uniaxial symmetry
of spin Hamiltonian, which rules out a strict description of the
magnetic order in terms of BEC [12]. Therefore, the heat
transport data indicate that the BEC model has limited appli-
cability to IPA-CuCl3, similarly to TlCuCl3. The theoretical
works actually had predicted a general instability of an
axially symmetric magnetic condensate toward a violation
of this symmetry and the formation of an anisotropy gap at
H > Hc1 [12,46]. It is related to the presence of anisotropic
interactions, such as the dipole-dipole coupling, the spin-
orbital interaction, etc. [12,46].

V. CONCLUSIONS

In summary, we have studied the ultra-low-T heat transport
of a spin-gapped compound IPA-CuCl3, which has been
classified to be a candidate of BEC. When the gap is closed
by the field at Hc1, a T 3 ballistic magnon heat transport
is observed. On the other hand, the low-T κ(H ) isotherms
show peaks at the critical field, indicating that the spin gap
is re-opened at H > Hc1. Therefore, IPA-CuCl3 seems not
to be an ideal BEC prototype system. Ultra-low-T thermal
conductivity is a very sensitive technique to probe the small
spin gap, and the validity of BEC model for those quantum
magnets can be carefully examined using this measurement.
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APPENDIX: PHENOMENOLOGICAL FORMULAS FOR
THE HEAT TRANSPORT OF PHONONS AND MAGNONS

1. Isotropic systems

According to the Boltzmann equation, the lattice thermal
conductivity can be obtained by solving the integral equation.
In an isotropic (or cubic) 3D crystal, the phononic thermal
conductivity is given by [1–3,47]

κp = 1

3

1

(2π )3

∑
λ

∫
vp,λ(q)lp,λ(q)Cp,λ(q)fλ(q)dq, (A1)

where vp,λ(q), lp,λ(q), Cp,λ, and fλ(q) are the velocity,
mean free path, specific heat per normal mode, and vibration
mode distribution function of phonons with polarization λ

(two transverse and one longitudinal) and wave vector q,
respectively. The specific heat Cp,λ is expressed as

Cp,λ(q) = d

dT

[
�ωλ(q)

1

e
�ωλ (q)
kB T − 1

]
, (A2)

where ωλ(q) is the dispersion for polarization λ.
Usually, the following assumptions are needed to simplify

the equation and calculate the result. First, it is assumed that
phonons of different polarizations have the same contribution,
which means vp(q), lp(q), Cp, f (q), and ω(q) are independent
of polarization λ. Second, according to the isotropic Debye
approximation, vp is a constant and the dispersion relation
is q = ω/vp in all directions. Thus, q is independent of
direction and f (q)dq = 4πq2dq = 4πω2v−3

p dω. With these
assumptions, the thermal conductivity can be simplified as

κp = 1

2π2

lp

v2
p

kB

(
kB

�

)3

T 3
∫ �D/T

0

x4ex

(ex − 1)2
dx, (A3)

where x = �ω
kBT

. If the temperature is low enough, there is
only boundary scattering and the mean free path is a constant
given by the cross-sectional area, that is, lp = 2

√
A/π . In this

case, the integral approaches a constant of 4π4/15 and thermal
conductivity obeys a T 3 law, which is formula (3) mentioned
in the main text.

This result can also be applied to gapless acoustic magnons
of a 3D antiferromagnet. Note that when the degeneracy of
gapped magnon branches is lifted by a magnetic field, only the
lowest branch becomes gapless. Hence, the magnon thermal
conductivity is

κm = 1

3
× 2π2

15

lm

v2
m

kB

(
kB

�

)3

T 3, (A4)

where vm and lm are the velocity and mean free path of
magnons.

c

b

( , )v θ ϕ

ϕ
b

a
θ

FIG. 5. Schematic of the ellipsoid velocity distribution.

2. The anisotropic systems

The above formulas for phonons and magnons are valid
only for the isotropic systems. Usually, the anisotropy of
phonons is not strong for most 3D crystal lattices and therefore
formula (3) can describe the phonon heat transport in a
good approximation. For anisotropic systems, these formulas
predict that the κ is smaller along the direction with stronger
dispersion (larger velocity). This is apparently unreasonable.
For strongly anisotropic systems, like the magnons in a
low-dimensional quantum magnet, this problem would be
more serious. Here, we give some phenomenological results
of the Boltzmann theory in the anisotropic systems.

Let us again start with the phonon heat transport. Note that
with the above assumptions for an isotropic system [1–3,47],
phonons only travel along the temperature gradient direction
with a uniform velocity. In the isotropic case, we need to
consider phonons traveling in all directions with component
along the temperature gradient. Here the phonon velocity is
a function of space angles and a simple function model is
an ellipsoid (see Fig. 5). Thus, the projections of a random
velocity of one acoustic branch can be written in parametric
form as

va = a cos σ cos γ, (A5)

vb = b sin σ cos γ, (A6)

vc = c sin γ. (A7)

Here a, b, and c are the phonon velocities along the three
principal crystal axes. σ and γ are parameters of the ellipsoid
equation and they are represented by space angles θ and φ as

σ = arctan

(
a tan θ

b

)
, (A8)

γ = arctan

[√
(a cos σ )2 + (b sin σ )2

c tan φ

]
. (A9)

Then the anisotropic sound velocity can be written as a function
of space angles,

v(θ,φ) =
√

va
2(θ,φ) + vb

2(θ,φ) + vc
2(θ,φ). (A10)
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In this anisotropic velocity model, vp,q and f (q)dq need
correction. With Eq. (A10), the averaged phonon velocity
along the a, b, and c axis are written as

v̄a =
∫ π/2

0 dθ
∫ π/2

0 v(θ,φ) cos θ sin φdφ∫ π/2
0 dθ

∫ π/2
0 dφ

, (A11)

v̄b =
∫ π/2

0 dθ
∫ π/2

0 v(θ,φ) sin θ sin φdφ∫ π/2
0 dθ

∫ π/2
0 dφ

, (A12)

v̄c =
∫ π/2

0 dθ
∫ π/2

0 v(θ,φ) cos φdφ

(π/2)
∫ π/2

0 dθ
∫ π/2

0 dφ
. (A13)

Since v(θ,φ) depends on the space angles here, q =
ω/v(θ,φ) is function of ω, θ , and φ simultaneously. Thus,
f (q)dq has a more complex form as

f (q)dq = 4αω2dω, (A14)

where

α =
∫ π/2

0
dθ

∫ π/2

0
v−3(θ,φ) sin φdφ. (A15)

Taking Eqs. (A2) and (A11)–(A14) into Eq. (A1), one can get
the thermal conductivities along direction i for phonons and
magnons in the low-temperature limit as

κp,i = 2π

15
v̄p,i lp,iαkB

(
kB

�

)3

T 3 (A16)

and

κm,i = 1

3
× 2π

15
v̄m,i lm,iαkB

(
kB

�

)3

T 3, (A17)

respectively.
Here, we put forward a further quantitative assumption in-

volving the anisotropy. We consider that phonons or magnons
prefer to propagate in a direction with stronger dispersion
and this direction of course contributes more to the average
velocity. Thus, we assume a velocity-dependent weighting

function with an exponential form,

W (θ,φ) = e
v(θ,φ)

v0 , (A18)

where v0 is an adjustable parameter. With this weighting
function, the averaged phonon velocities in directions a, b,
and c should be written as

v̄a =
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)v(θ,φ) cos θ sin φdφ∫ π/2
0 dθ

∫ π/2
0 W (θ,φ)dφ

, (A19)

v̄b =
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)v(θ,φ) sin θ sin φdφ∫ π/2
0 dθ

∫ π/2
0 W (θ,φ)dφ

, (A20)

v̄c =
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)v(θ,φ) cos φdφ

(π/2)
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)dφ
. (A21)

The denominators are normalization coefficients.
For the same reason, taking the weighting function into

account, f (q)dq has a similar form of

f (q)dq = π2α′ω2dω, (A22)

and here

α′ =
∫ π/2

0 dθ
∫ π/2

0 W (θ,φ)v−3(θ,φ) sin φdφ∫ π/2
0 dθ

∫ π/2
0 W (θ,φ)dφ

. (A23)

Taking Eqs. (A2) and (A19)–(A22) into Eq. (A1), one can
finally obtain the phonon and magnon thermal conductivities
along direction i (a, b, or c) as

κp,i = π3

30
v̄p,i lp,iα

′kB

(
kB

�

)3

T 3 (A24)

and

κm,i = 1

3
× π3

30
v̄m,i lm,iα

′kB

(
kB

�

)3

T 3, (A25)

respectively.
In the present work, the crystal lattice and the magnetic

structure have lower symmetry than the orthorhombic one.
Using the above formulas to fit the experimental data is another
approximation.
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