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Spin-dimer systems are a versatile playground for the detailed study of quantum phase transitions. Using
the magnetic field as the tuning parameter, it is possible to observe a crossover from the characteristic
scaling near critical points to the behavior of a finite-temperature phase transition. In this work we study

two-dimensional coupled spin-dimer systems by comparing numerical quantum Monte Carlo simulations
with analytical calculations of the susceptibility, the magnetocaloric effect, and the helicity modulus. The
magnetocaloric behavior of the magnetization with temperature can be used to determine the critical fields with
high accuracy, but the critical scaling does not show the expected logarithmic corrections. The zeros of the cooling
rate are an excellent indicator of the competition between quantum criticality and vortex physics, but they are not
directly associated with the quantum phase transition or the finite-temperature Berezinsky-Kosterlitz-Thouless
transition. The results give a unified picture of the full quantum and finite-temperature phase diagram.
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I. INTRODUCTION

The study of quantum phase transitions (QPTSs) remains
a very active topic in many fields of physics, spurred by
experimental progress in creating novel tunable interacting
systems. QPTs occur in quite different materials, including
heavy fermion compounds, unconventional superconductors,
Mott insulators, coupled spin systems, and ultracold atoms.
In particular, the common phenomenon of Bose-Einstein
condensation (BEC) of strongly interacting bosons by tuning
the interaction or the chemical potential can now be found in
a range of different physical systems. Ultracold atomic gases
allow the tuning of interactions via Feshbach resonances, but
also cross-dimensional phase transitions [1] and Berezinsky-
Kosterlitz-Thouless (BKT) behavior [2] have been observed
recently. Phase transitions in coupled spin-dimer systems are
prime examples of BEC of strongly interacting triplons [3—8],
which allow easy tuning of the chemical potential via the
magnetic field. Although QPTs occur at zero temperature
as a function of a nonthermal control parameter such as
the interaction, effective mass, or the chemical potential, a
characteristic critical scaling with temperature can be observed
in a large range above the critical point [4]. In general a
detailed analysis is necessary in order to understand how
the critical behavior is reflected in the experiments and
if the finite-temperature phase transition is affected in the
vicinity the QPT, where thermal fluctuations are comparable
to quantum fluctuations. Compared to bosonic gases of atoms
and magnons, temperature control is relatively easy in triplon
gases, which allows a systematic analysis of the critical scaling
behavior near the QPT.

In this paper we focus on the theoretical analysis of quantum
critical points of antiferromagnetic spin-dimer systems which
are weakly coupled in two dimensions. Two QPTs can be
observed: As the field is increased through the lower critical
value B, the spin dimers start to be occupied by triplons and the
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magnetization increases with characteristic two-dimensional
logarithmic behavior. The second QPT corresponds to the
saturation field B;. The intermediate phase is characterized
by long-range phase coherence of triplons at 7 = 0 and BKT
behavior [9-12] at finite 7. Similar phase transitions occur in
two-dimensional hard-core boson systems[13] and in distorted
frustrated lattices [14].

The schematic behavior is illustrated in Fig. 1. In this
paper we show that the crossover from BKT behavior to
critical scaling is rather well defined by the cooling rate
and by characteristic maxima in the susceptibility. However,
this crossover occurs at distinctly higher temperatures than
the BKT transition which can be determined by a careful
analysis of the spin stiffness. There is no directly measurable
signal for the BKT transition in experiments [3], but we
find that magnetocaloric measurements are ideally suited to
show the critical scaling and to pinpoint the exact location
of the QPT. Close to the QPT the BKT transition retains
the characteristic logarithmic behavior, albeit with strongly
renormalized parameters. We find, however, that the low-
temperature behavior above the QPTs does not fully follow
theoretical expectations.

critical critical

BKT transition

Quantum dimer

) Ferromagnetic
(“disorder”)
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B B
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FIG. 1. (Color online) Schematic phase diagram of the coupled
spin-dimer model with Hamiltonian given in Eq. (1).
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FIG. 2. (Color online) Coupled dimers on a square lattice, with a
columnar arrangement of the dimers.

II. MODEL

We use a “columnar” arrangement of strongly coupled an-
tiferromagnetic dimers (J > 0) on a two-dimensional square
lattice as shown in Fig. 2, described by the Hamiltonian of

localized spin-1/2 operators Szx,y

H = Z|:Z./§ : x+1y+-/Sx+1v'§x+2,y

x=odd

N

BY &, ()

st) xs+lj|_

where the interdimer couplings J; and J; can be ferromagnetic
or antiferromagnetic, but are assumed to be small |J'| < J.

A. Interacting boson models

Assuming that the intradimer exchange interaction J
dominates over interdimer couplings J; and J}, it is natural
to represent the system in the singlet and triplet basis at each
dimer site

l—)i =i, )i = M
v 2)
Lt )i =111)in Is)i = w

At strong fields B =~ J the last two states become nearly
degenerate, while the other two higher energy states will
be neglected for now. It is therefore justified to work in a
restricted Hilbert space with only two states at each dimer site,
which are represented by hard-core bosons on the vacuum

=]];|s) and b}|0) =13 ]_[i#j | s);. In this Hilbert
space the effective Hamiltonian describes strongly interacting
bosons on a rectangular lattice

Her = Y [—1t;(bb, + b1b,) + tijnin ]
(i,7)

—u Y ni+U Y nin = 1), (3)

where the limit U — oo is implied to satisfy the hard-core
constraint. The effective chemical potential and the hopping
in x and y directions are given by

pw=B—1J, te=1J/4 t,=1J)/2. )
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Note that the hopping [f;;| in Eq. (3) has been chosen to
be positive, which can always be achieved by a local gauge
transformation b; — (—1)'b;. The nearest neighbor interac-
tion in Eq. (3) is repulsive (attractive) for J' > 0 (J' < 0).
By Fourier transforming the first term in the Hamiltonian the
kinetic energy becomes

Hyn = Z(—2|tx| cosk, — 2|t,| cos ky)b};b];. (®)]
k

The position of the upper and lower band edges allows a
straight-forward estimate of the critical fields B, and By. The
lower critical field is determined by the chemical potential at
which a single boson acquires positive energy —2|t,| — 2|t,| =
u, which gives

Be~ J = 1J]1/2 = 1J]l. ©)

This estimate is only correct to first order in J’, however,
because the bosonic ground state (vacuum) is not an exact
eigenstate of the full Hamiltonian in Eq. (1). Higher order
corrections from the neglected triplet states |7_) and |#)
in Eq. (2) will be determined from numerical simulations as
described below.

The upper critical field is determined from the energy gain
of removing a particle from the fully occupied band including
the nearest neighbor interaction energy

By =J + |12+ |+ I /2 + T, (7

which is exact and corresponds to the saturation field of
the original model (1). For intermediate fields B, < B < By
the physics is governed by the behavior of two-dimensional
interacting bosons (BKT phase) as explained below.

B. Effective continuum model

We now focus on the lower QPT at B. which corresponds to
the well-studied case of a dilute interacting Bose gas [15]. The
lattice model in Eq. (3) is believed to show a quantum phase
transition to a long-range XY-ordered phase at 7T = 0 when
the chemical potential is increased above a critical value. In
the continuum limit the nearest neighbor interaction can be
neglected and the hard-core constraint can be replaced by a
strong ¢* interaction of a complex bosonic field ¢(7,7) in a
(D + 1)-dimensional Euclidean action

/dr/dD [ (a —%—M)¢+ |¢|“} ®)

where D = 2 in our case. The parameters can be obtained
by approximating the sums in Eq. (3) by integrals and then
rescaling x' = x(t,/1,)"/* and y’ = y(t,/1,)"/*. The resulting
estimates

1

2a2,/|t.t,|

are only approximate, since the renormalization from eliminat-
ing the large-wave-vector modes in Eq. (8) has been neglected.
In what follows we set the lattice spacing to unity a = 1.

The action in Eq. (8) describes an interacting dilute Bose gas
with mass m and chemical potential ji. For i > 0 or B > B,
a finite density of bosons appears even at zero temperature

m= fi=B-—B, u0=Ua2, ©))
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T = 0, which signals the QPT to the BKT phase. Analogously,
the same model also applies at the upper critical field By, where
it describes bosonic singlet excitations on the saturated state
with i = B; — B.

The upper critical dimensions is D = 2 for this model
so that logarithmic corrections appear in this case, which
are described in terms of an ultraviolet cutoff Ay (of the
order of the reciprocal rescaled lattice spacing). This situation
(D = 2)hasbeen analyzed extensively in the literature [ 16-23]
for various quantities which we summarize below. Other
dimensions are discussed in the textbook of Sachdev [15].

The density of bosons corresponds to the magnetization per
site (¢p¢) = 2M(B)/N in the spin-dimer system as a function
of field i = B — B, which is given at T = 0 by [16]

M mia®(i) n A]
2mji |”

(10)

N 8r
The susceptibility is therefore

_ﬂ<1 |:A_(21:|_1) an
=82 \ M 2mp ’

which is logarithmically divergent as the critical point is
approached from above inside the BKT phase B — B,. For
T > 0 and B = B, it has been predicted that the density in-
creases with temperature including a characteristic logarithmic
correction [16]

mT [ A}
M(T)_Eln [2’”] (12)

The scaling as a function of 7' can be used to identify the exact
value of the critical field B, as outlined below.
Finally, the BKT transition temperature has been predicted
as a function of field [18]
AZ
In I:ﬁ]

In <1n [22‘1]) .

However, for this formula to be valid the double logarithm has
to become very large, which does not correspond to physically
relevant regions [18,19]. In fact, it remains to be seen if the
single logarithms in Egs. (10)—(12) are large enough so that the
leading behavior can be observed in our numerical simulations
below and in future experiments.

13)

Tgkr =

FNg )

III. DETERMINING THE CRITICAL FIELDS

To analyze the quantum phase transitions, the exact lo-
cations of the critical fields have to be determined first. As
mentioned above, the upper critical field By is exactly the
saturation field in Eq. (7), but the lower field in Eq. (6) will in
general have higher order corrections of the form

Be~ J —|I1/2 = [Tl +ax I +ayJ] +ag T, (14)

The higher order corrections are due to virtual excitations
to the neglected triplet states |7_) and |7 ) in Eq. (2). The
exact values for a, = —0.375 and a, = 0.5J, are known from
higher order strong coupling expansions for the dimerized
chain [24,25] (J; = 0) and for the ladder system [26] (J; = 0),
respectively.
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FIG. 3. (Color online) QMC data for the magnetization as a
function of temperature for different magnetic fields for J, = J; =
0.1 and N = 676 near B, (top) and B; (bottom). The lines are linear
fits at the critical fields.

To determine the exact location of the QPT for general
interdimer couplings, numerical simulations at 7 = O in the
thermodynamic limit would be required. This is obviously
impossible, but large system sizes at small finite temperatures
are feasible with quantum Monte Carlo (QMC) simulations. To
examine the model in Eq. (1) numerically, we therefore have
implemented the stochastic series expansion algorithm [27]
with directed loop updates and using the so-called Mersenne
Twister random number generator [28].

At finite temperatures the discontinuity in the first derivative
of Eq. (10) cannot be observed directly, but the magnetization
as a function of temperature becomes exponentially small for
B < B, while it approaches a finite value for B > B,. The
critical field B, is then exactly defined as the point where
critical scaling is obeyed, which can be determined rather
accurately. This behavior is illustrated in Fig. 3.

Note, however, that the observed scaling in Fig. 3 at the
exactly known upper critical field B, appears to be perfectly
linear (relative to the saturated state). This means that the
logarithmic correction in Eq. (12) must be very small, which
puts a lower limit on the cutoff A > 107. To determine the
lower critical field B,, we therefore use linear scaling as well.
Extrapolating the data to the thermodynamic limit and then
determining the critical fields B, by the best linear fit gives
the results for three different choices of interdimer couplings
shown in Table I. Ignoring higher orders, the values for the
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TABLEI. Critical field B. for three different choices of exchange
couplings, which obey the condition J; +2J; =0.3J, ie., B~
0.85J to lowest order.

B./J From Eqgs.
Case t/J ty/J +0.0005 (14), (15)
Ji=J,=0.1J 0.025 0.05 0.8460 0.84625
Jy=2J,=015J 0.0375 0.0375 0.8391 0.83875
2J,=J;=0.12J 0015 0.06 0.8523 0.85225

coefficients in Eq. (14) are then consistent with the following
estimates:

ay = —0375, ay =05, ay,~—05+003.  (15)

Before continuing our analysis we would also like to
consider how the neglected higher energy triplet excitations
|[t—) and |ty ) in Eq. (2) affect physical observables like the
magnetization. We note that the effective Hamiltonian (3) is
invariant under changing interdimer coupling strengths J;
and JJ as long as all energies and the field p are rescaled
accordingly. We therefore consider three different realizations
of the coupling strength J; = J{ = J'=0.05/, 0.1/, and
0.2J and plot the susceptibility xJ’ as a function of rescaled
field u/J' = (B —J)/J' at a given rescaled temperature
BJ" = 5inFig. 4. We observe a finite susceptibility in the BKT
phase with two characteristic maxima near the QPT. While the
three curves agree reasonably well, systematic deviations can
be seen for larger J’, which can only come as a result of
corrections from the higher energy triplet excitations. In what
follows we choose the coupling strengths J; = Jj = J' =
0.1J, which is acompromise between minimizing higher order
corrections and efficient numerical simulations. It is believed
that the higher order triplet excitations do not change the form
of the critical scaling in Egs. (10)—(13).

IV. CRITICAL SCALING AT THE QPT

We now turn to analyzing the scaling behavior of the
susceptibility x as a function of field B in Eq. (11). Finite

0.16+
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FIG. 4. (Color online) QMC data for the susceptibility x J' as a
function of u/J' = (B — J)/J’' at inverse temperature §J' = 5 for
three interdimer coupling strengths J; = J; = J" = 0.05J,0.1J, and
0.2J.
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FIG. 5. (Color online) QMC data of the susceptibility for differ-
entsystem sizes N = L x L and an inverse temperature of J = 200

for J, = Jy’ = J' = 0.1J near B, (top) and By (bottom). The lines
represent the best fit to the prediction in Eq. (11).

temperatures 7 and system sizes N = L x L play the role
of an infrared cutoff Dy ~ max(T,J’'/L) which will give
deviations from the predicted 7 = 0 scaling in Egs. (10)
and (11) as the QPT is approached. However, for fields
|B — B.s| 2 Dy the scaling can still be tested. At each given
temperature we first increase the system size until systematic
convergence of the magnetization is obtained as shown in
Fig. 5. The resulting susceptibility in the thermodynamic limit
near the QPTs is shown in Fig. 6 as a function of the logarithm
of i = |B — B,s| for different temperatures.

The data confirms that the scaling approaches a logarithmic
behavior for T — 0 consistent with the form in Eq. (11).
We notice that the finite-temperature susceptibility is actually
rather small at the QPT B = B., but then increases and
overshoots the logarithmic divergence before the logarithmic
behavior is reached inside the BKT phase. In this way the
field integral of the susceptibility (i.e., the magnetization)
remains largely temperature independent outside the critical
region, since the smaller values at the QPT for finite T
are compensated for by a corresponding overshooting of the
maximum. In turn this means that the characteristic maxima
in Fig. 4 of the susceptibility are only indirectly related to the
QPT. The overshooting implies that the large fluctuations in
the magnetization arise from a different mechanism at finite
temperatures. One may expect that the maxima are therefore
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FIG. 6. (Color online) Susceptibility extrapolated to the thermo-
dynamic limit for different inverse temperatures 8J and J; = J| =
J" = 0.1J near B, (top) and B, (bottom). The lines represent the best
fit to the prediction in Eq. (11).

related to the finite-temperature BKT transition, but this is
not the case as we will see below. Instead we find that the
susceptibility maxima are found for temperatures well above
the BKT transition 7 > Tkt at the corresponding fields.
As we will see later the maxima coincide with maxima in
the entropy, so that these points correspond to the crossover
between quantum critical scaling to vortex physics.
Comparing with the expected form in Eq. (11) quanti-
tatively, we find rather small values of the effective mass
m ~ 1.5/J at the lower QPT B, and m ~ 2.2/J at B, which
are strongly renormalized compared to the naive estimate
m ~ 14/J according to Eq. (9). The value of Ag ~5—7
remains finite in Eq. (11). The value of m from the fits at
the lower QPT is rather sensitive to the exact location of the
critical field B,. In general all microscopic details such as
the neglected next-nearest neighbor interaction in Eq. (3) will
influence the exact value of the effective parameters in Eq. (9).

V. BEREZINSKY-KOSTERLITZ-THOULESS
PHASE TRANSITION

The intermediate region between the two QPTs is dom-
inated by the presence of interacting triplon excitations
which form a condensate at 7 = 0 with long-range phase
coherence. We now consider the finite-temperature behavior
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in this intermediate phase. While the QPTs are driven by
quantum fluctuations, the transition due to thermal fluctuation
corresponds to classical behavior and is therefore not directly
related to the scaling discussed above.

The effective hard-core boson model in Eq. (3) is ex-
actly equivalent to the XXZ-spin model with J, = J,,/2,
which is known to be in the XY-universality class. At
finite temperatures this system undergoes a BKT transition,
which can be described in terms of classical two-dimensional
spins as first explained in the works of Berezinsky [9,10]
and Kosterlitz and Thouless [11,12]. At low temperatures
T < Tgxr a quasi-long-range ordered phase with power-law
decay of correlations exists. Above the phase transition
temperature Tkt the unbinding of vortices is energetically
allowed leading to a disordered phase with exponential
decaying correlations. Kosterlitz used the spin stiffness [12]

1 9’F 16
Ps = N(a?z)L_o (10

to identify a phase transition, where F is the free energy of the
system and ¢ is the angle between spins at opposite edges of
the system. To determine the spin stiffness in QMC simulations
it is convenient to calculate the winding number fluctuations
in each direction [29,30]. This defines the so-called helicity
modulus [31]y = T (w?) = h?p,/m?, which s exactly related
to the spin stiffness, where the winding number fluctuation
and the change of the angle ¢ are assumed to be in the same
direction. The phase transition temperature Tggr involves a
slightly different definition of the spin stiffness which may
deviate from p, in Eq. (16) for anisotropic systems in low
dimensions D as discussed by Prokof’ev and Svistunov [32].
To estimate Tk in anisotropic systems it is useful to define a
rescaled helicity modulus in each direction

L, 1,

Xy 2
=T, (o)
L, 2t 17)
Yy :Tt_:L_x<w%)

where L, /2 and L, are the edge lengths of the effective hard-
core boson system in terms of the size of the original spin
system N = L, x L,. Instead of taking the average of y, and
¥y, only the largest one max(y,,y,) = yx is used to estimate
Tsxr, while the smaller one shows a linear behavior with edge
length y, o< L, [32,33].

The phase-transition temperature Tkt is then determined
by the value where the largest rescaled helicity modulus obeys
in the thermodynamic limit[12]

2
¥x(TgkT) = ;TBKT- (18)

The energy of the vortices also depend logarithmically on the
system size N, so that the condition in Eq. (18) acquires a
corresponding correction for finite-size systems [34]

7y (N, No) _ Il
2T _A(T)<1+21H(N/No))’ {19

where Ny is a fitting parameter and A(7) should take on
the universal value of unity at the transition, but can also be
used as a fitting parameter [35,36]. Following the procedure in
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FIG. 7. (Color online) Top: QMC results of the helicity modulus
y, for different system sizes as a function of temperature at B =
0.92J. The finite-size extrapolated intercept with y, = 2AT /7 (solid
line) determines the BKT temperature. Bottom: A(7pkr) and In(Ny)
as a function of field with the corresponding spline extrapolations
(solid lines).

Ref. [35] the logarithmic corrections in Eq. (19) become only
accurate at the phase transition, which can in fact be used to
determine Tkt and A(Tgkr). In Fig. 7 the helicity modulus is
plotted at a given field B = 0.92J for different system sizes.
The BKT transition for each field is determined by the best fit of
Eq. (19), i.e., when my, (N, No)/2T extrapolates to a limiting
value linearly as a function of In~'(N/Np). For a classical
isotropic spin model, a value of A(Tgkt) = 1 can be confirmed
[35,37]; but for the spin-dimer model we find a field-dependent
value for A(Tgkr) which is slightly larger than unity as given
in Table IT and shown in Fig. 7. The fitting parameter N, also
becomes field dependent. The resulting transition temperature

TABLE II. Results of A(Tgkr) and In () for different magnetic
fields.

B/J  A(Tskr)£0.03  In(Np)£0.05  Tgkr/J £ 0.0005
0.880 1.37 0.61 0.0103
0.920 1.29 0.32 0.0174
1.000 1.17 0.24 0.0239
1.080 1.14 0.22 0.0245
1.150 1.12 0.30 0.0229
1.200 1.14 0.38 0.0197
1.270 1.23 0.71 0.0092
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FIG. 8. (Color online) BKT temperature as a function of field
using the fitting parameters in Fig. 7 (bottom). The lines connect the
data points (black circles) and interpolate the data according to the
logarithmic fit in the inset to the critical fields (large red circles).
For comparison the results from using fits with a constant value
of A(Tgxr) = 1 are also shown (red diamonds). Inset: Logarithmic
behavior according to Eq. (20) (solid lines) near the critical fields.

is shown in Fig. 8, which shows a sharp drop near the QPT. As
shown in the inset the behavior is consistent with a logarithmic
behavior

Tgkr

~ alnb/fi), (20)
but the double logarithmic correction in the asymptotic scaling
at extremely small densities in Eq. (13) cannot be confirmed
numerically [13].

The deviations from A(7gkr) = 1 can be traced to two
different sources: In the middle of the BKT phase we find
that a nearly isotropic effective system with L, = 2L, and
J. = 2Jy’ gives values of A(Tgkr) &~ 1.04, so that the detailed
geometry appears to have some effect on the exact value of A.
A second source may be higher order corrections in In N /Ny,
which can be expected to become significant when the effective
density of bosons per lattice site is small, which in turn leads
to large distances between vortices. Therefore, the corrections
must be largest close to the QPT, consistent with our findings.
Using a constant value of A(Tgxr) = 1 in the fits changes the
estimate for Tgkr by up to 10-15% as shown in Fig. 8 for
comparison.

VI. MAGNETOCALORICS AND THE
T-B PHASE DIAGRAM

As we already discussed in Sec. III, the behavior of the
magnetization M(T) as a function of temperature plays an
important role in determining the locations of the QPT. The
interplay of magnetization with temperature is often termed
magnetocalorics, which has been a fruitful field ever since the
discovery of adiabatic demagnetization by Warburg in 1881
[38]. The central quantity of interest in this context is the

cooling rate
1 /oT
F(B7T) = = ( ) )
S

7\38 21
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FIG. 9. (Color online) Top: QMC data for the cooling rate I" as
a function of field for different temperatures and N = 676. Bottom:
Corresponding temperatures as a function of field for different values
of constant entropy (red isentropes dS = 0) near B.. The shaded
region is dominated by large entropy, corresponding to the minima
in the isentropes, which are relatively close to the maxima in the
susceptibility (marked by green squares). The BKT transition Tgxt
(connected dots) occurs at significantly lower temperatures.

which describes the temperature change with the applied field
under adiabatic conditions. Using the cyclical rule and a
Maxwell relation the cooling rate is also directly related to
M(T) and S(B)

I'(B.T) = l<§ = i<a—M 22
(B.T)=-% 8B)T__C 3T>B’ (22)

where C = T(%)B is the heat capacity. Therefore, the entropy
is largest when I' = 0.

The cooling rate for different temperatures is plotted in
Fig. 9 (top), which shows sharp features near the QPT. In
Ref. [39] it was predicted that the cooling rate diverges with
a universal prefactor near the QPT, but we were not able to
reach low enough temperatures to confirm this behavior.

Integrating the cooling rate in Eq. (21) gives the temperature
as a function of field for a given entropy S. The corresponding
isentropes are shown in Fig. 9 (bottom). The temperature
reaches a minimum when the cooling rate is zero, which
means that the entropy as a function of field (horizontal
path) is maximal. It is interesting to notice that the points
of maximum entropy I' = O are relatively close to the maxima
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of the susceptibility. However, the maximum entropy region
is not exactly at the value of the critical field as is the
case for other systems without an ordered phase, as in the
Ising chain [39]. Nor are those points associated with the
finite-temperature BKT phase transition as would be the case
for ordered systems in D > 2 [39]. The situation in D = 2
is therefore special, since in this case the sign change in the
cooling rate I' = 0 signals a maximum in the entropy in the
crossover region where quantum critical behavior competes
with vortex excitations in the shaded parameter range in
Fig. 9 (bottom). The strong deviations between the maxima of
entropy and susceptibility and the transition temperatures Tkt
occur at temperatures where the finite-temperature correlation
length is smaller than the system size in our simulations, so
that finite-size corrections are negligible in Fig. 9 (bottom).

VII. CONCLUSIONS

In summary, the magnetocaloric quantity 9 M /9T turns out
to be a universal indicator of the quantum critical behavior.
We plot this quantity in Fig. 10 in the relevant T'- B parameter
space. On the one hand we have seen in Sec. III that the
critical scaling is defined by a linear behavior of M(T) «x T,
which leads to a constant and large derivative 0M /9T . The
regions with quantum critical behavior therefore show up
clearly in Fig. 10 as the lightest and darkest regions in the
phase diagram above B. and By, respectively. The points
of ' « 9M/dT = 0 mark the boundaries towards regions,
which are dominated by BKT vortex excitations. These points
coincide with the maxima in the susceptibility, but are not
directly associated with the QPT or the finite-temperature
BKT phase transition. The BKT phase transition occurs at
significantly lower temperatures and is not reflected by any
directly measurable thermodynamic quantity [3]. Nonetheless,
the predicted and well-established behavior of the spin stiffness
at the BKT transition holds also for the dimer system, but
strong corrections start to appear at small magnetization (i.e.,
boson density) as discussed in Sec. V.

We would like to emphasize that magnetocaloric measure-
ments of dM/dT not only allow a detailed analysis of the
QPT, but also are potentially a very useful experimental tool

1.0

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

B/J -1.0

FIG. 10. (Color online) QMC data for the magnetocaloric deriva-
tive M /0T in the T-B parameter space for N = 676. The BKT
transitions Tgxr is marked by connected dots (black), points of
maximum entropy I' = 0 by diamonds (violet), and maxima in the
susceptibility by squares (green).
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for identifying the effective dimensionality of the underlying
spin systems due to the different density of states. In particular,
for quasi-one-dimensional systems M /3T o 1/+/T shows a
characteristic divergence above the QPT, while for D = 3 we
find an increase M /3T o /T analogous to the famous 7°/2
Bloch law. We find in our numerical simulations that D = 2
is characterized by perfectly linear behavior above the QPT,
ie., dM /0T = constant without any detectable logarithmic
corrections in contrast to the field theory prediction [16] in
Eq. (12). As discussed in Sec. I1I this can be used to determine
the exact positions of the critical field, which in turn allows

PHYSICAL REVIEW B 91, 134406 (2015)

the quantitative estimate of higher order terms in the analytical
expressions as a function of the antiferromagnetic coupling
constants.
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