
PHYSICAL REVIEW B 91, 134404 (2015)

Classification and description of bosonic symmetry protected topological phases with semiclassical
nonlinear sigma models

Zhen Bi, Alex Rasmussen, Kevin Slagle, and Cenke Xu
Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 7 September 2013; revised manuscript received 22 January 2015; published 6 April 2015)

In this paper, we systematically classify and describe bosonic symmetry protected topological (SPT) phases
in all physical spatial dimensions using semiclassical nonlinear sigma model (NLSM) field theories. All the
SPT phases on a d-dimensional lattice discussed in this paper can be described by the same NLSM, which is
an O(d + 2) NLSM in (d + 1)-dimensional space-time, with a topological � term. The field in the NLSM is a
semiclassical Landau order parameter with a unit length constraint. The classification of SPT phases discussed in
this paper based on their NLSMs is Completely Identical to the more mathematical classification based on group
cohomology given in X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87, 155114 (2013) and Science
338, 1604 (2012). Besides the classification, the formalism used in this paper also allows us to explicitly discuss
the physics at the boundary of the SPT phases, and it reveals the relation between SPT phases with different
symmetries. For example, it gives many of these SPT states a natural “decorated defect” construction.
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I. INTRODUCTION

Symmetry protected topological (SPT) phase is a new type
of quantum disordered phase. It is intrinsically different from a
trivial direct product state, when and only when the system has
certain symmetry G. In terms of its phenomena, an SPT phase
on a d-dimensional lattice should satisfy at least the following
three criteria. (i) On a d-dimensional lattice without boundary,
this phase is fully gapped, and nondegenerate. (ii) On a
d-dimensional lattice with a (d − 1)-dimensional boundary,
if the Hamiltonian of the entire system (including both
bulk and boundary Hamiltonian) preserves certain symmetry
G, this phase is either gapless, or gapped but degenerate.
(iii) The boundary state of this d-dimensional system cannot
be realized as a (d − 1)-dimensional lattice system with the
same symmetry G.

Both the 2d quantum spin Hall insulator [1–3] and 3d

topological insulator [4–6] are perfect examples of SPT
phases protected by time-reversal symmetry and charge U(1)
symmetry. In this paper, we will focus on bosonic SPT phases.
Unlike fermion systems, bosonic SPT phases are always
strongly interacting phases of boson systems.

Notice that the second criterion (ii) implies the following
two possibilities; on a lattice with a boundary, the system is
either gapless, or gapped but degenerate. For example, without
interaction, the boundaries of 2d QSH insulator and 3d TBI
are both gapless; but with interaction, the edge states of 2d

QSH insulator, and 3d TBI can both be gapped out through
spontaneous time-reversal symmetry breaking at the boundary,
and this spontaneous time-reversal symmetry breaking can
occur through a boundary transition, without destroying the
bulk state [7–9]. When d � 3, the degeneracy of the boundary
can correspond to either spontaneous breaking of G, or
correspond to certain topological degeneracy at the boundary.
Which case occurs in the system will depend on the detailed
Hamiltonian at the boundary of the system. For example, with
strong interaction, the boundary of a 3d TBI can be driven into
a nontrivial topological phase [10–13].

The concept of SPT phase was pioneered by Wen and
his colleagues. A mathematical paradigm was developed in

Refs. [14,15] that systematically classified SPT phases based
on the group cohomology of their symmetry G. But this
approach was unable to reveal all the physical properties
of the SPT phases. In the last few years, SPT phase has
rapidly developed into a very active and exciting field [14–30],
and besides the general mathematical classification, other
approaches of understanding SPT phases were also taken. In
2d, it was demonstrated that the SPT phases can be thoroughly
classified by the Chern-Simons field theory [20], although it
is unclear how to generalize this approach to 3d. Nonlinear
sigma model field theories were also used to describe some
SPT phases in 3d and 2d [21–23], but a complete classification
based on this field theory is still demanded.

The goal of this paper is to systematically classify and
describe bosonic SPT phases with various continuous and
discrete symmetries in all dimensions, using semiclassical
nonlinear sigma model (NLSM) field theories. At least in
one-dimensional systems, semiclassical NLSMs have been
proved successful in describing SPT phases. The O(3) NLSM
plus a topological � term describes a spin-1 Heisenberg chain
when � = 2π :

S1d =
∫

dxdτ
1

g
(∂μ�n)2 + i2π

8π
εabcεμνn

a∂μnb∂νn
c, (1)

and it is well-known that the spin-1 antiferromagnetic Heisen-
berg model is an SPT phase with twofold degeneracy at each
boundary [31–36].

In this paper, we will discuss SPT phases with symmetry
ZT

2 , Z2, Z2 × Z2, Z2 × ZT
2 , U(1), U(1) × Z2, U(1) � Z2,

U(1) × ZT
2 , U(1) � ZT

2 , Zm, Zm × Z2, Zm � Z2, Zm × ZT
2 ,

Zm � ZT
2 , SO(3), SO(3) × ZT

2 , and Z2 × Z2 × Z2. Here, we
use the standard notation: ZT

2 stands for time-reversal sym-
metry, G × ZT

2 and G � ZT
2 stand for direct and semidirect

product between unitary group G and time-reversal symmetry.
A semidirect product between two groups means that these two
group actions do not commute with each other. More details
will be explained when we discuss the classification of these
states. We will demonstrate that a d-dimensional SPT phase
with any symmetry mentioned above can always be described
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by an O(d + 2) NLSM in (d + 1)-dimensional space-time,
namely, all the 1d SPT phases discussed in this paper can be
described by Eq. (1), all the 2d and 3d SPT phases can be
described by the following two field theories:

S2d =
∫

d2xdτ
1

g
(∂μ�n)2

+ i2πk

�3
εabcdn

a∂τn
b∂xn

c∂yn
d, (2)

S3d =
∫

d3xdτ
1

g
(∂μ�n)2

+ i2π

�4
εabcden

a∂τn
b∂xn

c∂yn
d∂zn

e. (3)

The O(d + 2) vector is a Landau order parameter with a unit
length constraint: (�n)2 = 1. �d is the surface area of a d-
dimensional unit sphere. The 2d action (2) has a level k in front
of its � term, whose reason will be explained later. Different
SPT phases in the same dimension are distinguished by the
transformation of the O(d + 2) vector under the symmetry. The
classification of SPT phases on a d-dimensional lattice is given
by all the independent symmetry transformations of �n that keep
the entire Lagrangian (including the � term) invariant. This
classification rule will be further clarified in the next section.

An O(d + 2) NLSM can support maximally O(d + 2)
symmetry and other discrete symmetries such as time-reversal.
We choose the 17 symmetries listed above, because they can
all be embedded into the maximal symmetry of the field theory,
and they are the most physically relevant symmetries. Of
course, if we want to study an SPT phase with a large Lie group
such as SU(N), the above field theories need to be generalized
to NLSM defined with a symmetric space of that Lie group.
However, for all these physically relevant symmetries, our
NLSM is already sufficient.

In principle, an NLSM describes a system with a long
correlation length. Thus an NLSM plus a � term most
precisely describes an SPT phase tuned close to a critical
point (but still in the SPT phase). When an SPT phase is
tuned close to a critical point, the NLSM not only describes its
topological properties (e.g, edge states, etc.), but also describes
its dynamics, for example, the excitation spectrum above the
energy gap (much smaller than the ultraviolet cutoff). When
the system is tuned deep inside the SPT phase, namely, the
correlation length is comparable with the lattice constant, this
NLSM can no longer describe its dynamics accurately, but
since the topological properties of this SPT phase is unchanged
while tuning, these topological properties (like edge states)
can still be described by the NLSM. The NLSM is an effective
method of describing the universal topological properties, as
long as we ignore the extra nonuniversal information about
dynamics, such as the exact dispersion of excitations, which
depends on the details of the lattice Hamiltonian and hence is
not universal.

Besides the classification, our NLSMs in all dimensions
can tell us explicit physical information about this SPT phase.
For example, the boundary states of 1d SPT phases can be
obtained by explicitly solving the field theory reduced to the
0d boundary. The boundary of a 3d SPT phase could be a 2d
topological phase, and the NLSMs can tell us the quantum

number of the anyons of the boundary topological phases. The
boundary topological phases of 3d SPT phases with U(1) and
time-reversal symmetry were discussed in Ref. [21]. We will
analyze the boundary topological phases for some other 3d
SPT phases in the current paper.

Our formalism not only can study each individual SPT
phase, it also reveals the relation between different SPT phases.
For example, using our formalism, we are able to show that
there is a very intriguing relation between SPT phases with
U(1) × (�)G symmetry and SPT phases with Zm × (�)G
symmetry, where G is another discrete group such as Z2, ZT

2 .
Our formalism demonstrates that after breaking U(1) to Zm,
whether the SPT phase survives or not depends on the parity of
integer m. We also demonstrate that when m is an even number,
we can construct some extra SPT phases with Zm × (�)G
symmetry that cannot be deduced from SPT phases with
U(1) × (�)G symmetry by breaking U(1) down to Zm. Our
field theory also gives many of these SPT states a natural
“decorated defect” construction, which will be discussed in
more detail in the next section.

NLSMs with a � term can also give us the illustrative
universal bulk ground-state wave function of the SPT phases.
This was discussed in Ref. [22]. These wave functions contain
important information for both the boundary and the bulk
defects introduced by coupling the NLSM to an external
gauge field [22,37]. It was also demonstrated that the NLSMs
are useful in classifying and describing symmetry enriched
topological (SET) phases [38], but a complete classification of
SET phases based on NLSMs will be studied in the future.

In the current paper, we will only discuss SPT states within
cohomology. It is now understood that the group cohomology
classification is incomplete, and in each dimension there are
a few examples beyond cohomology classification [39–41].
These beyond-cohomology states all involve gravitational
anomalies [42] or mixed gauge-gravitational anomalies [39].
Generalization of our field theory to the cases beyond group
cohomology can be found in another paper [43].

II. STRATEGY AND CLARIFICATION

A. Edge states of NLSMs with � term

In d-dimensional theories (1)–(3) (d denotes the spatial
dimension), when � = 2π , their boundaries are described
by (d − 1) + 1-dimensional O(d + 2) NLSMs with a Wess-
Zumino-Witten (WZW) term at level 1. When d = 1, the
boundary of Eq. (1) with � = 2π is a 0+1d O(3) NLSM
with a Wess-Zumino-Witten term at level k = 1 [36]:

Sb =
∫

dτ
1

g
(∂τ �n)2 +

∫
dτdu

i2π

8π
εabcεμνn

a∂μnb∂νn
c. (4)

The WZW term involves an extension of �n(τ ) to �n(τ,u):

�n(τ,0) = (0,0,1), �n(τ,1) = �n(τ ). (5)

The boundary action Sb describes a point particle moving
on a sphere S2, with a 2π magnetic flux through the sphere.
The ground state of this single-particle quantum mechanics
problem is twofold degenerate. The twofold degenerate ground
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states have the following wave functions on the unit sphere:

U = (cos(θ/2)eiφ/2, sin(θ/2)e−iφ/2)t ,
(6)�n = (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )).

The boundary doublet U transforms projectively under sym-
metry of the SPT phase, and its transformation can be derived
explicitly from the transformation of �n. For example, if �n
transforms as �n → −�n under time-reversal, then this implies
that under time-reversal φ → φ, θ → π + θ , and U → iσ yU .

When d = 2, the boundary is a 1+1-dimensional O(4)
NLSM with a WZW term at level k = 1, and it is well-known
that this theory is a gapless conformal field theory if the
system has a full O(4) symmetry [44,45]. The 1d boundary
could be gapped but still degenerate if the symmetry of �n is
discrete (the degeneracy corresponds to spontaneous discrete
symmetry breaking); when d = 3, the boundary is a 2+1d O(5)
NLSM with a WZW at level k = 1, which can be reduced to
a 2+1d O(4) NLSM with � = π after the fifth component of
�n is integrated out [21]. This 2 + 1d boundary theory should
either be gapless or degenerate, and one particularly interesting
possibility is that it can become a topological order, which
will be discussed in more detail in Sec. II F. Starting with
this topological order, we can prove that this 2 + 1d boundary
system can never be gapped without degeneracy.

All components of �n in Eqs. (1)–(3) must have a nontrivial
transformation under the symmetry group G, namely, it is not
allowed to turn on a linear “Zeeman” term that polarizes any
component of �n. Otherwise the edge states can be trivially
gapped, and the bulk � term plays no role.

B. Phase diagram of NLSMs with a � term

In our classification, the NLSM including its � term is
invariant under the symmetry of the SPT phase, for arbitrary
value of �. For special values of �, such as � = kπ with
integer k, some extra discrete symmetry may emerge, but these
symmetries are unimportant to the SPT phase. However, these
extra symmetries guarantee that � = kπ is a fixed point under
renormalization group (RG) flow. In 1+1d NLSMs, the RG
flow of � was calculated explicitly in Refs. [46,47] and it
was shown that � = 2πk are stable fixed points, while � =
(2k + 1)π are instable fixed points, which correspond to phase
transitions; in higher dimensions, similar explicit calculations
are possible, but for our purposes, we just need to argue that
� = 2πk are stable fixed points under RG flow. The bulk
spectrum of the NLSM with � = 2πk is identical to the case
with � = 0; in the quantum disordered phase, the bulk of the
system is fully gapped without degeneracy. Now if � is tuned
away from 2πk: � = 2πk ± ε, this perturbation cannot close
the bulk gap, and since the essential symmetry of the SPT
phase is unchanged, the SPT phase including its edge states
should be stable against this perturbation. Thus an SPT phase
corresponds to a finite phase � ∈ (2πk − δ1,2πk + δ2) in the
phase diagram.

There is a major difference between � term in NLSM and
the � term in the response action of the external gauge field. In
our description, an SPT phase corresponds to the entire phase
whose stable fixed point is at � = 2π (or 2πk with integer
k). Tuning slightly away from these stable fixed points will
not break any essential symmetry that protects the SPT state,

and hence it does not change the main physics. The theory will
always flow back to these stable fixed points under RG (this RG
flow was computed explicitly in 1 + 1d in Refs. [46,47], and
a similar RG flow was proposed for higher dimensional cases
[48]). The � term of the external gauge field after integrating
out the matter fields is protected by the symmetry of the SPT
phase to be certain discrete value. For example, � = π for the
ordinary 3d topological insulator [49,50] is protected by time-
reversal symmetry. Tuning � away from π will necessarily
break the time-reversal symmetry.

C. Zk or Z classification?

In the classification table in Refs. [14,15], one can see
that in even dimensions, there are many SPT states with
Z classifications, but in odd dimensions, Z classification
never appears. This fact was a consequence of mathematical
calculations in Refs. [14,15], but in this section, we will give
a very simple explanation based on our field theories.

The manifold of O(d + 2) NLSM is Sd+1, which has a
� term in (d + 1)-dimensional space-time due to homotopy
group πd+1[Sd+1] = Z. However, this does not mean that the
� term will always give usZ classification, because more often
than not we can show that � = 0 and � = 2πk with certain
nonzero integer k can be connected to each other without any
bulk transition.

For example, let us couple two Haldane phases to each
other:

L = 1

g
(∂μ�n(1))2 + i2π

8π
εabcεμνn

(1)
a ∂μn

(1)
b ∂νn

(1)
c

+ 1 → 2 + A(�n(1) · �n(2)). (7)

When A < 0, effectively �n(1) = �n(2) = �n, then the system is
effectively described by one O(3) NLSM with � = 4π ; while
when A > 0, effectively �n(1) = −�n(2) = �n, the effective NLSM
for the system has � = 0. When parameter A is tuned from
negative to positive, the bulk gap does not close. The reason
is that, since � = 2π in both Haldane phases, the � term
does not affect the bulk spectrum at all. To analyze the bulk
spectrum (and bulk phase transition) while tuning A, we can
just ignore the � term. Without the �−term, both theories
are just trivial gapped phases, and an inter-chain coupling can
not qualitatively change the bulk spectrum unless it is strong
enough to overcome the bulk gap in each chain. We have
explicitly checked this phase diagram using a Monte Carlo
simulation of two coupled O(3) NLSMs, and the result is
exactly the same to what we would expect from the argument
above. Thus the theory with � = 4π and � = 0 are equivalent.

By contrast, if we couple two chains with � = π each, then
the cases A > 0 and < 0 correspond to effective � = 0 and
2π , respectively, and these two limits are separated by a bulk
phase transition point A = 0, when the system becomes two
decoupled chains with � = π each. And it is well-known that
a 11d O(3) NLSM with � = π is the effective field theory that
describes a spin-1/2 chain [31,32], and according to the Lieb-
Shultz-Matthis theorem, this theory must be either gapless or
degenerate [51]. This conclusion is consistent with the RG
calculation in Refs. [46,47], and a general nonperturbative
argument in Ref. [48].
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In fact, when � = 4π , the boundary state of Eq. (1) is a
spin-1 triplet, and by tuning A, at the boundary there is a level
crossing between triplet and singlet, while there is no bulk
transition. This analysis implies that with SO(3) symmetry,
1d spin systems have two different classes: there is a trivial
class with � = 4πk, and a nontrivial Haldane class with � =
(4k + 2)π .

If we cannot connect � = 4π to � = 0 without closing the
bulk gap, then the classification would be bigger than Z2. For
example, let us consider the 2d SPT phase with U(1) symmetry
which was first studied in Ref. [17]. This phase is described
by Eq. (2). B ∼ n1 + in2 and B ′ ∼ n3 + in4 [n1 · · · n4 are the
four components of O(4) vector �n in Eq. (2)] are two complex
boson (rotor) fields that transform identically under the global
U(1) symmetry. Now suppose we couple two copies of this
systems together through symmetry allowed interactions:

S = S1 + S2 + A1B1B
†
2 + A2B1B

′†
2

+A3B
′
1B

†
2 + A4B

′
1B

′†
2 + H.c. (8)

No matter how we tune the parameters Ai , the resulting
effective NLSM always has � = 4π instead of � = 0 (this
is simply because (−1)2 = (−1)4 = +1). This implies that
we cannot smoothly connect � = 4π to 0 without any bulk
transition. Thus the classification of 2d SPT phases with U(1)
symmetry is Z instead of Z2. This is why in 2d (and all even
dimensions), many SPT states have Z classification, while in
odd dimensions there is no Z classification at all, namely, all
the nontrivial SPT phases in odd dimensions correspond to
� = 2π . Thus, in Eq. (2), we added a level k in the � term.

D. NLSM and “decorated defect” construction of SPT states

Reference [26] has given us a physical construction of some
of the SPT states in terms of the “decorated domain wall”
picture. For example, one of the 3d ZA

2 × ZB
2 SPT state can be

constructed as follows: we first break the ZB
2 symmetry, then

restore the ZB
2 symmetry by proliferating the domain wall of

ZB
2 , and each ZB

2 domain wall is decorated with a 2d SPT
state with ZA

2 symmetry. This state is described by Eq. (3)
with transformation

ZB
2 : n1,2 → −n1,2, na → na(a = 3,4,5);

(9)
ZA

2 : n1, → n1, na → −na(a = 2, . . . ,5).

Here, ni is the ith component of vector �n. To visualize the
“decorated domain” wall picture, we can literally make a
domain wall of n1, and consider the following configuration
of vector �n: �n = (cos θ, sin θN2, sin θN3, sin θN4, sin θN5),
where �N is a O(4) vector with unit length, and θ is a function
of coordinate z only:

θ (z = +∞) = π, θ (z = −∞) = 0. (10)

Plug this parametrization of �n into Eq. (3), and integrate along
z direction, the � term in Eq. (3) precisely reduces to the �

term in Eq. (2) with k = 1, and the O(4) vector �n = �N . This
is precisely the 2d SPT with Z2 symmetry. This implies that
the ZB

2 domain wall is decorated with a 2d SPT state with ZA
2

symmetry.
Many SPT states can be constructed with this decorated

domain wall picture. Some 3d SPT states can also be

understood as “decorated vortex,” which was first discussed
in [21]. This state has U(1) × ZT

2 symmetry, and the vector �n
transforms as

U (1) : (n1 + in2) → (n1 + in2)eiθ , n3,4,5 → n3,4,5,
(11)

ZT
2 : �n → −�n.

If we make a vortex of the U(1) order parameter (n1,n2), Eq. (3)
reduces to Eq. (1) with O(3) order parameter (n3,n4,n5). Thus
this SPT can be viewed as decorating the U(1) vortex with a
1d Haldane phase, and then proliferating the vortices.

E. Independent NLSMs

Let us take the example of 1d SPT phases with Z2 × ZT
2

symmetry. As we claimed, all 1d SPT phases in this paper
are described by the same NLSM Eq. (1). With Z2 × ZT

2
symmetry, there seems to be three different ways of assigning
transformations to �n that make the entire Lagrangian invariant:

(1) : Z2 : �n → �n, ZT
2 : �n → −�n,

(2) : Z2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : �n → − �n, (12)

(3) : Z2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n3 → −n3, n1,2 → n1,2.

However the NLSMs defined with these three different
transformations are not totally independent from each other,
which means that if all three theories exist in one system,
although each theory is a nontrivial SPT phase individually, we
can turn on some symmetry allowed couplings between these
NLSMs and cancel the bulk topological terms completely, and
drive the entire coupled system to a trivial state. For example,
let us take O(3) vectors �n(i) with transformations (1), (2), and
(3), respectively:

�n(i)(�r) = (
n

(i)
1 ,n

(i)
2 ,n

(i)
3

)
= (

sin
(
θ

(i)
�r

)
cos

(
φ

(i)
�r

)
, sin

(
θ

(i)
�r

)
sin

(
φ

(i)
�r

)
, cos

(
θ

(i)
�r

))
,

(13)

φ
(i)
�r and θ

(i)
�r are functions of space-time. Under Z2 and ZT

2
symmetry, θ (i) and φ(i) transform as

Z2 : θ (i) → θ (i),

φ(1) → φ(1), φ(i) → φ(i) + π, (i = 2,3);
(14)

ZT
2 : θ (i) → π − θ (i),

φ(i) → φ(i) + π, (i = 1,2), φ(3) → φ(3).

First of all, since θ (i) have the same transformation for all i,
we can turn on strong coupling between the three NLSMs to
make θ (1) = θ (2) = θ (3) = θ . We can also turn on couplings to
make φ(3) = φ(1) + φ(2). Now �n(3) becomes

n
(3)
1 = sin(θ ) cos(φ(1) + φ(2)),

n
(3)
2 = sin(θ ) sin(φ(1) + φ(2)), (15)

n
(3)
3 = cos(θ ).

It is straightforward to prove that the topological number of
�n(3) in 1+1d space-time is the sum of topological numbers of
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�n(1) and �n(2). More explicitly, an instanton of �n(a) is a domain
wall of n

(a)
3 decorated with a vortex of φ(a). As we explained

above, with appropriate coupling between these vectors, we
can make θ (1) = θ (2) = θ (3) = θ , and φ(3) = φ(1) + φ(2). Thus
a domain wall of n

(3)
3 is also a domain wall of n

(1)
3 and n

(2)
3 ,

while the vortex number of φ(3) is the sum of vortex number
of φ(1) and φ(2). Thus the � term of �n(3) reduces to the sum of
� terms of �n(1) and �n(2). In this example we have shown that
NLSMs (1) and (2) in Eq. (12) can “merge” into NLSM (3).
Thus the three NLSMs defined with transformations (1), (2),
and (3) are not independent from each other.

Also, for either NLSM (1) or (2) in Eq. (12), we can show
that �(i) = 0 and 4π can be connected to each other without
a bulk transition (using the same method as the previous
subsection). Then eventually the 1d SPT phase with Z2 × ZT

2
symmetry is parametrized by two independent � terms, the
fixed point values of �(1) and �(2) can be either 0 or 2π , thus
this SPT phase has a (Z2)2 classification, which is consistent
with the classification using group cohomology. NLSMs with
transformations (1) and (2) are two “root phases” of 1d SPT
phases with Z2 × ZT

2 symmetry. All the other SPT phases can
be constructed with these two root phases.

For most SPT phases, we can construct the NLSMs using
the smallest representation (fundamental representation) of
the symmetry groups G, because usually (but not always!)
NLSMs constructed using higher representations can reduce
to constructions with the fundamental representation with a
different �. For example, the 1d SPT phase with U(1) � Z2

symmetry can be described by Eq. (1) with the following
transformation:

U (1) : (n1 + in2) → eiθ (n1 + in2), n3 → n3,
(16)

Z2 : n1 → n1, n2,3 → −n2,3,

namely, B ∼ (n1 + in2) is a charge-1 boson under the U(1)
rotation, and the edge state of this SPT phase carries
charge-1/2 of boson B. We can also construct an O(3)
NLSM using charge-2 boson B ′ ∼ (n′

1 + in′
2) ∼ (n1 + in2)2

that transforms as B ′ → B ′e2iα , then mathematically we can
demonstrate that the NLSM with � = 2π for order parameter
�n′ = (n′

1,n
′
2,n3) reduces to a NLSM of �n with � = 4π , hence

it is a trivial phase.
More explicitly, let us take unit vector �n =

(sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )), and vector �n′ =
(sin(θ ) cos(2φ), sin(θ ) sin(2φ), cos(θ )), then we can show that
when �n has topological number 1 in 1+1d space-time, �n′
would have topological number 2. This means that if there is
a � term for �n′ with � = 2π , it is equivalent to a � term for
�n with � = 4π .

Physically, the edge state of NLSM of �n′ with � = 2π

carries a half-charge of B ′, which is still a charge-1 object,
so it can be screened by another charge-1 boson B. Hence in
this case NLSM constructed using charge-2 boson B ′ would
be trivial.

However, later we will also show that when the symmetry
group involves Zm with even integer m > 2, then using higher
representations of Zm we can construct SPT phases that cannot
be obtained from the fundamental representation of Zm.

F. Boundary topological order of 3d SPT phases

The (d − 1)-dimensional boundary of a d-dimensional SPT
phase must be either degenerate or gapless. When d = 3, its
2d boundary can spontaneously break the symmetry, or have a
topological order [21]. We can use the bulk field theory Eq. (3)
to derive the quantum numbers of the anyons at the boundary.

Let us take the 3d SPT phase with Z2 × ZT
2 symmetry

as an example. One of the SPT phases has the following
transformations:

Z2 : na → −na(a = 1, · · · 4), n5 → n5;
(17)

ZT
2 : �n → −�n.

The 2+1d boundary of the system is described by a 2+1d
O(5) NLSM with a Wess-Zumino-Witten (WZW) term at level
k = 1:

S =
∫

d2xdτ
1

g
(∂μ�n)2

+
∫ 1

0
du

i2π

�4
εabcden

a∂xn
b∂yn

c∂zn
d∂τn

e, (18)

where �n(x,τ,u) satisfies �n(x,τ,0) = (0,0,0,0,1) and
�n(x,τ,1) = �n(x,τ ). If the time-reversal symmetry is
preserved, namely, 〈n5〉 = 0, we can integrate out n5, and
Eq. (18) reduces to a 2+1d O(4) NLSM with � = π :

S =
∫

d2xdτ
1

g
(∂μ�n)2 + iπ

�3
εabcdn

a∂τn
b∂xn

c∂yn
d . (19)

In Eq. (19), � = π is protected by time-reversal symmetry.
In the following, we will argue that the topological terms

in Eqs. (18) and (19) guarantee that the 2d boundary cannot
be gapped without degeneracy. One particularly interesting
possibility of the boundary is a phase with 2d Z2 topological
order [21]. A 2d Z2 topological phase has e and m excitations
that have mutual semion statistics [52]. The semion statistics
can be directly read off from Eq. (19): if we define complex
boson fields z1 = n1 + in2 and z2 = n3 + in4, then the �

term in Eq. (19) implies that a vortex of (n3,n4) carries half
charge of z1, while a vortex of (n1,n2) carries half charge
of z2, thus vortices of z1 and z2 are bosons with mutual
semion statistics. This statistics survives after z1 and z2 are
disordered by condensing the double vortex (vortex with
vorticity 4π ) of either z1 or z2 at the boundary, then the
disordered phase must inherit the statistics and become a Z2

topological phase [21]. The vortices of (n1,n2) and (n3,n4)
become the e and m excitations respectively. Normally a vortex
defect is discussed in systems with a U(1) global symmetry.
We do not assume such U(1) global symmetry in our case,
this symmetry reduction is unimportant in the Z2 topological
phase.

At the vortex core of (n3,n4), namely the m excitation,
Eq. (18) reduces to a 0 + 1d O(3) NLSM with a WZW term
at level 1 [53]:

Sm =
∫

dτ
1

g
(∂τ

�N )2 +
∫ 1

0
du

i2π

8π
εabcεμνN

a∂μNb∂νN
c,

(20)

where �N ∼ (n1,n2,n5). This 0+1d field theory describes a
single particle moving on a 2d sphere with a magnetic

134404-5



ZHEN BI, ALEX RASMUSSEN, KEVIN SLAGLE, AND CENKE XU PHYSICAL REVIEW B 91, 134404 (2015)

monopole at the origin. It is well known that if there is a SO(3)
symmetry for �N , then the ground state of this 0d problem has
twofold degeneracy, with two orthogonal solutions:

um = cos(θ/2)eiφ/2, vm = sin(θ/2)e−iφ/2,
(21)�N = (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )).

Likewise, the vortex of (n1,n2) (e excitation) also carries a
doublet (ue,ve). Under the Z2 transformation, φ → φ + π ,
thus ue,m and ve,m carry charge ±1/2 of the Z2 symmetry,
namely under the Z2 transformation:

Z2 : Ue,m → iσ zUe,m, (22)

where Ue,m = (ue,m,ve,m)t .
Under time-reversal transformation T , �N → − �N , θ →

θ + π . Thus the e and m doublets transform as

ZT
2 : Ue,m → iσ yUe,m, (23)

thus the e and m anyons at the boundary carry projective
representation of ZT

2 , which satisfies T 2 = −1.
Based on this Z2 topological order, we can derive the

phase diagram around the Z2 topological order, and show
that this boundary cannot be gapped without degeneracy. For
example, starting with a 2d Z2 topological order, one can
condense either e or m excitation and kill the topological
degeneracy. However, because Ue,m transform nontrivially
under the symmetry group, condensate of either e or m

will always spontaneously break certain symmetry and lead
to degeneracy. For example, the condensate of e excitation
has nonzero expectation value of (n3,n4,n5) ∼ U

†
e �σUe, which

necessarily spontaneously breaks the Z2 or ZT
2 symmetry.

We also note that one bulk BSPT state can have different
boundary states, which depends on the details of the boundary
Hamiltonian. Recently, a different boundary topological order
of BSPT state was derived in Ref. [54], but the bulk state is
the same as ours.

G. Rule of classification

With all these preparations, we are ready to lay out the rules
of our classification.

1. In d-dimensional space, all the SPT phases discussed in
this paper are described by a (d + 1)-dimensional O(d + 2)
NLSM with a � term. The O(d + 2) vector field �n is an order
parameter, namely it must carry a nontrivial representation
of the given symmetry. In other words, no component of
the vector field transforms completely trivially under the
symmetry, because otherwise it is allowed to turn on a strong
linear “Zeeman” term to the trivial component, and then the
system will become a trivial direct product state.

2. The classification is given by all the possible independent
symmetry transformations on vector order parameter �n that
keep the � term invariant, for arbitrary value of �. Inde-
pendent transformations mean that any NLSM defined with
one transformation cannot be obtained by “merging” two (or
more) other NLSMs defined with other transformations. SPT
phases constructed using independent NLSMs are called “root
phases.” All the other SPT phases can be constructed with
these root phases.

3. With a given symmetry, and given transformation of
�n, if � = 2πk and � = 0 can be connected without a bulk
transition, this transformation will contribute classificationZk;
otherwise the transformation will contribute classification Z.

Using the rule and strategy discussed in this section, we can
obtain the classification of all SPT phases in all dimensions.
In this paper, we will systematically study SPT phases in
one, two, and three spatial dimensions with symmetries
ZT

2 , Z2, Z2 × Z2, Z2 × ZT
2 , U(1), U(1) × Z2, U(1) � Z2,

U(1) × ZT
2 , U(1) � ZT

2 , Zm, Zm × Z2, Zm � Z2, Zm × ZT
2 ,

Zm � ZT
2 , SO(3), SO(3) × ZT

2 , and Z2 × Z2 × Z2. The final
classification of the SPT phases we study in this paper is
completely identical to the classification based on group
cohomology [14,15].

III. 1D SPT PHASE WITH Z2 × Z2 × ZT
2 SYMMETRY

Before we discuss our full classification, let us carefully
discuss 1d SPT phases with Z2 × Z2 × ZT

2 symmetry as an
example. These SPT phases were discussed very thoroughly
in Ref. [55]. There are in total 16 different phases (including
the trivial phase). The goal of this section is to show that all
these phases can be described by the same equation Eq. (1) with
certain transformation of �n, and the projective representation of
the boundary states given in Ref. [55] can be derived explicitly
using Eq. (6).

For the consistency of notation in this paper, Rz and Rx in
Ref. [55] will be labeled ZA

2 and ZB
2 here. Let us consider one

example, namely, Eq. (1) with the following transformation:

ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1; (24)

ZT
2 : n2 → −n2, n1,3 → n1,3.

Now let us parametrize �n as

�n = (sin θ cos φ, sin θ sin φ, cos θ ), (25)

then θ and φ transform as

ZA
2 : θ → θ, φ → φ + π,

ZB
2 : θ → π − θ, φ → −φ, (26)

ZT
2 : θ → θ, φ → −φ.

These transformations lead to the following projective trans-
formation of edge state Eq. (6):

ZA
2 : U → iσ zU,

ZB
2 : U → σxU, (27)

ZT
2 : U → U.

Thus this NLSM corresponds to phase E5 in Ref. [55].
The 16 phases in Ref. [55] correspond to the following

transformations of O(3) vector �n:

E0 : trivial phase, � = 0;

E′
0 : ZA

2 ,ZB
2 : �n → �n, ZT

2 : �n → −�n;

E1 : ZA
2 : �n → �n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : �n → −�n,
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E′
1 : ZA

2 : �n → �n,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E3 : ZB
2 : �n → �n,

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : �n → −�n,

E′
3 : ZB

2 : �n → �n,

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E5 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n2 → −n2, n1,3 → n1,3;

E′
5 : E5 ⊕ E′

0;

E7 : ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : n1,2 → n1,2, n3 → −n3;

E′
7 : ZA

2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1,2 → −n1,2, n3 → n3,

ZT
2 : �n → −�n;

E9 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n3 → −n3, n1,2 → n1,2;

E′
9 : E9 ⊕ E′

0,

E11 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : n1 → −n1, n2,3 → n2,3;

E′
11 : E11 ⊕ E′

0;

E13 : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n2,3 → −n2,3, n1 → n1;

ZT
2 : �n → −�n;

E′
13 : E13 ⊕ E′

0. (28)

All the phases except for the trivial phase E0 have � =
2π in Eq. (1). Here, E5 ⊕ E′

0 means it is a spin ladder with
symmetry allowed weak interchain couplings, and the two
chains are E5 and E′

0 phases, respectively. For all the 16 phases
above, we can compute the projective representations of the
boundary states using Eq. (6), and they all precisely match
with the results in Ref. [55].

IV. FULL CLASSIFICATION OF SPT PHASES

A. SPT phases with Z2 symmetry

In 1d and 3d, there is no Z2 symmetry transformation that
we can assign a vector �n that makes the actions (1) and (3)
invariant, thus there is no SPT phase in 1d and 3d with Z2

symmetry. However, in 2d, there is obviously one and only

one way to assign the Z2 symmetry:

Z2 : (n1,n2,n3,n4) → −(n1,n2,n3,n4). (29)

Then, when � = 2π , this 2+1d O(4) NLSM describes the Z2

SPT phase studied in Ref. [16]. Using the method in Sec. II C,
one can show that with the transformation Eq. (29), the 2+1d
O(4) NLSM Eq. (2) with � = 4π is equivalent to � = 0, thus
the classification in 2d is Z2.

In Ref. [22], the authors also used this NLSM to derive the
ground-state wave function of the SPT phase:

|�〉 =
∑

(−1)dw|C〉, (30)

where |C〉 standards for an arbitrary Ising field configuration,
while dw is the number of Ising domain walls of this
configuration. This wave function was also derived in Ref. [16]
with an exactly soluble model for this SPT phase.

The classification of SPT phases with Z2 symmetry is

1d : Z1, 2d : Z2, 3d : Z1. (31)

Here, Z1 means there is only one trivial state, and Z2 means
there is one trivial state and one nontrivial SPT state.

B. SPT phases with ZT
2 symmetry

In 2d, there is no way to assign ZT
2 symmetry to the O(4)

NLSM order parameter in Eq. (2) to make the � term invariant,
thus there is no bosonic SPT phase in 2d with ZT

2 symmetry.
In 1d and 3d, there is only one way to assign the ZT

2 symmetry
to vector �n:

ZT
2 : �n → −�n, (32)

and � = 0 and � = 4π are equivalent. Thus, in both 1d and
3d, the classification is Z2. Notice that time-reversal is an
antiunitary transformation, thus i → −i under ZT

2 ; also since
our NLSMs are defined in Euclidean space-time, the Euclidean
time τ = it is invariant under ZT

2 .
Using the method in Sec. II F, one can demonstrate that the

boundary of the 3d SPT state with ZT
2 symmetry is a 2dZ2

topological order, whose both e and m excitations are Kramers
doublet, i.e., the so-called eT mT state.

The classification of SPT phases with ZT
2 symmetry is

1d : Z2, 2d : Z1, 3d : Z2. (33)

Now it is understood that in 3d there is a bosonic SPT state
with ZT

2 symmetry that is beyond the group cohomology
classification [21], and there is an explicit lattice construction
for such state [56]. This state is also beyond our current NLSM
description. However, a generalized field theory that involves
both the NLSM and Chern-Simons theory can describe at least
a large class of BSPT states beyond group cohomology. This
will be discussed in a different paper [43].

C. SPT phases with U(1) symmetry

In 1d and 3d, there is no way to assign U(1) symmetry to
vector �n that keeps the entire Lagrangian invariant. However,
in 2d, a bosonic SPT phase with U(1) symmetry was discussed
in Ref. [17], and its field theory is given by Eq. (2). And since
in this case we cannot connect � = 2πk and � = 0 without a
bulk transition, the classification is Z.
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The classification of SPT phases with U(1) symmetry is

1d : Z1, 2d : Z, 3d : Z1. (34)

D. SPT phases with U(1) � Z2 symmetry

U(1) � Z2 is a subgroup of SO(3). In 1d, there is only one
way of assigning the symmetry to vector �n that keeps the entire
Lagrangian invariant:

U (1) : (n1 + in2) → eiθ (n1 + in2), n3 → n3,
(35)

Z2 : n1 → n1, n2,3 → −n2,3.

Here, Z2 is a particle-hole transformation of rotor/boson field
b ∼ n1 + in2. n3 can be viewed as the boson density, which
changes sign under particle-hole transformation. One can
check that the U(1) and Z2 symmetry defined above do not
commute with each other. The boundary state of this 1d SPT
phase is given in Eq. (6). Under U(1) and Z2 transformation,
the boundary doublet U transforms as

U (1) : U → eiθσ z/2U, Z2 : U → σxU. (36)

In 3d, there is also only one way of assigning the symmetry
to the O(5) vector:

U (1) : (n1 + in2) → eiθ (n1 + in2), nb → nb, b = 3,4,5;

Z2 : n1 → n1, nb, → −nb, b = 2, . . . ,5. (37)

In both 1d and 3d, � = 4π is equivalent to � = 0, thus in both
1d and 3d the classification is Z2.

In 2d, there are two independent ways of assigning U(1) �

Z2 transformations to the O(4) vector �n:

(1) : U (1) : (n1 + in2) → eiθ (n1 + in2),

(n3 + in4) → eiθ (n3 + in4);

Z2 : n1,n3 → n1,n3, n2,n4 → −n2, − n4;

(2) : U (1) : �n → �n, Z2 : �n → −�n. (38)

The transformation (1) contributes Z classification, while
transformation (2) contributes Z2 classification, i.e. in 2d the
classification is Z × Z2. The final classification of SPT phases
with U(1) � Z2 symmetry is

1d : Z2, 2d : Z × Z2, 3d : Z2. (39)

E. SPT phases with U(1) × Z2 symmetry

In both 1d and 3d, there is no way of assigning U(1) × Z2

transformations to vector �n that keeps the � term invariant.
However, in 2d, we can construct three root phases:

(1) : U (1) : (n1 + in2) → eiθ (n1 + in2),

(n3 + in4) → eiθ (n3 + in4);

Z2 : �n → �n;

(2) : U (1) : �n → �n, Z2 : �n → −�n; (40)

(3) : U (1) : (n1 + in2) → eiθ (n1 + in2),

n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4.

The first transformation contributes classification Z, while
transformations (2) and (3) both contribute classification Z2,

thus the final classification of SPT phases with U(1) × Z2

symmetry is

1d : Z1, 2d : Z × (Z2)2, 3d : Z1. (41)

F. SPT phases with U(1) � ZT
2 symmetry

A boson operator b with U(1) � ZT
2 symmetry transforms

as b → b under ZT
2 . In 1d, the only U(1) � ZT

2 symmetry
transformation that keeps Eq. (1) invariant is the same
transformation as ZT

2 SPT phase, namely vector �n does not
transform under U(1), but changes sign under ZT

2 .
In 2d, the only transformation that keeps Eq. (2) invariant is

U (1) : (n1 + in2) → eiθ (n1 + in2), n3,4 → n3,4;

ZT
2 : n1 → n1, na → −na(a = 2,3,4), (42)

and this NLSM gives classification Z2.
The NLSMs for U(1) � ZT

2 SPT phases in 3d have been
discussed in Ref. [21], and in 3d the classification is (Z2)2.
Thus the final classification of SPT phases with U(1) � ZT

2
symmetry is

1d : Z2, 2d : Z2, 3d : (Z2)2. (43)

G. SPT phases with U(1) × ZT
2 symmetry

In 1d, there are two independent transformations that keep
Eq. (1) invariant:

(1) : U (1) : (n1 + in2) → eiθ (n1 + in2), n3 → n3;

ZT
2 : n1,2 → n1,2, n3 → −n3,

(2) : U (1) : �n → �n, (44)

ZT
2 : �n → −�n.

In 2d, there is no U(1) × ZT
2 transformation that keeps Eq. (2)

invariant. In 3d the NLSMs for U(1) × ZT
2 SPT phases were

discussed in Ref. [21]. The final classification of SPT phases
with U(1) × ZT

2 symmetry is

1d : (Z2)2, 2d : Z1, 3d : (Z2)3. (45)

H. SPT phases with Z2 × Z2 symmetry

In 1d, there is only one Z2 × Z2 transformation that keeps
Eq. (1) invariant:

ZA
2 : n1,2 → −n1,2, n3 → n3,

ZB
2 : n1 → n1, n2,3 → −n2,3. (46)

The boundary state U defined in Eq. (6) transforms as

ZA
2 : U → iσ zU, ZB

2 : U → σxU. (47)

Thus ZA
2 and ZB

2 no longer commute with each other at the
boundary.

In 2d, there are three independent Z2 × Z2 transformations
(three different root phases):

(1) : ZA
2 : �n → −�n, ZB

2 : �n → �n;

(2) : ZA
2 : �n → �n, ZB

2 : �n → −�n;
(48)

(3) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4.
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In 3d, there are also two independent Z2 × Z2 transforma-
tions that keep Eq. (3) invariant (two root phases):

(1) : ZA
2 : n1,2 → −n1,2, na → na(a = 3,4,5);

ZB
2 : n1, → n1, na → −na(a = 2, . . . ,5);

(49)
(2) : ZB

2 : n1,2 → −n1,2, na → na(a = 3,4,5);

ZA
2 : n1, → n1, na → −na(a = 2, . . . ,5).

As we discussed in Sec. II F, the boundary of these 3d
SPT phases can have 2d Z2 topological order. A 2d Z2

topological phase has e and m anyon excitations, and these
anyons correspond to vortices of certain components of order
parameter �n. If the e and m anyons correspond to vortices of
(n3,n4) and (n1,n2), respectively, then according to Eq. (20),
the e excitation corresponds to a 0 + 1d O(3) WZW model for
vector (n1,n2,n5), and the m excitation corresponds to a 0 + 1d

WZW model for vector (n3,n4,n5). The boundary anyons of
phase (1) transform as

(1) : ZA
2 : Ue → iσ zUe, Um → Um;

(50)
ZB

2 : Ue → σxUe, Um → iσ yU ∗
m.

Notice that under ZB
2 , a vortex of (n1,n2) becomes an

antivortex, thus the transformation of Um under ZB
2 involves a

complex conjugation. The transformation of boundary anyons
of phase (2) is the same as Eq. (50) after interchanging ZA

2 and
ZB

2 .
The final classification of SPT phases with Z2 × Z2 sym-

metry is

1d : Z2, 2d : (Z2)3, 3d : (Z2)2. (51)

I. SPT phases with Z2 × ZT
2 symmetry

In 1d and 3d, the SPT phases with Z2 × ZT
2 symmetry are

simply SPT phases with U(1) × ZT
2 symmetry after reducing

U(1) to its subgroup Z2. The classification is the same as the
U(1) × ZT

2 SPT phases discussed in the previous subsection.
In 2d, there are two different root phases that correspond to
the following transformations:

(1) : Z2 : n1,2 → −n1,2, n3,4 → n3,4,

ZT
2 : n1 → n1, na → −na(a = 2,3,4);

(52)
(2) : Z2 : �n → −�n,

ZT
2 : n1 → n1, na → −na(a = 2,3,4).

The final classification of SPT phases with Z2 × ZT
2

symmetry is

1d : (Z2)2, 2d : (Z2)2, 3d : (Z2)3. (53)

J. SPT phases with Zm symmetry

In 1d and 3d, there are no nontrivial Zm transformations that
can keep Eqs. (1) and (3) invariant. In 2d, we can construct the
following root phase:

Zm : (n1 + in2) → ei2πk/m(n1 + in2);

(n3 + in4) → ei2πk/m(n3 + in4), (54)

k = 0, . . . ,m − 1.

Using the method in section II, we can demonstrate that with
these transformations, Eq. (2) with � = 2πm and � = 0 are
equivalent to each other, thus the classification is Zm in 2d.

The final classification of SPT phases with Zm symmetry is

1d : Z1, 2d : Zm, 3d : Z1. (55)

K. SPT phases with Zm � Z2 symmetry

In 1d, there is one SPT phase with U(1) � Z2 symmetry.
Naively one would expect that when U(1) is broken down to
Zm, this SPT phase survives and becomes an SPT phase with
Zm � Z2 symmetry. However, this statement is only true for
even m, and when m is odd the U(1) � Z2 SPT phase becomes
trivial once U(1) is broken down to Zm.

The 1d U(1) � Z2 SPT phase is described by a 1d O(3)
NLSM of vector �n with � = 2π , and B ∼ (n1 + in2) is a
charge-1 boson under the U(1) rotation. Because the classifi-
cation of 1d U(1) � Z2 SPT phase is Z2, � = 2π is equivalent
to � = 2πm for odd m. As we discussed in Sec. II D, this
NLSM with � = 2πm is equivalent to another NLSM defined
with �n′ and � = 2π , where B ′ ∼ (n′

1 + in′
2) ∼ (n1 + in2)m

is a charge-m boson. Under Z2 transformation, n′
1 → n′

1,
n′

2 → −n′
2.

Now let us break U(1) down to its subgroup Zm. B ′
transforms trivially under Zm, thus we are allowed to turn
on a Zeeman term Re[B ′] ∼ n′

1, which fully polarizes n′
1 and

kills the SPT phase. Thus the original U(1) � Z2 SPT phase is
instable under U(1) to Zm breaking with odd m.

The discussion above is very abstract, let us understand
this result physically, and we will take m = 3 as an example.
With a full SO(3) symmetry and � = 2π in the bulk, the
ground state of the boundary is a spin-1/2 doublet in Eq. (6).
The excited states of the boundary include a spin-3/2 quartet.
When � = 6π in the bulk, the boundary ground state is a
spin-3/2 quartet. The spin-3/2 and spin-1/2 states can have a
boundary transition (level crossing at the boundary) without
closing the bulk gap, thus � = 2π and 6π are equivalent in
the bulk. Now let us take � = 6π in the bulk, and break
the SO(3) down to Z3 � Z2. Then we are allowed to turn
on a perturbation cos(3φ) at the boundary (which precisely
corresponds to the Zeeman coupling Re[B ′] ∼ n′

1 discussed
in the previous paragraph), which will mix and split the two
states Sz = ±3/2 at the boundary, and the boundary ground
state can become nondegenerate. Thus when m is odd, the
U(1) � Z2 SPT phase does not survive the symmetry breaking
from U(1) to Zm.

The same situation occurs in 2d and 3d. There is a 3d SPT
phase with U(1) � Z2 symmetry, but once we break the U(1)
down to Zm, this SPT phase does not survive when m is odd.
When m is even, besides the phase deduced from U(1) � Z2

SPT phase, one can construct another root phase:

Z2 : n1,2 → −n1,2, na → na (a = 3,4,5);

Zm : n1, → n1, na → (−1)kna (a = 2, . . . ,5), (56)

k = 0, . . . ,m − 1.

Here, na(a = 2, . . . ,5) still carries a nontrivial representation
of Zm for even integer m. na with a = 3,4,5 can be viewed as
the real parts of charge-m/2 bosons, while n2 is the imaginary
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part of such charge-m/2 boson. This construction does not
apply for odd m.

In 2d, for arbitrary m > 1, the U(1) � Z2 SPT phases
survive under U(1) to Zm symmetry breaking. With even m,
another root phase can be constructed

Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4;

Z2 : n1,2 → n1,2, n3,4 → −n3,4, (57)

k = 0, . . . ,m − 1.

Here, n1 and n2 are both the real parts of the charge-m/2
bosons.

The final classification of SPT phases with Zm � Z2

symmetry is

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2. (58)

L. SPT phases with Zm × Z2 symmetry

The case m = 2 has already been discussed. When m > 2,
one would naively expect these SPT phases can be interpreted
as U(1) × Z2 SPT phases after breaking U(1) to its Zm

subgroup, but again this is not entirely correct. In 1d, there is
no SPT phase with U(1) × Z2 symmetry, simply because we
cannot find a nontrivial transformation of �n under U(1) × Z2

that keeps Eq. (1) invariant. However, when m is an even
number, we can construct one SPT phase with Zm × Z2

symmetry using Eq. (1):

Zm : n1,2 → (−1)kn1,2, n3 → n3,

Z2 : n1 → n1, n2,3 → −n2,3, (59)

k = 0, . . . ,m − 1.

The Zm and Z2 transformations on �n commute with each other.
Again this construction applies to even integer m only.

The boundary states of this 1d SPT phase have the following
transformations:

Zm : U → (iσ z)kU, Z2 : U → σxU ;
(60)

k = 0, . . . ,m − 1.

Thus the boundary states carry projective representations of
Zm × Z2, and the transformations of Zm and Z2 do not
commute.

Similar situations occur in 3d. In 3d, we can construct two
root phases for even m, even though there is no SPT phase
with U(1) × Z2 symmetry in 3d :

(1) : Zm : n1,2 → (−1)kn1,2, na → na(a = 3,4,5);

Z2 : n1, → n1, na → −na (a = 2, . . . ,5);

(2) : Z2 : n1,2 → −n1,2, na → na(a = 3,4,5); (61)

Zm : n1, → n1, na → (−1)kna(a = 2, . . . ,5);

k = 0, . . . ,m − 1.

The boundary of these 3d SPT phases can have 2d Z2

topological order. If the e and m anyons correspond to vortices
of (n3,n4) and (n1,n2) respectively, then the boundary anyons

of phase (1) transform as

(1) : Zm : Ue → (iσ z)kUe, Um → Um;
(62)

Z2 : Ue → σxUe, Um → iσ yU ∗
m.

The transformation of boundary anyons of phase (2) can be
derived in the same way.

In 2d, all the Zm × Z2 SPT phases can be deduced from
U(1) × Z2 SPT phases, by breaking U(1) down to its Zm

subgroup. Thus cases (1), (2), and (3) in Eq. (40) seem to
reduce to SPT phases with Zm × Z2 symmetry after breaking
U(1) down to Zm. However, case (3) in Eq. (40) becomes the
trivial phase when m is odd. In case (3) of U(1) × Z2 SPT phase
[Eq. (40)], the NLSM is constructed with a charge-1 boson
B ∼ (n1 + in2), and because case (3) contributes classification
Z2, � = 2πm is equivalent to � = 2π for odd m. Also, the
NLSM with � = 2πm is equivalent to the NLSM with � =
2π constructed using a charge-m boson B ′ ∼ (n′

1 + in′
2) ∼

(n1 + in2)m. Now let us break the U(1) symmetry down to
Zm. Because B ′ is invariant under Zm and Z2, we can turn on
a linear Zeeman term that polarizes Re[B ′] ∼ n′

1, and destroy
the boundary states. Thus the NLSM constructed with the
charge-m boson B ′ is trivial once we break U(1) down to Zm.
This implies that when m is odd, case (3) in Eq. (40) becomes
a trivial phase once U(1) is broken down to Zm.

The final classification of SPT phases with Zm × Z2

symmetry is

1d : Z(2,m), 2d : Zm × Z2 × Z(2,m), 3d : (Z(2,m))
2. (63)

M. SPT phases with Zm � ZT
2 symmetry

Again, the situation depends on the parity of m. If m is odd,
then in 1d and 3d the only SPT phase is the SPT phase with
ZT

2 only. In 2d and 3d, the U(1) � ZT
2 SPT phases (except for

the one with ZT
2 symmetry only) do not survive when U(1) is

broken down to Zm with odd m. The reason is similar to what
we discussed in the previous two sections.

When m is even, then in 1d besides the Haldane phase with
ZT

2 symmetry, we can construct another SPT phase:

Zm : n1,2 → (−1)kn1,2, n3 → n3,

k = 0, . . . ,m − 1; (64)

ZT
2 : �n → −�n.

Here, n1 and n2 are both imaginary parts of charge-m/2
bosons. The boundary state is a Kramers doublet and
transforms as

Zm : U → (iσ z)kU, ZT
2 : U → iσ yU ;

(65)
k = 0, . . . ,m − 1.

In 2d, we can construct two different root phases:

(1)Zm : (n1 + in2) → (n1 + in2)ei2πk/m,

n3,n4 → n3,n4;

ZT
2 : n1 → n1, na → −na(a = 2,3,4);

(66)
(2)Zm : �n → (−1)k �n;

ZT
2 : n1 → n1, na → −na(a = 2,3,4);

k = 0, . . . ,m − 1.
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Phase (1) is the same phase as the 2d U(1) � ZT
2 SPT phase,

after breaking U(1) to Zm; phase (2) is a new phase, where
n1 is the real part of a charge-m/2 boson, while n2,3,4 are the
imaginary parts of such charge-m/2 bosons.

Using similar methods, we can construct three root phases
in 3d for even m. Two of the phases can be deduced from
the 3d U(1) � ZT

2 SPT phases. The third root phase has the
following transformation:

Zm : n1,2 → (−1)kn1,2, na → na(a = 3,4,5);

ZT
2 : �n → −�n; (67)

k = 0, . . . ,m − 1.

Both n1 and n2 are imaginary parts of charge-m/2 bosons.
Just like the 3d SPT phase with U(1) � ZT

2 symmetry, the 2d
boundary of the 3d Zm � ZT

2 SPT phase described by Eq. (67)
can have a Z2 topological order with electric and magnetic
anyons. The electric and magnetic anyons are both Kramers
doublet, and only one of them has a nontrivial transformation
under Zm: Zm : U → (iσ z)kU , (k = 0, . . . ,m − 1).

The final classification of SPT phases with Zm � ZT
2

symmetry is

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2. (68)

N. SPT phases with Zm × ZT
2 symmetry

In 1d and 3d, the SPT phases with Zm × ZT
2 symmetry can

all be deduced from U(1) × ZT
2 symmetry by breaking U(1)

down to Zm. Again, when m is odd, some of the SPT phases
become trivial, for the same reason as what we discussed
before.

In 2d, there is no SPT phase with U(1) × ZT
2 symmetry,

but when m is even we can construct two root phases, which
cannot be deduced from U(1) × ZT

2 SPT phases:

(1) : Zm : �n → (−1)k �n;

ZT
2 : n1 → n1, na → −na(a = 2,3,4);

(2) : Zm : n1,2 → (−1)kn1,2, n3,4 → n3,4; (69)

ZT
2 : n1 → n1, na → −na(a = 2,3,4);

k = 0, . . . ,m − 1.

The final classification of SPT phases with Zm × ZT
2

symmetry is

1d : Z2 × Z(2,m), 2d : (Z(2,m))
2, 3d : Z2 × (Z(2,m))

2.

(70)

O. SPT phases with SO(3) symmetry

In 1d, the SO(3) symmetry leads to the Haldane phase,
which is described by Eq. (1) with � = 2π . In 3d, there is no
way to assign SO(3) symmetry to the five-component vector
�n which makes the � term invariant, thus there is no 3d SPT
phase with SO(3) symmetry.

In 2d, Ref. [19] has given a nice way of describing SPT
phase with SO(3) symmetry, which is a principal chiral model
defined with group elements SO(3). We will argue without
proof that the SO(3) principal chiral model in Ref. [19] can be
formally rewritten as the O(4) NLSM Eq. (2), because we can

represent every group element Gab (3 × 3 orthogonal matrix)
as a SU(2) matrix Z:

Gab = 1
2 tr(Z†σaZσb), (71)

and the SU(2) matrix Z is equivalent to an O(4) vector �n with
unit length:Z = n4I2×2 + i�n · �σ . We propose that the minimal
SO(3) SPT phase discussed in Ref. [19] can be effectively
described by Eq. (2) with � = 8π :

S2d =
∫

d2xdτ
1

g
(∂μ�n)2 + i8π

12π2
εabcdεμνρn

a∂μnb∂νn
c∂ρn

d

=
∫

d2xdτ
1

g
tr[∂μZ†∂μZ] + i8π

24π2
tr[(Z†dZ)3]. (72)

Physically, Eq. (72) with � = 8π gives SU(2) Hall con-
ductivity σSU(2) = 8, or equivalently SO(3) Hall conductivity
σSO(3) = 2, which is the same as the principal chiral model
in Ref. [19]. Mathematically, when field Z has a instanton
number

∫
d3x tr[(Z†dZ)3]/(24π2) = +1 in the 2+1d space-

time, the SO(3) matrix field Gab defined in Eq. (71) will
have instanton number

∫
d3x tr[(G−1dG)3]/(24π2) = +4.

This factor of 4 is precisely why � = 8π in Eq. (72).
In order to represent Gab as Z , we need to introduce a Z2

gauge field that couples to Z , because Z is a “fractional”
representation of Gab, and Gab is invariant under gauge
transformation Z → −Z . In the language of lattice gauge
theory, our statement in the previous paragraph implies that
one of the possible confined phases of this Z2 gauge field is
trivial in the bulk without any extra symmetry breaking or
topological degeneracy, which awaits further analysis.

The final classification of SPT phases with SO(3) sym-
metry is

1d : Z2, 2d : Z, 3d : Z1. (73)

P. SPT phases with SO(3) × ZT
2 symmetry

In 1d, there are two different SPT root phases with
SO(3) × ZT

2 symmetry, which correspond to the following
transformations of O(3) vector �n:

(1) : SO(3) : na → Gabnb, ZT
2 : �n → −�n;

(74)
(2) : SO(3) : �n → �n, ZT

2 : �n → −�n.

In 2d, the SPT phases with SO(3) × ZT
2 symmetry were

discussed in Ref. [23], and it is described by Eq. (2) with
transformation

SO(3) : na → Gabnb(a,b = 1,2,3), n4 → n4;
(75)

ZT
2 : na → na(a = 1,2,3), n4 → −n4.

In 3d, there are three root phases for SO(3) × ZT
2 SPT

phases, two of which have the following field theory:

(1) : SO(3) : �n → �n, ZT
2 : �n → −�n;

(2) : SO(3) : na → Gabnb(a,b = 1,2,3), n4,5 → n4,5

ZT
2 : �n → −�n; (76)

phase (1) is simply the SPT phase with ZT
2 symmetry only.

After we break the SO(3) symmetry down to its inplane O(2)
subgroup, phase (2) will reduce to a SPT phase with U(1) × ZT

2
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symmetry discussed in Ref. [21], which is a phase whose bulk
vortex line is a 1d Haldane phase with ZT

2 symmetry.
Besides the two phases discussed above, there should be

another root phase (3) that will reduce to the U(1) × ZT
2 SPT

phase whose boundary is a bosonic quantum Hall state with
Hall conductivity ±1, when time-reversal symmetry is broken
at the boundary [21]. In the next two paragraphs, we will
argue without proof that this third root phase can be described
by Eq. (3) with the following definition and transformation of
O(5) vector order parameter �n:

(3) : Z = n4I2×2 +
3∑

a=1

inaσ
a,

ZT
2 : Z → iσ yZ, n5 → −n5; (77)

� = 8π in bulk.

Here, Z is still the “fractional” representation of SO(3) matrix
Gab introduced in Eq. (71). If we break the ZT

2 symmetry at the
boundary of phase (3), the boundary becomes a 2d SO(3) SPT
phase with SO(3) Hall conductivity ±1 [when SO(3) is broken
to U(1), the boundary becomes a bosonic integer quantum Hall
state with Hall conductivity ±1], thus it cannot be realized in
a pure 2d bosonic system without degeneracy.

In principle, Z is still coupled to a Z2 gauge field. We
propose that the confined phase of this Z2 gauge field is the
desired SO(3) × ZT

2 SPT phase. In the confined phase of a 3d
Z2 gauge field, the vison loops of the Z2 gauge field proliferate.
Since the Z2 gauge field is coupled to the fractional field Z ,
a vison loop of this Z2 gauge field is bound with a vortex
loop of SO(3) matrix field Gab [57], which is defined based on
homotopy group π1[SO(3)] = Z2, thus the confined phase of
the Z2 gauge field is a phase where the SO(3) vortex loops
proliferate. If we reduce the SO(3) symmetry down to its
inplane U(1) symmetry, the vison loop reduces to the vortex
loop of the U(1) phase. When a bulk vortex (vison) loop ends
at the boundary, it becomes a 2d vortex (vison). This 2d vortex
is a fermion, because according to the previous paragraph,
once the ZT

2 is broken at the boundary, the boundary becomes
a boson quantum Hall state with Hall conductivity ±1. This is
consistent with the results for U(1) × ZT

2 SPT phase discussed
in Refs. [21,22,27]. Thus the SPT phase described by Eq. (77)
is a phase where SO(3) vortex loops proliferate, and the SO(3)
vortices at the boundary are fermions.

The final classification of SPT phases with SO(3) × ZT
2

symmetry is

1d : (Z2)2, 2d : Z2, 3d : (Z2)3. (78)

Q. SPT phases with Z2 × Z2 × Z2 symmetry

In 1d, we can construct three different root phases:

(1) : ZA
2 : n1,2 → −n1,2, n3 → n3;

ZB
2 : n1 → n1, n2,3 → −n2,3;

ZC
2 : �n → �n;

(2) : ZB
2 : n1,2 → −n1,2, n3 → n3;

ZC
2 : n1 → n1, n2,3 → −n2,3;

(79)
ZA

2 : �n → �n;

(3) : ZC
2 : n1,2 → −n1,2, n3 → n3;

ZA
2 : n1 → n1, n2,3 → −n2,3;

ZB
2 : �n → �n.

In 2d, there are seven different root phases:

(1) : ZA
2 : �n → −�n, ZB

2 ,ZC
2 : �n → �n;

(2) : ZB
2 : �n → −�n, ZC

2 ,ZA
2 : �n → �n;

(3) : ZC
2 : �n → −�n, ZA

2 ,ZB
2 : �n → �n;

(4) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,2 → n1,2, n3,4 → −n3,4;

ZC
2 : �n → �n;

(5) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZC
2 : n1,2 → n1,2, n3,4 → −n3,4; (80)

ZB
2 : �n → �n;

(6) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n1,3 → −n1,3, n2,4 → n2,4;

ZC
2 : n1,4 → −n1,4, n2,3 → n2,3;

(7) : ZA
2 : n1,2 → −n1,2, n3,4 → n3,4;

ZB
2 : n3,4 → −n3,4, n1,2 → n1,2;

ZC
2 : n2,3 → −n2,3, n1,4 → n1,4.

In 3d, there are six different root phases:

(1) : ZA
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZB
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZC
2 : �n → �n;

(2) : ZB
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZA
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZC
2 : �n → �n;

(3) : ZB
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZC
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZA
2 : �n → �n;

(4) : ZC
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZB
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZA
2 : �n → �n;

(5) : ZA
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZC
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZB
2 : �n → �n;

(6) : ZC
2 : n1,2 → −n1,2, na → na,(a = 3,4,5);

ZA
2 : n1 → n1, na → −na,(a = 2, . . . ,5);

ZB
2 : �n → �n;
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(7) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;

ZB
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZC
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3;

(8) : ZA
2 : n1,2 → −n1,2, n3,4,5 → n3,4,5;

ZC
2 : n2,3 → −n2,3, n1,4,5 → n1,4,5;

ZB
2 : n4,5 → −n4,5, n1,2,3 → n1,2,3. (81)

All the other SPT phases can be constructed with these root
phases above.

The final classification of SPT phases with Z2 × Z2 × Z2

symmetry is

1d : (Z2)3, 2d : (Z2)7, 3d : (Z2)8. (82)

V. SUMMARY AND COMMENTS

In this work, we systematically classified and described
bosonic SPT phases with a large set of physically relevant
symmetries for all physical dimensions. We have demonstrated
that all the SPT phases discussed in this paper can be described
by three universal NLSMs Eqs. (1)–(3), and the classification
of these SPT phases based on NLSMs is completely identical
to the group cohomology classification [14,15]. However,
we have not built the general connection between these two
classifications, and it is likely that SPT phases with some
other symmetry groups [for example, symmetry much larger
than O(d + 2)] can no longer be described by these three
NLSMs any more. In Refs. [22,23], SPT phases that involve a

large symmetry group PSU(N )= SU (N )/ZN were discussed,
and in these systems it was necessary to introduce NLSMs
with a larger target manifold. However, it is likely that all
the SPT phases with arbitrary symmetry groups (continuous
or discontinuous) can be described by a NLSM with certain
continuous target manifold.

As we already mentioned, now it is clear that there is a series
of BSPT states beyond the group cohomology classification,
and a generalized field theory description for such states will be
given in Ref. [43]. Our NLSM can also be very conveniently
generalized to the cases that involve lattice symmetry such
as inversion, as was discussed in Ref. [58], as long as we
require our order parameter �n transform nontrivially under
lattice symmetry. We leave a thorough study of SPT states
involving lattice symmetry to future studies.

Recently, it was pointed out that after the 3d SPT state is
coupled to gauge field, the gauge defects, which in 3d can be
loop excitations, can have a novel loop braiding statistics [59].
In a recent work, we showed that this loop statistics can also
be computed using our NLSM field theory discussed in this
work [60].

ACKNOWLEDGMENTS

The authors are supported by the David and Lucile Packard
Foundation and NSF Grant No. DMR-1151208. The authors
especially want to thank Meng Cheng, Xie Chen, and Yuan-
Ming Lu for very helpful discussions.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[3] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[4] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[5] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
[6] R. Roy, Phys. Rev. B 79, 195322 (2009).
[7] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[8] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96,

106401 (2006).
[9] C. Xu, Phys. Rev. B 81, 020411 (2010).

[10] C. Wang, A. C. Potter, and T. Senthil, Phys. Rev. B 88, 115137
(2013).

[11] P. Bonderson, C. Nayak, and X.-L. Qi, J. Stat. Mech. (2013)
P09016.

[12] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher,
arXiv:1306.3286.

[13] X. Chen, L. Fidkowski, and A. Vishwanath, Phys. Rev. B 89,
165132 (2014).

[14] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,
155114 (2013).

[15] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,
1604 (2012).

[16] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
[17] T. Senthil and M. Levin, Phys. Rev. Lett. 110, 046801 (2013).

[18] M. Levin and A. Stern, Phys. Rev. B 86, 115131 (2012).
[19] Z.-X. Liu and X.-G. Wen, Phys. Rev. Lett. 110, 067205 (2013).
[20] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119 (2012).
[21] A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016 (2013).
[22] C. Xu and T. Senthil, Phys. Rev. B 87, 174412 (2013).
[23] J. Oon, G. Y. Cho, and C. Xu, Phys. Rev. B 88, 014425 (2013).
[24] C. Wang and T. Senthil, Phys. Rev. B 87, 235122 (2013).
[25] C. Wang, A. C. Potter, and T. Senthil, Science 343, 629 (2014).
[26] X. Chen, Y.-M. Lu, and A. Vishwanath, Nat. Commun. 5, 3507

(2014).
[27] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Phys. Rev. B

88, 035131 (2013).
[28] P. Ye and X.-G. Wen, Phys. Rev. B 87, 195128 (2013).
[29] P. Ye and X.-G. Wen, Phys. Rev. B 89, 045127 (2014).
[30] M. Cheng and Z.-C. Gu, Phys. Rev. Lett. 112, 141602 (2014).
[31] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[32] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[33] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).
[34] T. Kennedy, J. Phys. Condens. Matter 2, 5737 (1990).
[35] M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P.

Renard, Phys. Rev. Lett. 65, 3181 (1990).
[36] T.-K. Ng, Phys. Rev. B 50, 555 (1994).
[37] Z. Bi, A. Rasmussen, and C. Xu, Phys. Rev. B 89, 184424

(2014).
[38] C. Xu, Phys. Rev. B 88, 205137 (2013).

134404-13

http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevB.81.020411
http://dx.doi.org/10.1103/PhysRevB.81.020411
http://dx.doi.org/10.1103/PhysRevB.81.020411
http://dx.doi.org/10.1103/PhysRevB.81.020411
http://dx.doi.org/10.1103/PhysRevB.88.115137
http://dx.doi.org/10.1103/PhysRevB.88.115137
http://dx.doi.org/10.1103/PhysRevB.88.115137
http://dx.doi.org/10.1103/PhysRevB.88.115137
http://dx.doi.org/10.1088/1742-5468/2013/09/P09016
http://dx.doi.org/10.1088/1742-5468/2013/09/P09016
http://dx.doi.org/10.1088/1742-5468/2013/09/P09016
http://arxiv.org/abs/arXiv:1306.3286
http://dx.doi.org/10.1103/PhysRevB.89.165132
http://dx.doi.org/10.1103/PhysRevB.89.165132
http://dx.doi.org/10.1103/PhysRevB.89.165132
http://dx.doi.org/10.1103/PhysRevB.89.165132
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevLett.110.046801
http://dx.doi.org/10.1103/PhysRevB.86.115131
http://dx.doi.org/10.1103/PhysRevB.86.115131
http://dx.doi.org/10.1103/PhysRevB.86.115131
http://dx.doi.org/10.1103/PhysRevB.86.115131
http://dx.doi.org/10.1103/PhysRevLett.110.067205
http://dx.doi.org/10.1103/PhysRevLett.110.067205
http://dx.doi.org/10.1103/PhysRevLett.110.067205
http://dx.doi.org/10.1103/PhysRevLett.110.067205
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.88.014425
http://dx.doi.org/10.1103/PhysRevB.88.014425
http://dx.doi.org/10.1103/PhysRevB.88.014425
http://dx.doi.org/10.1103/PhysRevB.88.014425
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1103/PhysRevB.87.235122
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://dx.doi.org/10.1103/PhysRevB.88.035131
http://dx.doi.org/10.1103/PhysRevB.87.195128
http://dx.doi.org/10.1103/PhysRevB.87.195128
http://dx.doi.org/10.1103/PhysRevB.87.195128
http://dx.doi.org/10.1103/PhysRevB.87.195128
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevB.89.045127
http://dx.doi.org/10.1103/PhysRevLett.112.141602
http://dx.doi.org/10.1103/PhysRevLett.112.141602
http://dx.doi.org/10.1103/PhysRevLett.112.141602
http://dx.doi.org/10.1103/PhysRevLett.112.141602
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1103/PhysRevLett.59.799
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1088/0953-8984/2/26/010
http://dx.doi.org/10.1103/PhysRevLett.65.3181
http://dx.doi.org/10.1103/PhysRevLett.65.3181
http://dx.doi.org/10.1103/PhysRevLett.65.3181
http://dx.doi.org/10.1103/PhysRevLett.65.3181
http://dx.doi.org/10.1103/PhysRevB.50.555
http://dx.doi.org/10.1103/PhysRevB.50.555
http://dx.doi.org/10.1103/PhysRevB.50.555
http://dx.doi.org/10.1103/PhysRevB.50.555
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.88.205137
http://dx.doi.org/10.1103/PhysRevB.88.205137
http://dx.doi.org/10.1103/PhysRevB.88.205137
http://dx.doi.org/10.1103/PhysRevB.88.205137


ZHEN BI, ALEX RASMUSSEN, KEVIN SLAGLE, AND CENKE XU PHYSICAL REVIEW B 91, 134404 (2015)

[39] L. Kong and X.-G. Wen, arXiv:1405.5858 (2014).
[40] A. Kapustin, arXiv:1404.6659 (2014).
[41] A. Kapustin, arXiv:1403.1467 (2014).
[42] C. Xu and Y.-Z. You, Phys. Rev. B 91, 054406 (2015).
[43] Z. Bi and C. Xu, arXiv:1501.02271.
[44] E. Witten, Commun. Math. Phys. 92, 455 (1984).
[45] V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B 247,

83 (1984).
[46] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett.

51, 1915 (1983).
[47] H. Levine, S. B. Libby, and A. M. M. Pruisken, Nucl. Phys. B

240, 30 (1984).
[48] C. Xu and A. W. W. Ludwig, Phys. Rev. Lett. 110, 200405

(2013).
[49] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).

[50] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett.
102, 146805 (2009).

[51] E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16, 407
(1961).

[52] A. Y. Kitaev, Ann. Phys. 303, 1 (2003).
[53] T. Grover and T. Senthil, Phys. Rev. Lett. 100, 156804 (2008).
[54] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,

arXiv:1403.6491.
[55] Z.-X. Liu, X. Chen, and X.-G. Wen, Phys. Rev. B 84, 195145

(2011).
[56] F. J. Burnell, X. Chen, L. Fidkowski, and A. Vishwanath, Phys.

Rev. B 90, 245122 (2014).
[57] C. Xu and S. Sachdev, Phys. Rev. B 79, 064405 (2009).
[58] Y.-Z. You and C. Xu, Phys. Rev. B 90, 245120 (2014).
[59] C. Wang and M. Levin, Phys. Rev. Lett. 113, 080403 (2014).
[60] Z. Bi, Y.-Z. You, and C. Xu, Phys. Rev. B 90, 081110 (2014).

134404-14

http://arxiv.org/abs/arXiv:1405.5858
http://arxiv.org/abs/arXiv:1404.6659
http://arxiv.org/abs/arXiv:1403.1467
http://dx.doi.org/10.1103/PhysRevB.91.054406
http://dx.doi.org/10.1103/PhysRevB.91.054406
http://dx.doi.org/10.1103/PhysRevB.91.054406
http://dx.doi.org/10.1103/PhysRevB.91.054406
http://arxiv.org/abs/arXiv:1501.02271
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1016/0550-3213(84)90374-2
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.100.156804
http://dx.doi.org/10.1103/PhysRevLett.100.156804
http://dx.doi.org/10.1103/PhysRevLett.100.156804
http://dx.doi.org/10.1103/PhysRevLett.100.156804
http://arxiv.org/abs/arXiv:1403.6491
http://dx.doi.org/10.1103/PhysRevB.84.195145
http://dx.doi.org/10.1103/PhysRevB.84.195145
http://dx.doi.org/10.1103/PhysRevB.84.195145
http://dx.doi.org/10.1103/PhysRevB.84.195145
http://dx.doi.org/10.1103/PhysRevB.90.245122
http://dx.doi.org/10.1103/PhysRevB.90.245122
http://dx.doi.org/10.1103/PhysRevB.90.245122
http://dx.doi.org/10.1103/PhysRevB.90.245122
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevLett.113.080403
http://dx.doi.org/10.1103/PhysRevLett.113.080403
http://dx.doi.org/10.1103/PhysRevLett.113.080403
http://dx.doi.org/10.1103/PhysRevLett.113.080403
http://dx.doi.org/10.1103/PhysRevB.90.081110
http://dx.doi.org/10.1103/PhysRevB.90.081110
http://dx.doi.org/10.1103/PhysRevB.90.081110
http://dx.doi.org/10.1103/PhysRevB.90.081110



