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Transport theory of metallic B20 helimagnets
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B20 compounds are a class of cubic helimagnets harboring nontrivial spin textures such as spin helices and
skyrmions. It has been well understood that the Dzyaloshinskii-Moriya (DM) interaction is the origin of these
textures, and the physics behind the DM interaction is the spin-orbit coupling (SOC). However, the SOC shows
its effect not only on the spins but also on the electrons. In this paper, we will discuss the effects of the SOC
on the electron and spin transports in B20 compounds. An effective Hamiltonian is presented from symmetry
analysis, and the spin-orbit coupling therein shows anomalous behaviors in anisotropic magnetoresistance and
helical resistance. New effects such as an inverse spin-galvanic effect are proposed, and the origin of the DM
interaction is discussed.
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I. INTRODUCTION

Symmetry is a central topic of modern physics and material
science. Reduced symmetry has given rise to innumerable
novel phenomena. For example, breaking of the translational
symmetry leads to the emergence of lattices and crystals, which
are the platforms of condensed-matter studies. The highest
symmetry of a lattice has the point group of Oh, to which most
of the ferromagnetic materials belong. Surprises have been
brought by further reducing this symmetry. B20 compounds,
with representatives of FeSi [1,2], MnSi [3–5], FeGe [6,7],
and Cu2 SeO3 [8], are such an interesting class of materials.
Although B20 compounds have a cubic lattice, it has the lowest
symmetry in this crystal system. Complicated distributions of
atoms dramatically bring down the symmetry, where inversion,
mirror, or fourfold rotational symmetries are absent. Abundant
phenomena are emerging consequently, among which the most
attractive one is the presence of nontrivial spin textures like
helices and skyrmions.

A spin helix is a spatially modulated magnetic texture. It is
present in magnetic materials with competing interactions. It
has been observed in the B20 family Fe1−x CoxSi by real-space
imaging [9]. In this case, the Dzyaloshinskii-Moriya (DM)
interaction [10,11]

HDM = D · (Si × Sj ) (1)

between neighboring spins plays an important role. Broken
inversion symmetry in B20 compounds is the physical origin
of this interaction. Under an inversion operation about the
center of the joint line, two neighboring spins are exchanged,
and the DM interaction flips sign due to its cross-product
nature. In contrast, the Heisenberg exchange, HH = −JSi ·
Sj , is unchanged under this operation, thus respecting the
inversion symmetry. The Heisenberg exchange tends to align
neighboring spins, while the DM interaction tends to form
an angle of π/2. As a result of the competition, a finite
angle is expanded by these two spins, whose successive
arrangement generates the spin helix. A spin helix is not the
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only result of breaking inversion symmetry; another result is
the magnetic skyrmion [3,12–14], a topological spin texture.
It is stabilized in B20 compounds at finite magnetic fields and
temperatures.

In light of nontrivial spin modulation in the helix and
promising spintronics applications of the skyrmion, a complete
understanding of the electron and spin transports in B20 com-
pounds is an urgent subject. Longitudinal magnetoresistance
measurements have been performed to map out the phase
diagrams containing helical and skyrmion phases [15,16]. On
the other hand, due to the emergent electromagnetism [17,18],
the skyrmion phase can be precisely determined by the
Hall measurements [6,19–22]. A peculiar non-Fermi-liquid
behavior is also addressed in MnSi single crystals [4,5] and
is intimately related to the topology of spin textures [23].
However, a deep study of the spin transports in B20 com-
pounds is still lacking. Recently, an experiment on anisotropic
magnetoresistance (AMR) was performed in bulk samples of
Fe1−x CoxSi [24]. It was surprisingly observed that compared
to the usual AMR in cobalt or other cubic ferromagnetic mate-
rials, the magnetoresistance shows two, instead of four, peaks.
This result shows that the system lacks the fourfold rotational
symmetry, which is compatible with the reduced symmetry
in B20 compounds. However, the microscopic origin has yet
to be revealed. In another experiment, the measurement of
helical resistance showed an ultralow resistance ratio of 1.35
with the current parallel and perpendicular to the helix [25]. It
was predicted theoretically and well tested experimentally that
this ratio should be larger than 3. This observation apparently
violates this common concept.

These two experiments suggest a new mechanism involving
nontrivial spin scatterings and thus inevitably suggest the
important effects of the spin-orbit coupling (SOC) on the
conduction electrons in B20 compounds. The SOC has already
shown its power in the spin interactions in B20 compounds.
It is well known that a nonvanishing DM interaction requires
not only the inversion symmetry breaking but also a large
SOC [11]. However, effects of the SOC on conduction
electrons have never been discussed. In this paper, we will
show that the SOC explains well the two experiments above
and provides several other experimental proposals.
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This paper is organized as follows. In the following section,
an effective Hamiltonian is constructed, where both linear and
cubic SOC terms are present. Section III shows that these SOC
terms are the microscopic origin of the DM interactions in B20
compounds. In Secs. IV and V, the linear SOC gives rise to
an inverse spin-galvanic effect and an ultralow ratio of helical
resistance, respectively. In Sec. VI, the importance of the cubic
SOC is revealed, which provides the microscopic mechanism
of the anomalous AMR effect.

II. EFFECTIVE HAMILTONIAN

In order to understand the transport behaviors of B20
compounds, the first priority is to construct the effective
Hamiltonian of the conduction electrons. As we are interested
in the long-range behaviors, only momenta around the �

point will be relevant. The bands around other high-symmetry
points in the Brillouin zone might cross the Fermi energy
and contribute to the transports in some form. However,
the qualitative behavior, especially the symmetries, will not
change.

The importance of the SOC indicates that the conventional
quadratic dispersion, H (k) = �

2k2/2m, is not adequate to
understand spin-related transports. Therefore, additional terms
coupling spin and momentum are called for. To this end, we
analyze the symmetry of the B20 compounds and employ the
theory of invariants to construct the effective Hamiltonian [26].

In the international notation, the space group of B20
compounds is P213, where subscripts 2 and 3 indicate the
twofold and threefold rotational symmetries, respectively,
while 1 indicates a fractal translation in the space-group
operation. No other symmetries are present. Around the �

point, the fractal rotation does not change the space-group
irreducible representations [27] and thus is not relevant, and
the space group is isomorphic to its K group, which is a
group containing all the point-group operations within the
space group. Irreducible representations of the space group
at the � point are the same as those of the K group. For
P213, the K group is the T 23 group, containing 12 elements:
one identity, three C2 rotations (π rotations about axes [100],
[010], and [001]), and eight C3 rotations (clockwise rotations
of 2π/3 about the directions [±1,±1,±1]). Unlike in the
complete group operations in the Oh group, fourfold rotations,
inversions, and mirror symmetries are absent.

Once spin is taken into account, a 2π rotation in the spin
space reverses the sign and should be treated as an additional
group operation. One thus has to consider the double group
of T 23, whose irreducible representations and characters are
listed in Table I. Operations with bars are the joint action of
the point-group element and the 2π spin rotation.

First-principles calculations on metallic B20 materials,
such as MnSi and FeGe, show that the orbitals around the
Fermi surface are mainly d orbitals [28]. Under spin-orbit
coupling, these orbitals are split into j = 5/2 and j = 3/2
orbitals, which correspond to the D5/2 and D3/2 irreducible
representations of the rotation group, respectively. The char-
acter of a rotation of angle α in Dj is given by

χ = sin
[(

j + 1
2

)
α
]

sin
(

1
2α

) . (2)

TABLE I. Character table for the double group of T 23.

T 23 E Ē 4C3 4C̄3 3C2 + 3C̄2 4C−1
3 4C̄−1

3

�1 1 1 1 1 1 1 1
�2 1 1 w w 1 w2 w2

�3 1 1 w2 w2 1 w w

�4 3 3 0 0 −1 0 0
�5 2 −2 1 −1 0 1 −1
�6 2 −2 w −w 0 w2 −w2

�7 2 −2 w2 −w2 0 w −w

In the crystal field, these orbitals are further split into
suborbitals, which corresponds to the decomposition in terms
of T 23’s irreducible representations:

D5/2 ↓ T = �5 ⊕ �6 ⊕ �7, (3)

D3/2 ↓ T = �6 ⊕ �7. (4)

In reality, all these suborbitals might be relevant around the
Fermi surface. In addition, there are four magnetic atoms in
each unit cell, leading to a total of 20 bands. In order to capture
the key feature of these materials, we would like to keep
the Hamiltonian in the minimal form. Only one band out of
three representations �5,6,7 will be considered. The resulting
Hamiltonian will be 2 × 2, the simplest Hamiltonian taking
into account the SOC.

The model Hamiltonian H communicating the Hilbert
spaces corresponding to irreducible representations α and β

is, in general,

H (k) =
nα∑

lα1 =1

nβ∑
l
β

2 =1

h(k)
∣∣lα1 〉〈

l
β

2

∣∣. (5)

Here nα and nβ are dimensions of these two representations,
respectively. In the current case, band mixing is neglected such
that α = β. lα1 labels the basis in the irreducible representation
α. The operator part |lα1 〉〈lβ2 | transforms as the product
representation �∗

α × �β , which can be decomposed as the
direct sum of irreducible representations �∗

α × �β = ⊕γ �γ .
The basis X

γ

l
γ

3
of an irreducible representation �γ contained

in this product representation is the superposition of direct
products |lα1 〉〈lβ2 | as X

γ

l
γ

3
= ∑nα

lα1 =1

∑nβ

l
β

2 =1
C

αβ,γ

lα1 l
β

2 ,l
γ

3

|lα1 〉〈lβ2 |, where

C
αβ,γ

lα1 l
β

2 ,l
γ

3

are the Clebsch-Gordan coefficients [29]. To keep the

Hamiltonian invariant under group operations, h(k) must be
an irreducible tensor operator in the representation �∗

γ , such
that H (k) belongs to the trivial representation �1 contained
in the product representation �∗

γ × �γ . As a consequence, the
invariant Hamiltonian is given by

H (k) =
αβ∑
γ

aαβ
γ

nγ∑
1

h
γ

l
γ

3
(k)Xγ

l
γ

3
(6)

=
αβ∑
γ

aαβ
γ

nγ∑
1

h
γ

l
γ

3
(k)

⎛
⎝ nα∑

lα1 =1

nβ∑
l
β

2 =1

C
αβ,γ

lα1 l
β

2 ,l
γ

3

∣∣lα1 〉〈
l
β

2

∣∣
⎞
⎠ , (7)
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where coefficients aαβ
γ are free parameters that cannot be

dictated from the symmetry analysis.
For �5, �∗

5 × �5 = �1 ⊕ �4. However, X
�1
1 and all three

matrices X
�4
1,2,3 are all trivial identity matrices. Therefore, the

effective Hamiltonian can be reduced to be spinless, and spin-
orbit coupling is absent. The corresponding Hamiltonian is
therefore the simplest quadratic one, H (k) = �

2k2/2m, which
does not bring anything new. New physics comes when we turn
to �6 or �7 representations. As these two representations are
complex conjugate to each other, the effective Hamiltonians
are the same. In the following, we will take �6 as an example
without loss of generality.

�∗
6 × �6 = �1 ⊕ �4, (8)

X
�1
1 =

(
1 0

0 1

)
, X

�4
1 =

(
0 −i/

√
3

−i/
√

3 0

)
,

X
�4
2 =

(
0 1/

√
3

−1/
√

3 0

)
, X

�4
3 =

(
−i/

√
3 0

0 i/
√

3

)
.

(9)

Equation (9) shows explicitly that X
�4
i = −i/

√
3σi , where

σi are three Pauli matrices. The overall factor −i/
√

3 can be
absorbed into the factor aαβ

γ in Eq. (7). Now the remaining task
is to construct the irreducible tensor operators h

γ

l
γ

3
(k). For �1,

the task is simple because h
�1
1 (k) = k2/2m. However, for �4,

two bases may apply: h
�4
i (k) = (kx,ky,kz) or h

�4
i = (kx(k2

y −
k2
z ),ky(k2

z − k2
x),kz(k2

x − k2
y)), which are on the first and third

orders in momentum k, respectively. Terms of second order in
k break the time-reversal symmetry once coupled to the spin
and thus can be neglected. As a consequence, the effective
Hamiltonian for conduction electrons in B20 compounds is
given by

H = k2

2m
+ α(kxσx + kyσy + kzσz)

+β
[
kxσx

(
k2
y − k2

z

) + kyσy

(
k2
z − k2

x

) + kzσz

(
k2
x − k2

y

)]
.

(10)

This Hamiltonian can also be intuitively guessed from
simple symmetry analysis. The presence of C3 symmetry
enforces the permutation symmetry in the Hamiltonian, while
the C2 symmetry rules out most of the combinations. It is
worth emphasizing that the linear spin-orbit coupling k · σ

is not adequate, as it is a fully rotational symmetric term.
C4 symmetry is also respected by this term but is apparently
broken in the T 23 group. It is the cubic spin-orbit coupling, the
last term in Eq. (10), that breaks C4. Therefore, Eq. (10) is the
minimal Hamiltonian that faithfully describes the symmetry
of B20 compounds.

The cubic spin-orbit coupling is well known in III–V semi-
conductors induced by bulk inversion asymmetry (BIA) [30].
The linear term k · σ is a new term. As discussed in the
following, it captures most of the nontrivial physics in B20
compounds. As σ is a pseudovector, k · σ is a pseudoscalar.
This is thus a forbidden term in lattices with any inversion

or mirror symmetries. That is why it is absent in the III–V
semiconductors and most of the ferromagnetic materials.
However, elements in the T 23 point group are only pure
rotations, so k · σ is allowed and contributes significantly to
the long-range behaviors.

III. ORIGIN OF SPIN INTERACTIONS

Real-space images of B20 compounds have shown that
the spin helix therein looks like a successive array of Bloch
walls [9], where magnetizations are rotating in a plane
perpendicular to their propagation direction. In addition, the
skyrmion has a double-twist structure [13]. These features are
well described by the DM interaction in the following shape:

HDM = Dr̂ij · (Si × Sj ); (11)

namely, the DM vector D in Eq. (1) should point from one spin
to the other. Although it is compatible with the symmetry [31],
the microscopic origin is still lacking. However, it can be
understood by the SOC in our effective Hamiltonian as follows.

Quantitatively, we can employ the field approach to calcu-
late the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
between two neighboring spins S1 and S2 [32–34]. The
electron’s action is given by

S =
∑

n

∫
d3kψ̄(−k,−iωn)

×
(

−iωn + k2

2m
+ αk · σ

)
ψ(k,iωn)

+
2∑

i=1

∑
n

∫
d3kψ̄(−k − q,−iωn)Si · σe−iq·Ri ψ(k,iωn),

(12)

where Ri are the positions of two spins. The spin interaction
can be derived by integrating out the electrons using the
gradient expansion. Up to the second order, the spin-spin
interaction is given by

Seff = −2
∑

n

∫
d3kT r[G(R,iωn)S1 · σG(−R,iωn)S2 · σ ],

(13)
where R = R1 − R2 and G(R,iωn) is the real-space Green’s
function, defined as

G(R,iωn) =
∫

d3k
e−ik·R

−iωn + k2

2m
− αk · σ

(14)

=
∫ ∞

0
dk

∫ π

0
dθk2 sin θ

∫ 2π

0
dϕ

iωn − k2

2m
+ αk · σ(−iωn + k2

2m

)2−α2k2
e−ik·R.

(15)

One can decompose the momentum k into directions parallel
and perpendicular to R̂ as k = (k · R̂)R̂ + (R̂ × k) × R̂ ≡
k‖ + k⊥. Apparently, because k⊥ · R = 0, exp(ik⊥ · R) = 1,
and ∫ 2π

0
dϕ

αk⊥·σ( − iωn + k2

2m

)2 − α2k2
= 0. (16)
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The only contribution comes from the coupling between the
k‖ and Pauli matrices. Thus,

G(R,iωn) =
∫ ∞

0
dk

∫ π

0
dθk2 sin θ

×
∫ 2π

0
dϕ

iωn − k2

2m
+ αk‖·σ( − iωn + k2

2m

)2 − α2k2
e−ik‖·R

= 2π

∫ ∞

0
dk

∫ π

0
dθk2 sin θ

× iωn − k2

2m
+ αk cos θR̂·σ(−iωn + k2

2m

)2 − α2k2
e−ikR cos θ

≡ G0(R) + G1(R)R · σ , (17)

where

G0(R) = 2π

∫ ∞

0
dk

∫ π

0
dθ

k2 sin θ
(
iωn − k2

2m

)
(−iωn + k2

2m

)2−α2k2
e−ikR cos θ

(18)

and

G1(R) = 2π

R

∫ ∞

0
dk

∫ π

0
dθ

αk3 sin θ cos θ(−iωn+ k2

2m

)2 − α2k2
e−ikR cos θ .

(19)

One can easily get these Green’s functions by evaluating
contour integrals. The real part of the poles of k gives rise
to the Friedel oscillations.

Consequently, the effective RKKY Hamiltonian is given by

H RKKY = − 2

β

∑
n

[(
G2

0 + G2
1

)
S1 · S2

+ 2G0G1R · (
S1 × S2

)]
. (20)

The first term is the Heisenberg exchange, while the second
term is the DM interaction. The DM vector D in Eq. (1) is
along R = R1 − R2, which is consistent with Eq. (11) for
B20 compounds. One can easily show that even if the cubic
spin-orbit coupling in Eq. (10) is included, the direction of
DM vector is still unchanged. Thus, the SOC in Eq. (10) gives
rise to the right DM interactions in B20 and therefore the right
physical origin. In the next two sections, we will discuss the
effects of these two SOC terms in the collective transports.

The physical picture behind this calculation is the follow-
ing. By the linear spin-orbit coupling αk · σ , the conduction
electron effectively feels a magnetic field −αk ∼ −αmv/�.
Therefore, once it hops from one site to the other, its spin must
process about the effective magnetic field along the joint line
between these two sites. The coupling between the conduction
electron and local magnetic moments thus reduces the energy
once the moments at these two sites process in the same way.
The direction of the DM vector D is thus parallel to the effective
field, which points one spin to the other.

In reality, the interaction between the neighboring spins
might have various origins besides the RKKY mechanism.
However, the physical picture of spin procession persists in
any mechanism. Therefore, the DM interaction always has the
desired form once the spin-orbit coupling, Eq. (10), is present.

An interesting consequence follows when an ultrathin film
of a B20 compound is grown along the [001] direction and
an electric field is applied perpendicular to the film. The
intrinsic linear SOC gives H = α(kxσx + kyσy), while the
additional Rashba SOC induced by the electric field is H =
αR(kxσy − kyσx). Still the intrinsic SOC gives DM interactions
with the DM vector pointing from one spin to the neighbor on
the film. However, the Rashba SOC contributes a DM vector
perpendicular to the intrinsic one. In B20 compounds the spin
helix looks like a successive array of Bloch domain walls,
where the spins are rotating in a plane perpendicular to the
propagation direction. However, in the large αR limit, the
resulting spin helix is a successive array of Neel walls, where
the spins are coplanar to the propagation direction. Therefore,
by increasing the electric field, one can expect a gradual
deformation of the spin helix. Similarly, the skyrmion will
deform to that generated by interfacial DM interactions [35].
These deformations can be observed by Lorentz TEM images.

IV. INVERSE SPIN-GALVANIC EFFECT

There have been extensive discussions on the interaction
between the conduction electrons and local magnetic moments
M in metallic magnets. These two are directly coupled to each
other via Hund’s rule coupling H = −JH M · σ , where σ is
the spin of the conduction electron. In the adiabatic limit,
JH → ∞, electron spins are parallel to the local moments.
Algebraically, one can perform an SU (2) transformation U

such that U †M · σU = σz. In the adiabatic limit, only the
up spin, namely, the upper left part of the transformed
Hamiltonian, is relevant. In the case where moments are
spatially nonuniform, the same U rotation transforms the
kinetic energy k2/2m to (k − eA)2/2m, where the SU (2)
gauge field eAμ = −iU †∂μU [36], whose upper left part
A is the real-space emergent electromagnetic field [17].
The minimal coupling between A and the electric current
j results in the current-driven domain wall or the skyrmion
motions [17,37].

The scenario above is no longer valid in the presence of
the SOC. Due to the noncommutative nature of the Pauli
matrices, the conduction electrons feel more than the emergent
electromagnetic field A, and additional coupling to the electric
current needs to be included. Careful analysis is required in
the current case.

One can similarly perform an SU (2) gauge transformation
U to the Hamiltonian

H = 1

2m
k2 + αk · σ − JHM(r) · σ , (21)

so that U †M(r) · σU = mσz. The first term again gives rise
to U †(k2/2m)U = (k − eA)2/2m, with eAμ = −iU †∂μU ,
while the second one is transformed as

U †k · σU = U †σμU (kμ − eAμ). (22)

In the adiabatic limit, we take the upper left (↑↑) part of the
transformed Hamiltonian, so that

H = 1

2m
(k − eA)2 + α(f·k − g) − JH m, (23)
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where fμ = [U †σμU ]↑↑ and g = [μU †σμUeAμ]↑↑. As ẋ =
∂H
∂k = 1

m
(k − eA) + αf, the Lagrangian is given by

L = k · ẋ − H

= 1
2mẋ2 + eA · (ẋ − αf) − mαf · ẋ + 1

2mα2f2 + αg.

(24)

The electric current j = eẋ thus minimally couples to (A −
mα
e

f), instead of A in the absence of the SOC. For local mag-
netizations m̂ = (sin θ cos φ, sin θ sin φ, cos θ ), let U = u0 +
iu · σ . Up to a gauge, we get u0 = 1

2 sin(θ/2) ,u = 1
2 sin(θ/2) ẑ × m̂,

and, consequently, f = m̂. The effective coupling between
magnetization and the current is thus given by

Lc = 1

e
j · (eA − αm). (25)

By varying the total action, the magnetization dynamics obeys
the following equation of motion:

ṁ + 1

e
j · ∇m − α

e
m × j + m × Heff = 0. (26)

The third term is the contribution from SOC. It shows explicitly
that via SOC, an electric current j serves as an effective planar
field acting on the magnetizations, manifesting the inverse
spin-galvanic effect.

The physics of the inverse spin-galvanic effect is very
simple. Under a steady electric current, the Fermi surface
acquires a shift along the current direction and ends up
with a nonvanishing average momentum 〈k〉 in the same
direction. The SOC αk · σ thus reduces energy when the
spin 〈σ 〉 is antiparallel to j. This average spin provides a
spin-transfer torque on the local magnetizations, which is
therefore analogous to an effective magnetic field along −j.

Although the effective field along the current will not
change routine observables such as the topological Hall
effect [19], a physical consequence of this inverse spin-
galvanic effect is the current-induced helix reorientations in
the helimagnet. It has been shown that the hysteresis under
low field is vanishingly small in B20 compounds [38]. The
orientation of the spin helix is completely determined by the
direction of external magnetic field. Here we propose that one
can use an electric current, instead of magnetic fields, to orient
the spin helix. The helix would propagate in parallel with the
current, which can be experimentally confirmed by neutron
scattering. This effect also applies in B20 thin films, in which
the Lorentz TEM would be a proper way to detect it.

V. HELICAL RESISTANCE

The SOC has various consequences in the magnetore-
sistances. Under a low external magnetic field, the ground
state of B20 is the helical state, assembling a successive
arrays of magnetic domains. The domain-wall resistance
originating from collective spin scattering has been extensively
studied both experimentally and theoretically in the context of
conventional ferromagnets. SOC would apparently alter the
spin scattering and leads to unconventional helical resistance
in B20 compounds.

We consider the Hamiltonian in Eq. (10) while including
the Zeeman term σ · h:

H = k2

2m
− μ + h · σ + αk · σ + β

[
kx

(
k2
y − k2

z

)
σx

+ ky

(
k2
z − k2

x

)
σy + kz

(
k2
x − k2

y

)
σz

]
(27)

U (r) = 1

N

∑
i

(v I2×2 − jh · σ )δr,Ri
. (28)

Here h is the local magnetization. It rotates in the yz

plane perpendicular to x, the propagation direction. U is the
impurity potential, including both the scalar potential v and
the spin-dependent potential −jh · σ [39]. In the domain
wall, the direction of magnetization is nonuniform. Under
the assumption of a slowly varying spin configuration (the
helix period d � 1/kf ), one can perform an SU (2) gauge
transformation R to the Hamiltonian so that the spin in the
domain wall points along the êz direction. R is set to

R = exp[−iθ (x)σx], (29)

with θ (x) = 2πx/d, where d is the helix period. By this
rotation,

R−1(σ · ĥ)R = σz,

R−1 �
2∇2

2m
R = �

2∇2

2m
− i

�
2

2m
σx(∂xθ )∂x

= �
2∇2

2m
− i

π�
2

md
σx∂x,

R−1σx∂xR = −i
π

d
+ σx∂x,

R−1σy∂yR = (cos θσy − sin θσz)∂y,

R−1σz∂zR = (cos θσz + sin θσy)∂z.

The cubic SOC terms are transformed in a more complicated
way. However, under the large-helix-period approximation,
d � 1/kf , with kf being the Fermi wave vector, it can be
simplified as

R−1σxkx

(
k2
y − k2

z

)
R ≈ σxkx

(
k2
y − k2

z

)
,

R−1σyky

(
k2
z − k2

x

)
R ≈ (σy cos θ − σz sin θ )ky

(
k2
z − k2

x

)
,

R−1σykz

(
k2
x − k2

y

)
R ≈ (σz cos θ + σy sin θ )kz

(
k2
x − k2

y

)
.

To calculate the helical conductivity, we solve the Boltz-
mann equation with a perturbation method. The deviation of
the electron distribution function from the equilibrium one
f1 = f − f0 is expanded in terms of the spherical harmonic
functions Ym

l (θ,φ) up to l = 5. The details of the calculation
can be found in the Supplemental Material [40].

Figure 1 shows the ratio between the longitudinal resistivi-
ties with the current perpendicular to the domain wall (CPW)
and the current in the domain wall (CIW). It is found that the
ratio is strongly suppressed by the presence of the SOC. In
addition, the presence of cubic SOC terms only quantitatively
changes the ratio.

The minimum of the ratio is reached when

α = π

md
. (30)
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FIG. 1. (Color online) The resistance ratio RCPW/RCIW vs the
spin-orbit coupling. In the plot, πkf /(mdh) = 0.2, jh/v = 1.06.
Different curves are for different cubic SOC terms. It is clear that
the ratio approaches the one for which the SOC is much larger than
the Zeeman energy h.

To understand this minimum, we consider the Hamiltonian
with only the linear SOC coupling, i.e., β = 0. After the local
SU (2) gauge transformation, the Hamiltonian becomes

H =H0 + V + const, (31)

H0 = p2

2m
− hσz,

V =
(

α − π

md

)
σxpx + ασy(py cos θ + pz sin θ )

+ασz(pz cos θ − py sin θ ), (32)

const = π2

8md2
− απ

2d
.

To simplify the notation, we define γ = α − π
md

. If SOC
terms αkf , βk3

f are much smaller than the Zeeman energy,
the eigenstate of the Hamiltonian can be solved based
on perturbation. In addition, we assume that the impurity
scattering is strongly spin dependent, i.e., v ≈ jh. In this case,
the conductivity is dominated by the outer Fermi surface, with
its intraband impurity scattering given by

|M++
k→k′ |2 ≈ (v + jh)2

[
γ 2kxk

′
x + α2

2 (kyk
′
y + kzk

′
z)

4h2

]2

. (33)

Here + is for the outer Fermi surface. When α vanishes,
it is clear that scattering is larger at larger kx and k′

x . The
resistivity comes from the fermions with larger momentum
along the direction of the current. Therefore, ρx � ρy/z, and
thus, the ratio RCPW/RCIW reaches its maximum. When
γ = 0 [α = π/(md)], the scattering rate is larger for larger
ky/z and k′

y/z. Therefore, ρy/z � ρx , and the ratio RCPW/RCIW

reaches the minimum. More detailed information can be found
in the Supplemental Material.

VI. ANOMALOUS ANISOTROPIC
MAGNETORESISTANCE

In the previous sections, we have focused mainly on the
effects of the linear SOC in Eq. (10). The cubic SOC only
slightly modifies these effects. The cubic term fails to bring
any qualitative change in these experiments. However, from

the point of view of symmetry, only the cubic SOC breaks the
C4 rotation, and it must give rise to anisotropic behaviors
of the magnetoresistance. To this end, we study the case
when external magnetic field is sufficiently large to polarize
all magnetic moments along its direction and calculate the
magnetoresistances. It is well known that for most of the cubic
ferromagnets such as Ni, the AMR shows fourfold symmetry
when the magnetic field rotates in the plane perpendicular
to the current. However, it has already been reported that
in B20 compounds such as Fe1−x CoxSi [24], the AMR
shows anomalous behavior in that only a twofold symmetry is
respected. In this section, we will show how the cubic SOC
leads to this observation.

The same model as in the previous section is employed. The
Hamiltonian and the impurity potential are in the same form
as in Eqs. (27) and (28). The conductivity σzz(h) is calculated
while varying the magnetization h in the x y plane. Most of the
ferromagnetic materials have high symmetry and respect C4

symmetry. Thus, σzz(hêx) = σzz(hêy) in these cases. However,
due to the C4 breaking in B20 compounds, the anomalous
AMR is expected where the ratio between the conductivities
σzz(hêx) and σzz(hêy) deviates from 1.

Before performing the calculation, let’s explore the sym-
metries of the Hamiltonian in Eq. (27). It is found that

H (α,β,hêy) = SH (α,−β,hêx)S−1. (34)

Here S is the operator which rotates the system along the z

axis by π/2. Therefore,

σzz(α,β,hêx) = σzz(α,−β,hêy). (35)

In addition, the conductivity is invariant under the space-
inversion symmetry P ,

H (−α,−β,h) = PH (α,β,h)P −1 =⇒ σzz(α,β,h)

= σzz(−α,−β,h). (36)

Combining Eqs. (35) and (36), we conclude

σzz(α,β,hêx) = σzz(α,−β,hêy) = σzz(−α,β,hêy). (37)

Solely by symmetry argument, it is found that the anomalous
AMR, defined as σzz(hêx)/σzz(hêy) − 1, vanishes if either of
the two spin-orbit couplings, α and β, vanishes. Similarly, we
have σzz(α,β,hêh) = σzz(α,β,−hêh).

In this section, the conductivity is calculated in the same
way as in the previous section. The Boltzmann equation
is solved using the perturbation method. The deviation of
the electron distribution function is expanded by spherical
harmonic functions up to l = 5. The anisotropy comes from
two different sources. (i) the Fermi surface is anisotropic since
the Hamiltonian in Eq. (27) breaks C4 symmetry. (ii) The
eigenstate on the Fermi surface is anisotropic and thus leads
to the anisotropic impurity scattering by the spin-dependent
potential in Eq. (28).

The energy of the Hamiltonian in Eq. (27) is given by

εF = �
2k2

F

2m
± {

h2
z + α2

(
k2
x + k2

y + k2
z

)
+β2

[
k2
x

(
k2
y − k2

z

)2 + k2
y

(
k2
z − k2

x

)2 + k2
z

(
k2
x − k2

y

)2]
+ 2hzkz

[
α + β

(
k2
x − k2

y

)]}1/2
. (38)
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(a) (b)

FIG. 2. (Color online) The intraband impurity scattering amplitude from (0,0,kf ) to (kf cos φ,kf sin φ,0) on the outer Fermi surface. Red
and blue curves are the scattering magnitude as a function of φ when the magnetization field points along ŷ and x̂, respectively. (a) The Zeeman
energy is artificially turned off, while the impurity potential is still spin dependent with v/(jh) = 2.0 and βk2

f /α = 1.5. The C4 symmetry is
broken in the impurity scattering amplitude. (b) β = 0. Both the Zeeman energy and the impurity spin-dependent potential are nonzero, with
h/(αkf ) = 0.1 and v/(jh) = 2.0. It is clear that C4 symmetry recovers for β = 0.

The system contains two Fermi surfaces (FSs) since the
Kramers degeneracy is lifted. All terms in Eq. (38) respect
the symmetry exchanging the indices x and y except the
last term in the curly braces. Equation (38) shows explicitly
that the Fermi-surface asymmetry is possible only when then
magnetization is nonzero.

However, the impurity scattering asymmetry is present as
long as α and β are nonzero. Figure 2 shows the intraband scat-
tering magnitude |M|2 from (0,0,kf ) to (kf cos φ,kf sin φ,0)
on the outer Fermi surface. Red and blue curves are |M|2
as a function of φ when the impurity magnetization points
along ŷ and x̂, respectively. If the C4 symmetry is kept,
the blue curve should be the same as the red one after a
translation of π/2, which is apparently not the case. It is
noticeable that even when the Zeeman field vanishes, the
impurity scattering still breaks the C4 symmetry, although the
shape of the Fermi surface is still C4 symmetric. Of course, in
reality, both the Zeeman term and spin-dependent scattering
coexist.

Figure 3(a) shows the ratio σzz(hêx)/σzz(hêy) as a function
of the SOC. The ratio is smaller than 1 when α and β have
the same sign and is larger than 1 when two SOCs have
different signs. This is consistent with the conclusion [Eq. (37)]
derived by symmetry arguments. In addition, it is found that
the anomalous AMR vanishes when either α = 0 or α → ∞.

The latter implies that the anomalous AMR vanishes when
β → 0. This result agrees with our physical picture based on
the Fermi-surface topology. C4 symmetry is restored on the
Fermi surface when β → 0.

Figure 3(b) shows the anomalous AMR as a function of
the magnetization field h. When h vanishes, not only does the
Zeeman energy vanish, but also the impurity potential becomes
spin independent. Therefore, the impurity scattering becomes
C4 symmetric, as well as the Fermi surface. In this case,
anomalous AMR vanishes. Our calculations agree well with
the experimental results [24]. When the temperature is raised
above the Curie temperature, the anomalous AMR vanishes.
This corresponds to the case with vanishing magnetization h.
In another limit when h → ∞, the spin on the Fermi surface
is fixed by the Zeeman energy. In this situation, the impurity
scattering and Fermi surface become isotropic, and therefore,
the anomalous AMR vanishes.

Figure 4 shows the variation of the conductivity σzz as
the direction of the in-plane magnetization field changes. Note
that σzz reaches its minimum (maximum) when the field points
along the x (y) direction. In our calculation, this comes from
the assumption that two SOC couplings have the same sign.
If α and β have different signs, the minimum (maximum) is
reached when h is along the y (x) axis. This result reproduces
the experimental observations in [24].

(a) (b)

FIG. 3. (Color online) The ratio σz(hêx)/σz(hêy) vs SOC couplings and the magnetization field. (a) The ratio as a function of SOC with
v/(jh) = 2.0. The ratio becomes 1 when α = 0 or βk2

f /α → 0. This agrees with our conclusion in Eq. (37) by symmetry argument. (b) The
ratio vs Zeeman energy h with j = 1.0. The anomalous AMR vanishes when h = 0 or h → ∞.
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FIG. 4. (Color online) Conductivity vs the direction of the in-
plane magnetization field. In the plot, αkf /h = 3.0, βk3

f /h = 5.4,
and v/(jh) = 2.0. ni is the impurity density.

VII. CONCLUSION

In conclusion, the spin-orbit coupling is the source of
various interesting phenomena in B20 compounds. It not
only provides the antisymmetric spin interactions but also

dramatically changes behaviors of the electron transport. The
effective Hamiltonian constructed in this work captures the
main effects of the SOC in conduction electrons. Despite its
simple form, the emergent new physics is closely associated
with several experiments. It also calls for many future works
to study the spin transports related to this Hamiltonian.
First-principles calculations are also encouraged to determine
the strength of the SOCs.
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[3] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,
A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
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