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Voltage noise, multiple phase-slips, and switching rates in moderately damped Josephson junctions
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We study the voltage noise properties including the statistics of phase-slips and switching rates in moderately
damped Josephson junctions by using a novel efficient numerical approach that combines the matrix continued-
fraction method with the full counting statistics. By analyzing the noise results obtained for the resistively and
capacitively shunted junction (RCSJ) model we identify different dominating components; namely, the thermal
noise close to equilibrium (small-current-bias regime), the shot noise of (multiple) phase-slips in the intermediate
range of biases, and the switching noise for yet higher bias currents. We extract thus far inaccessible characteristic
rates of phase-slips in the shot-noise regime as well as the escape and retrapping rates in the switching regime
as functions of various junction parameters. The method can be extended and applied to other experimentally
relevant Josephson junction circuits as well as to optical trap setups.
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I. INTRODUCTION

Josephson junctions (JJs) and their dynamics have been
subject of intensive study ever since the discovery of the
Josephson effect [1] not only because of their fascinating
microscopic physical properties and high application potential
but also for their ability to implement via phase dynamics
elementary concepts of nonlinear dynamical systems such
as chaos, multistability, and switching [2,3]. In recent years
there has been progress in fabricating unconventional meso-
[4,5] and nanoscopic [6] JJs exhibiting, among other effects,
nonsinusoidal current-phase relations with exotic dynamics
[7]. However, small junctions are more prone to the influence
of environmental noise and their dynamics is inherently
stochastic [8,9]. Due to the richness of dynamical regimes
even the description of conventional junctions, especially in
the intermediate-damping regime, may be challenging and one
has to often resort to lengthy simulations [10]. It should be
also mentioned that the mechanical analog of a Josephson
junction, a particle in the so-called tilted washboard potential,
can be studied by using a microparticle confined in shaped
laser beams with all the dynamical properties directly optically
measured [11–15]. Although such standard optical setups
usually work in water in the strongly overdamped regime
for the particle motion, moderately damped setups in the
air or vacuum are currently being pursued [16–18]. In our
presentation we stick to the JJ terminology, but one should
always bear in mind the optical trapping alternative which
might eventually turn out to be a more convenient platform
for the experimental verification of the results (e.g., for the
multiple phase-slip rates).

Another side effect of miniaturization connected to the
stochastic nature of the problem is the shift of interest from just
mean quantities such as the mean voltage to more elaborate
statistical description including, e.g., the voltage noise in
simulations [19], theory [20,21], as well as experiment [22]. In
the present paper we introduce a robust and efficient numerical
method based on the matrix continued-fraction (MCF) method
[3] which can be used to study the voltage noise of JJs with
an arbitrary level of the phase dynamics damping. The method
reveals various regimes of current biasing the junction with the

corresponding dominant voltage-noise mechanisms, including
thermal noise, multiple phase-slips (MPSs), and switching
processes with related escape and retrapping rates whose
values are easily determined. When combined with the full
counting statistics (FCS) of the phase dynamics [20], it allows
us to decompose (together with a clear verification mechanism,
when the decomposition is legitimate) the phase dynamics into
independent elementary processes [23] constituted by MPS
and find their rates.

It should be stressed that MPS as well as escape and
retrapping events are rather rare processes and, thus, finding
their rates via direct numerical simulations is at best tedious.
On the contrary, our novel numerical method gives them
fairly as easily as any other stationary property, including
the distribution function. Furthermore, our identification of
the MPS and escape or retrapping is based on well-founded
overall physical picture of a junction’s dynamical behavior in
the given regime (rare hopping and dichotomous processes,
respectively) and gives us unambiguous answers for the rates.
On the other hand, direct numerical simulations based on
individual stochastic trajectories suffer from a certain degree of
liberty in the definition of the relevant concepts (e.g., multiple
phase-slip of a given length), which makes them even more
problematic.

In this paper, for the clarity of the presentation we only
introduce and demonstrate the method on the paradigmatic
case of the RCSJ model with a harmonic current-phase
relation. However, the numerics is directly applicable to JJs
with arbitrary current-phase relations, such as in Refs. [5,24],
even though the physical interpretation of the results in
case of multiple nonequivalent potential minima is more
complex. After a minor extension the method can be also
applied to the description of the experimentally relevant
circuits with structured electromagnetic environments yielding
the frequency-dependent friction [9,21,25] and/or frequency-
dependent voltage noise for these models. Moreover, due to
the phase-charge duality, our results are also relevant for the
current noise in the nanowire quantum phase-slip circuits [26].
We defer discussion of such generalizations to forthcoming
presentations.

1098-0121/2015/91(13)/134305(12) 134305-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.134305
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The outline of this work is the following: In Sec. II we
introduce the RCSJ model and outline the matrix-continued-
fraction method of its solution. In the following Sec. III
we present the obtained numerical results both for the
mean voltage and voltage noise quantified in terms of the
appropriately defined Fano factor. We focus in more detail on
the analysis of the phase-slip regime for intermediate current
bias in Sec. IV and of the switching regime for large bias in
Sec. V. Finally, we summarize our results and discuss their
possible extensions in Sec. VI. Technical details of the MCF
method are postponed to Appendix.

II. RESISTIVELY AND CAPACITIVELY SHUNTED
JUNCTION MODEL & METHODS OF SOLUTION

Ideal Josephson junctions with the conventional harmonic
current-phase relation I = Ic sin φ shunted with a simple
circuit environment [parallel resistance R and capacitance C;
see Fig. 1(a)] and current biased by Ib are described by the
resistively and capacitively shunted junction (RCSJ) model
[27]. The Langevin equations for the phase difference φ(t)
and voltage V (t) = �

2e

dφ(t)
dt

across the junction are just the first
law of Kirchhoff and the Josephson voltage-phase relation:

Ib = Ic sin φ (t) + C
dV (t)

dt
+ V (t)

R
+ ξ (τ ) ,

V (t) = �

2e

dφ (t)

dt
. (1)

We can define dimensionless quantities [2] with help of the
plasma frequency ωp = √

2eIc/�C and the quality factor
of the circuit Q = ωpRC ≡ γ −1 quantifying the level of
damping of the phase dynamics as follows: junction voltage
v = QV

IcR
, junction current i = I

Ic
, time τ = ωpt , temperature

� = 2ekBT
�Ic

(with the Boltzmann constant kB), bias current

ib = Ib

Ic
, and the Gaussian white noise ζ with the correla-

tion functions 〈ζ (τ )〉 = 0, 〈ζ (τ1)ζ (τ2)〉 = 2γ�δ(τ1 − τ2). In
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FIG. 1. (Color online) (a) Circuit representation of the RCSJ
model. (b) 〈v〉 − ib characteristics for a weakly damped junction
Q = 5 (black solid line) and a strongly damped one Q = 0.2 (red
dashed line). Blue dotted lines represent the hysteretic 〈v〉 − ib
characteristics for forward and backward ib ramping of the noiseless
case with Q = 5.

these dimensionless units the above equations (1) read

dv (τ )

dτ
= ib − γ v (τ ) − sin φ (τ ) + ζ (τ ) ,

v (τ ) = dφ (τ )

dτ
.

(2)

This description assumes sufficiently high temperature T �
�ωp/kB so that quantum effects can be neglected. Equations
(2) imply the associated Fokker–Planck equation [3] for the
probability distribution function W (φ,v,τ ):

∂

∂τ
W (φ,v; τ )

=
[
−v

∂

∂φ
+ ∂

∂v

(
γ v + sin φ − ib + γ�

∂

∂v

)]
W

≡ LFPW (φ,v; τ ) . (3)

We are interested in the mean voltage

〈v〉 =
∫ 2π

0
dφ

∫ ∞

−∞
dvvWstat (φ,v) , (4)

and the (zero-frequency) voltage noise

S =
∫ ∞

−∞
dτ [〈v (τ ) v (0)〉 − 〈v (τ )〉〈v (0)〉] (5)

in the stationary state Wstat(φ,v) ≡ limτ→∞ W (φ,v; τ ) de-
termined by the 2π -periodic solution (in φ) of the equa-
tion LFPWstat(φ,v) = 0. While the mean voltage is trivially
obtained from the knowledge of the stationary probability
distribution function, the computation of the voltage noise
is more complicated. The general formula for the frequency-
dependent voltage noise reads

S (ω) =
∫ ∞

−∞
dτeiωτ [〈v (τ ) v (0)〉 − 〈v (τ )〉〈v (0)〉] , (6)

and the voltage autocorrelation function can be expressed as
(Ref. [3, Sec. 7.2])

〈v (τ ) v (0)〉 =
∫ 2π

0
dφ

∫ ∞

−∞
dvve|τ |LFPvWstat (φ,v) . (7)

After introducing the convergence factors ω → ω + i0 for
τ > 0 and ω → ω − i0 for τ < 0 we get

S(ω) =
∫ 2π

0
dφ

∫ ∞

−∞
dvv

(
1

iω − LFP
− 1

iω + LFP

)
× vWstat (φ,v) . (8)

Since we are interested in the limit ω → 0 and LFP is singular
(due to the existence of the stationary state), performing the
limit is somewhat tricky. It can be done, however, as explained
in detail in Ref. [28, Sec. IIIB], and the voltage noise can be
evaluated as

S = −2
∫ 2π

0
dφ

∫ ∞

−∞
dvvR (φ,v) , (9)

with the help of an auxiliary quantity R(φ,v) (pseudoinverse
of the Fokker–Planck operator) satisfying the equation

LFPR (φ,v) = (v − 〈v〉) Wstat (φ,v) , (10)

134305-2



VOLTAGE NOISE, MULTIPLE PHASE-SLIPS, AND . . . PHYSICAL REVIEW B 91, 134305 (2015)

and conditions R(φ + 2π,v) = R(φ,v) (periodicity) and∫ 2π

0 dφ
∫∞
−∞ dvR(φ,v) = 0 [fixing one out of infinitely many

solutions of Eq. (10), see Ref. [28, Sec. IIIE] ].
We have found both Wstat(φ,v) and R(φ,v) nu-

merically by the matrix continued-fraction method of
Ref. [3, Sec. 11.5] which first expresses the v part of
the equations in terms of quantum-oscillator-basis functions,
thus obtaining a tridiagonal coupled system of φ-dependent
differential equations (Brinkmann hierarchy). The 2π -periodic
φ parts are then expanded into the Fourier series and solved
via the MCF as explained in more detail in Appendix. The
method inherently works for arbitrary current-phase relations.
Furthermore, by using the finite-frequency generalization of
the problem (8) (which can be further manipulated analogously
to Ref. [29]), we could easily evaluate also the finite-frequency
voltage noise (6).

An alternative method for evaluation of the zero-frequency
voltage noise is to use the full counting statistics (FCS)
approach pioneered in this context in Ref. [20]. The aim of
that method is the calculation of the k-dependent (k is the
counting field) cumulant generating function (CGF)

F (k; τ ) ≡ ln
∫ ∞

−∞
dφeikφ

∫ ∞

−∞
dvW (φ,v; τ ) (11)

from a nonstationary solution W (φ,v; τ ) of Eq. (3) (Ref. [3,
Sec. 11.7]). For long times τ → ∞ the CGF generates all sta-
tionary cumulants of the voltage by derivatives with respect to
k at k = 0 and its full k dependence can be used for evaluation
of phase-slip rates, as shown below. Following the analogous
derivations in Refs. [30,31], we obtain limτ→∞ F (k; τ )/τ =
λ0(k), where λ0(k) is the counting-field-dependent eigenvalue
of the full problem (3) with modified boundary condition
[20] W0(φ + 2π,v) = e−i2πkW0(φ,v) with the biggest real
part [adiabatically developed with increasing k from the
stationary solution λ0(k = 0) = 0]. This eigenvalue can be
also obtained by the MCF method as shown in the Appendix,
Sec. A 4, and yields the mean voltage 〈v〉 ≡ −iλ

′
0(0), voltage

noise S ≡ −λ
′′
0(0), and similarly also the higher-order voltage

cumulants. We have verified that both calculation methods give
the same results for the mean voltage and noise.

III. RESULTS

A. 〈v〉 − ib characteristics

In Fig. 1(b) we recapitulate for completeness the known
results [3,32] for the mean voltage by plotting 〈v〉 − ib
curves for two complementary values of the quality factor
representing the strongly (Q = 0.2) and weakly (Q = 5)
damped cases. While the strong damping case with increasing
ib shows a smooth crossover from the nearly zero voltage
(diffusive branch [9]) to the Ohmic behavior determined by
R for ib � 1, the underdamped curve exhibits a much sharper
transition between the two regimes. This can be understood as
the noise-induced sudden switching between two coexisting
dynamical states of the underdamped junction in the noiseless
(zero temperature) limit represented by the dotted blue lines
in the figure revealing a strong hysteresis between the forward
and backward ramping of the bias current ib. Using the
above-mentioned and well-known mechanical analogy of the
RCSJ model, which is the damped particle in the tilted
washboard potential U (φ) = cos φ + ibφ [illustrated in the
inset of Fig. 2(a)], one can easily see that the zero-voltage state
(locked solution) is stable up to ib = 1 while a finite-voltage
state vr (running solution) is stable down to the Q-dependent
retrapping current [27] ir (Q) ≈ 4/πQ

.= 0.25 (for the studied
case with Q = 5) determined by the energy balance between
the energy supply by the bias current and dissipation [3].
Without noise, the originally trapped “phase particle” stays
locked in the potential minimum until the bias current is high
enough to wipe off the local extremes of the potential. On the
other hand, if the particle is already running then, because of
the inertia, it can still overcome the local maxima and keep
running if the damping is low enough. For finite temperatures
the stationary 〈v〉 − ib characteristics in the bistability region
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FIG. 2. (Color online) (a) Voltage-noise Fano factor for an overdamped Q = 0.2 and (b), (c) underdamped Q = 5.0 junctions and different
temperatures �. Panel (b) depicts in detail the � = 0.14 Fano-factor curve from panel (c) in the small-ib regime where multiple phase-slips are
the prevailing source of voltage noise. Red dashed line is the full solution calculated from the Fokker–Planck equation (3) while the overlapping
black dots are the checks evaluated approximately via the MPS rates (see main text). Arrows in panels (a) and (b) refer to parameters studied
in detail in the following Fig. 3. Insets show (a) mechanical analog of Eq. (2) with 
1/−1 being the rates of the forward and backward single
phase-slips and (c) bimodal stationary distribution functions plotted for bias-current values marked with the corresponding arrows.
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ir (Q) < ib < 1 is the weighted average of the running and
locked solutions governed by the escape and retrapping rates,
which can be determined from the noise, as demonstrated
below.

B. Voltage noise

Voltage noise properties can be used to analyze the phase
dynamics in far more detail. In analogy to the electronic
mesoscopic transport [33,34], we conventionally express the
voltage noise in terms of the dimensionless ratio called the
Fano factor (see Ref. [33, p. 28]) defined as F ≡ S(ω =
0)/2π〈v〉. In Fig. 2 we plot the Fano factor for strongly
damped Q = 0.2 (left panel) and weakly damped Q = 5
junctions (middle and right panels) at different temperatures.
Our numerical results for the strongly damped case are very
close to those for the overdamped RSJ model [20]. Because
of low temperature � � 1 the low-bias-current behavior for
ib � 0.6 can be perfectly understood by the description in
terms of thermally induced forward and backward single
(i.e., by 2π ) phase-slips shown in the inset of the left panel.
This simple picture yields for the Fano factor in this regime
F = coth πib/� [see Ref. [20, Eq. (28)] ] exhibiting the
characteristic divergence at ib = 0 due to the finite thermal
noise and the plateau at the Poissonian value of F = 1 for
larger values of ib. Above the critical current ib > 1 the
junction is in the running state and the prevailing component
of the noise is the simple Johnson thermal noise of the resistor
with F = �(2i2

b + 1)/(i2
b − 1)

3
2 for ib � 1 + �2/3 [cf. Ref.

[20, Eqs. (36) and (37)]].
The Fano factor vs bias current for the underdamped

junction in Figs. 2(b) and 2(c) is qualitatively different from
the strongly damped case. As shown in Fig. 2(b) there is also
the low-ib thermal singularity in the Fano factor followed
for increasing ib � ir (Q) by a flatter part due to multiple
phase-slips discussed in previous works [9,35,36] and studied
in detail below in Sec. IV. However, unlike in the overdamped
case, for still-growing bias current the Fano factor rises
again and becomes dominated by the strongly temperature-
dependent huge peak with F ≈ 100 to 1000 around the switch-
ing current is

.= 0.45 [compare with Fig. 1(b)] plotted in
Fig. 2(c), which is characteristic of the dichotomous switching
process. This interpretation is further supported by the inset
of Fig. 2(c) with the stationary voltage distribution function
W (v) ≡ ∫ 2π

0 dφWstat(φ,v) for various bias currents showing
curves with well-separated double peaks corresponding to two
differently weighted metastable states. The first peak centered
around v = 0 describes the locked phase while the second one
around the ib-dependent noiseless running solution vr reveals
the running phase. We further analyze this switching process
in Sec. V.

IV. PHASE-SLIPS

Now we turn our attention to the multiple-phase-slips
regime [37] with the bias current smaller than the onset
of the switching regime ib � ir (Q), as shown Fig. 2(b).
Analogously to the overdamped case [20,38] the solution
to the Fokker–Planck equation (3) in this regime can be
approximated by a weighted sum of quasi-equilibrated sharp

(� � 1) Gaussian distributions around the local minima
W (φ,v; τ ) ≈ ∑

m Pm(τ )w(φ − 2πm,v) with [Ref. [20, Eq.
(22)]]

w(φ,v)=
4

√
1 − i2

b

2π�
exp

⎡⎣−
√

1 − i2
b

2�
(φ − arcsin ib)2

⎤⎦e− v2

2� ,

(12)

and time-dependent weights Pm(τ ). These are assumed to
satisfy the (Markovian) master equation

dPm (τ )

dτ
=
∑
n�=0


nPm−n (τ ) −
∑
n�=0


nPm (τ )

≡
∑

n


nPm−n (τ ) , with 
0 ≡ −
∑
n�=0


n.

(13)

Here, 
n (n �= 0) are the rates of elementary MPS by 2πn

[negative n corresponds to backward rates against the bias
such as 
−1 in the inset of Fig. 2(a)].

To find the MPS rates we use the FCS methodology
introduced in Ref. [20] for the RSJ model combined with
the procedure of identification of elementary processes [23].
If the master equation (13) description is a good approximation
of the full phase dynamics we can evaluate the CGF from it
and equate that with the full CGF calculated by the MCF as
described in the last section A 4 of the Appendix. We have for
the approximate probability density

exp [F (k; τ )] ≈
∑
m

Pm (τ ) e2πikmw̃ (k) ≡ P (k; τ ) w̃ (k) ,

(14)

with w̃(k) = exp(ik arcsin ib − 2�k2/
√

1 − i2
b ) and P(k; τ ) ≡∑

m Pm(τ )e2πikm satisfying the k-dependent differential equa-
tion

dP (k; τ )

dτ
=
(∑

n


ne
2πikn −

∑
n


n

)
P (k; τ ) . (15)

This allows us to identify λ0(k) = ∑
n 
n(e2πikn − 1) in the

MPS regime describing a mixture of independent Poissonian
processes of phase-slips by 2πn whose rates can be evaluated
as


n =
∫ 1

0
dkλ0 (k) e−2πikn for n �= 0. (16)

Importantly, the method itself provides tools for checking
its validity by comparing the approximate mean voltage
〈v〉 = 2π

∑
n 
nn and Fano factor F = ∑

n 
nn
2/
∑

n 
nn

with those computed directly by the MCF method. In Fig. 2(b)
it is explicitly shown that the two Fano factors perfectly match
up to the values of ib where the switching process sets in (and
correspondence eventually breaks down).

In Fig. 3 we plot MPS rates 
n for strong-damping case Q =
0.2 [Fig. 3(a)] and weak damping case Q = 5; ib = 0.05, 0.20
[Figs. 3(b) and 3(C)]. Only the single phase-slips are realized
in the strong-damping case, which is consistent with the Fano-
factor plateau at one in Fig. 2(a). The dependence of 
1 on ib
in the regime of the plateau is plotted in the inset with dots
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FIG. 3. (Color online) (a) Single-phase-slip rate for a strongly damped junction with Q = 0.2 corresponding to the unitary plateau of the
Fano factor in Fig. 2(a). Inset shows comparison of the ib dependence of the rate evaluated numerically (dots) and by the Kramers formula
(17) for the overdamped case (solid line). (b), (c) Rates of MPS (of order n) for two values of the bias current ib denoted in Fig. 2(b) by the
corresponding arrows. Insets show (b) verification of the detailed balance condition and (c) a comparison of the ib dependence of the first two
normalized phase-slip rates (respective dots) with the Mel’nikov formula (lines).

and compared with the Kramers formula for escape across the
adjacent barrier [20,39,40] (solid line in the inset)


e = 1

2π

(√
γ 2

4
+
√

1 − i2
b − γ

2

)

× exp

⎡⎢⎢⎣−
2

(
ib arcsin ib +

√
1 − i2

b

)
− πib

�

⎤⎥⎥⎦. (17)

The behavior of the weak-damping case is much richer. The
presence of multiple (double) phase-slips (alongside the single
backward phase-slips) is evident even for small bias currents
in Fig. 3(b), and their importance increases with increasing
bias current [Fig. 3(c)]. The MPS rates decay slower than
exponentially with increasing n especially for the bias current
approaching ir (Q) and increasing Q, which is consistent with
corresponding asymptotic [ib → ir (Q), Q → ∞] results by
Shushin [41]. The inset in Fig. 3(c) depicts the normalized (by
|
0| = ∑

n�=0 
n) rates of the single and double phase-slips as
functions of ib (dots) together with Mel’nikov’s approximative
asymptotic formulas [35,36] that are valid for Q → ∞ (solid
lines in the inset). We can see reasonable agreement which,
analogously to Fig. 4 below, further improves with increasing
Q (for details see the appropriate part of the next section).
In the inset of Fig. 3(b) we test that the ratio 
−n/
n =
exp(−2πnib/�) for n = 1,2,3 satisfies the detailed balance
condition with the potential drop 2πibn along the phase-slips
of the given order n.

Altogether, our method provides reliable results for the
MPS rates for a wide class of junctions. Their experimental
verification in the framework of JJs might be challenging
though, due to the high requirements on the time resolution of
the voltage pulses associated with the phase-slips. They occur
(i.e., their duration is) on the timescale of the inverse plasma
frequency (in the range of MHz to GHz) and their sufficient
resolution (to make statistics of given multiplicities from
their pulse areas) is likely to be beyond current experimental
possibilities. However, one may resort here to the optical
trapping setups discussed in the introduction, where the

position of the particle is continuously monitored optically
and the length of the slip may be directly discerned from the
position of the initial and final potential minima.

V. SWITCHING PROCESS

Finally, we analyze the regime of largest bias currents
exhibiting the features of the dichotomous switching be-
tween the locked (i.e., zero voltage) and running states.
Since F � 1 around the peaks in Fig. 2(c), we can neglect
noise contributions inherent to the metastable states [42] and
use the average voltage 〈v〉 and Fano factor F for the evaluation
of the escape rate 
e (from locked to running state) and
retrapping rate 
r (from running to locked state) [31]:


e = 〈v〉 (vr − 〈v〉)
πvrF

, 
r = (vr − 〈v〉)2

πvrF
, (18)

which are presented in Fig. 4 as solid lines and compared with
analytical predictions (dashed lines). On one hand, switching

10-5

10-4

10-3

10-2

 0.25  0.3  0.35  0.4  0.45  0.5

Γ

ib

Q=5

Θ=0.12

Γr

Γe
ir

10-6

10-5

10-4

10-3

10-2

 0.08  0.12  0.16  0.2
ib

Q=15

FIG. 4. (Color online) Escape rate 
e and retrapping rate 
r

numerically computed from Eqs. (18) (solid lines) compared with
analytical approaches (dashed lines; for details see main text). Inset
shows a more detailed comparison of the numerical retrapping rate
(full line) with the Mel’nikov (black dashed line) and BJBMS formula
(19) (green dot-dashed line) for a junction with higher quality factor
Q = 15.
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from the locked phase to the running phase happens just by
thermally induced overcoming of the neighboring potential
maximum and, therefore, is given by the Kramers escape rate
(17) from the local potential well [40]. One can see that this
prediction is in an excellent agreement with our numerical
result. On the other hand, the retrapping problem is far more
complicated and has not been addressed in the whole parameter
regime yet, only asymptotic solutions in various limits exist.

Two different analytical approximate approaches by Ben–
Jacob et al. [43] (BJBMS) and Mel’nikov [36,44] were
introduced for the limit of very weak damping Q → ∞, which
yield quantitatively different result. In Fig. 4 we compare our
results with those predictions for finite damping and find a
rather poor agreement with either one. With increasing Q,
Melnikov’s approach seems to asymptotically approach our
results for sufficiently large ib, as shown in the inset. BJBMS on
the other hand remains off, which might be connected with its
existing critiques [44,45]. The persistent discrepancy between
Melnikov’s and our approach for ib close to the onset of the
bistability region is most likely caused by the breakdown of the
saddle-point approximation in the root of Melnikov’s method,
since the locked and running states are not well separated very
close to the bifurcation point in the noisy case. In any case, our
numerical method presents a dramatic improvement over the
existing theories. In addition, it allows to extract the retrapping
rate fast and reliably in a wide range of junction parameters, in
particular for arbitrary values of the quality factor Q and bias
current ib.

It might look surprising that such a discrepancy between
our exact solution and the very popular BJBMS expression


r = ib − ir (Q)√
2π�

e− Q2[ib−ir (Q)]2

2� (19)

has not been noticed before. Obviously, the wide use of formula
(19) in interpretation of switching experiments such as those in
Ref. [46] or in simulations such as in, e.g., Ref. [10] stems from
its simple analytical form (contrary to the fairly complicated
structure of Mel’nikov’s result, compare Refs. [36,44]). This
causes it to be used even outside of the regime of its expected
validity (it was derived just in the Q → ∞ limit) and despite of
indications of its limitations [44,45,47]. Kautz [47] calculated
the exponential part of the rate in terms of the “activation
energy” and found out that it is larger than the corresponding
BJBMS quantity Q2[ib − ir (Q)]2/2 (see Figs. 6 and 7 in
Ref. [47]). This is fully consistent with our results showing
that the exact retrapping rate is substantially smaller than the
prediction by BJBMS.

Still, our Fig. 4 depicts that the discrepancy between the two
rates for Q = 5 is nearly an order of magnitude. How could
this escape attention in so many studies that use the BJBMS
formula? When carefully analyzing works citing the original
BJBMS paper (around 100), we realized that the vast majority
of them uses it in some indirect way just as one of several
ingredients describing a physical mechanism (for example,
the issue of nonmonotonic width of switching histograms in
Ref. [46]). The validity of the formula is not directly addressed
and its possible shortcomings are likely to be absorbed in fitting
procedure(s). In accordance with the statement in Ref. [10],
we found just a single experimental work [48] addressing
directly the retrapping process and, thus, measuring more or
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BJA. Q≈4.4, ir≈0.14
BJA. Q≈5.6, ir=4/πQ

FIG. 5. (Color online) Fitting of retrapping current histograms
for two values of the temperature and ramping speed (faster ramping
and warmer junction in the upper panel and slower ramp in colder
junction in the bottom). Numerically exact solution (full black line) is
compared to various fitting procedures based on the BJBMS rate (19):
identical junction parameters (red dot-dashed line), both Q and ir fit
(green dashed line), and Q fit while ir (Q) ≡ 4/πQ is constrained
(blue dotted line).

less directly the retrapping rate 
r . Castellano et al. [48] do
measure the return (retrapping) current histograms and fit
them successfully with the BJBMS formula with 2 fitting
parameters: the retrapping current ir and quality factor Q.
In practice, however, these two quantities are related and the
retrapping current is a function of the quality factor ir (Q).
This is indeed revealed in the experiment as failing consistency
checks comparing the inferred level of dissipation (effectively
the quality factor) from the two-parametric histogram fit
and from the ir (Q) relation. This may be an experimental
indication of the failure of the BJBMS formula, which clearly
would deserve further, more detailed study.

We demonstrate the problem of multiparameter fitting
in Fig. 5, where we show results of the various fitting
procedures for two values of temperature and ramping rate.
The numerically exactly generated retrapping histogram for
a moderately damped junction with Q = 5 (full black line)
is compared with the one generated by the BJBMS rate with
identical values of parameters Q = 5, ir (Q) = 4/πQ ≈ 0.25
(red dot-dashed line). Furthermore, the best fits of the exact
histogram with the BJBMS formula (19) with both Q and ir
being free fitting parameters (green dashed line) and with Q

varying while ir (Q) = 4/πQ constrained (blue dotted line)
are plotted. We can see that the BJBMS result with original
junction parameters is easily discernible from the exact result.
On the other hand, if both parameters are allowed to change
and are fit, we see that the exact histogram can be reproduced
practically perfectly at the expense of mild modification of
the quality factor on the order of 10% but simultaneous
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major change in the value of the retrapping current (nearly
50% change compared to reality). This can be understood
also from Fig. 4 since the modification of the retrapping
current amounts to a corresponding horizontal shift of the
curve leading to a nearly perfect overlap of the BJBMS rate
with the exact one in a wide upper range of bias currents.
This, consequently, leads to a nearly perfect agreement of the
switching histograms. However, such a procedure breaks the
connection between the ir (Q) and Q as can be seen from our
demonstration: Qfit

.= 4.4 whereas Qdis ≡ 4/πir
.= 9.1 with

their ratio exceeding two. We believe that this is similar to the
situation in the experiment where a large discrepancy between
the two Q values determined by the two procedures was also
reported. We also see in Fig. 5 that enforcing the relation
ir (Q) ≡ 4/πQ with variable Q leads to some 10% to 20%
discrepancy in the fitted histogram as well as the value of the
quality factor, which could be possibly distinguishable in the
experiment. A new experiment with better characterization
of the junction parameters, in particular ideally with an
independent characterization of its quality factor, should thus
be able to check the (in)validity of the BJBMS approximation
as well as our results.

VI. CONCLUSIONS AND OUTLOOK

To summarize, we developed an efficient and reliable
numerical scheme based on the matrix continued fraction
method for the analysis of phase dynamics in arbitrarily
damped current-biased Josephson junctions. It allows us to
study the voltage noise and, consequently, analyze in detail
various transport regimes, in particular: (a) the regime of
multiple phase-slips with their full characterization in terms of
the corresponding rates and (b) the switching regime providing
us with the escape and retrapping rates. Direct stochastic
simulations of these regimes and extracting the corresponding
rates is computationally very demanding while our numerics
is several orders of magnitude faster. We have studied these
rates in detail for moderately damped JJs (Q ≈ 1 to 10)
providing new results in this analytically inaccessible regime.
We have checked the consistency of the results and compared
our numerical findings with available asymptotic (Q → ∞)
analytical formulas with a good match with Mel’nikov’s results
[35,36,44]. As a by-product we have clearly identified the
very popular and widely used expression for the retrapping
rate by Ben–Jacob et al. [43] as incorrect which has remained
essentially unnoticed due to subtleties of normally employed
fitting procedures.

Our prediction for the MPS and retrapping rates can be
experimentally verified. In case of MPS the direct verification
in JJs might be challenging due to short time extent of the
individual phase-slips but the same type of dynamics (RCSJ
model) can be realized also in optical tweezers, where the
MPS observation should be viable. Retrapping rates can
be measured from the switching histogram analysis in the
standard JJ setup with down-ramped current bias. Reliable
comparison with our theoretical predictions requires using JJs
with reasonably frequency-independent damping (in order to
justify the RCSJ model) and proper characterization of the
junction parameters, in particular the critical current Ic and the
retrapping current Ir (Q) (or, equivalently, the quality factor Q)

from an independent measurement(s). Frequency-independent
damping occurs in low-resistance superconductor-normal
metal-superconductor junctions, which thus obey the RCSJ
model [10,46] even though the current-phase relationship may
deviate from sinusoidal. That is, however, no problem for
our formalism, which yields the retrapping rate for arbitrary
current-phase relations and possible deviations from sinusoidal
do not influence in any way its reliability or efficiency.

Extensions to more complicated circuits are possible. Ar-
bitrary nonsinusoidal current-phase relations are fully covered
by the present formulation as for the mean voltage and voltage
noise. Identification of MPS and retrapping regimes requires
suitable reformulation if the current-phase relation supports
two or more minima within the 2π span of the phase variable,
which happens, e.g., in the so-called ϕ junctions [5]. Extraction
of the MPS and escape and retrapping rates then must reflect
the existence of multiple nonequivalent locked solutions in the
dynamical phase diagram of these exotic JJs. Nevertheless, the
procedure can be carried through analogously to the present
case, as we will report in a forthcoming publication.

A more serious issue concerns the frequency dependence
of the damping which is relevant in particular for conventional
small superconductor-insulator-superconductor junctions. Our
method cannot be directly applied in this case. However, our
results can still be used at least in two ways: The first option
uses the fact that simulations of switching experiments such
as, e.g., those in Ref. [10], use the switching rates deduced
from microscopic dynamics of the RCSJ model as inputs
into a “mesoscopic” (or coarse grained) level of description
of the switching histograms, which can be successfully
modeled this way with the bonus (over the direct fully
microscopic stochastic simulations) of gaining more insight
and understanding into the physical mechanisms involved. The
frequency-dependent damping was included in that work by
just two values at low and high frequencies. The rates entering
the simulations were still the RCSJ rates for constant damping,
just according to their usage the appropriate (i.e., either the low
or high frequency) value of the damping was used. Obviously,
for such a simulation our method still provides the microscopic
rates as essential inputs. Another possibility of applying our
formalism to the frequency-dependent damping stems from the
fact that the frequency-dependent damping is often modeled
by a simple circuit extending the RCSJ model by an RC
shunt [9,25]. Under suitable conditions (negligible intrinsic
capacitance of the junction) this circuit can be described by
a bivariate Fokker–Planck equation [25] analogous (but not
identical) to Eq. (3), which can be then solved analogously
to the present case by the MCF method. This yields again
new numerically exact results for quantities such as the rates
for overcoming the so-called dissipation barrier [49], etc. We
also defer study of this very interesting problem to another
presentation.

Finally, our MCF formalism allows directly for the calcula-
tion not only of the zero-frequency but also the finite-frequency
noise; see Eq. (8). This may be relevant for the real experiment
measuring directly the voltage noise, which would actually
couple to finite (though optimally small) frequency-voltage
fluctuations. However, this arrangement does not limit the
utility of our method for the description of the experimental
data.
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APPENDIX: MATRIX
CONTINUED-FRACTION METHOD

In the main text we discuss a numerical solution of the
dimensionless Langevin equations (2) with the associated
Fokker–Planck equation (3) for the probability distribution
function W (φ,v,τ ). Our first goal is to calculate the mean
voltage

〈v〉 =
∫ 2π

0
dφ

∫ ∞

−∞
dvvWstat(φ,v), (A1)

and the (zero frequency) voltage noise

S =
∫ ∞

−∞
dτ [〈v(τ )v(0)〉 − 〈v(τ )〉〈v(0)〉] (A2)

in the stationary state Wstat(φ,v) ≡ limτ→∞ W (φ,v; τ ) deter-
mined by the 2π -periodic solution (in φ) of the equation

LFPWstat(φ,v) = 0. (A3)

We have used the MCF method [3] to obtain the numerical
solution for the stationary distribution function and our
explanation closely follows that work. The operator LFP can be
partitioned into the irreversible Li and reversible Lr operators
reading

Li = γ
∂

∂v

(
v + �

∂

∂v

)
,

Lr = −v
∂

∂φ
− U ′(φ)

∂

∂v
,

(A4)

with the potential

U (φ) = ibφ + cos φ. (A5)

The irreversible operator Li can be mapped onto the Hamilton
operator of the linear harmonic oscillator via a suitable
similarity transformation:

L̃i = exp

[
v2

4�

]
Li exp

[
− v2

4�

]
= −γ b†b, (A6)

where the creation b† and annihilation b operators have been
introduced

b† = −
√

�
∂

∂v
+ v

2
√

�
,

b =
√

�
∂

∂v
+ v

2
√

�
.

(A7)

For the transformed reversible operator we consequently get

L̃r = exp

[
v2

4�

]
Lr exp

[
− v2

4�

]
= −b†D2 − bD1, (A8)

with φ-dependent operators

D1 =
√

�
∂

∂φ
,

D2 =
√

�
∂

∂φ
− U ′(φ)√

�
.

(A9)

Altogether, we have

LFP = exp

[
− v2

4�

]
(−γ b†b − b†D2 − bD1) exp

[
v2

4�

]
.

(A10)

After these manipulations it is convenient to expand the
v-dependent part of distribution function W (φ,v; τ ) into the
linear-harmonic-oscillator eigenfunctions ψn(v)

W (φ,v; τ ) = ψ0(v)
∑

n

cn(φ; τ )ψn(v), (A11)

given by (with κ = 1/
√

2�)

ψ0(v) = e− (κv)2

2√
κ
√

π
,

ψn(v) = (b†)n√
n!

ψ0(v),

(A12)

or in terms of the Hermite polynomials Hn(x),

ψn(v) = Hn(κv)e− (κv)2

2√
n!2nκ

√
π

. (A13)

The oscillator functions are the eigenfunctions of the irre-
versible part of the LFP operator and with the correct boundary
conditions limv→±∞ W (φ,v; τ ) = 0. Consequently,∫ ∞

−∞
dvW (φ,v; τ ) = c0(φ; τ ), (A14)

∫ ∞

−∞
dvvW (φ,v; τ ) =

√
�c1(φ; τ ), (A15)

and the φ-dependent coefficients cn(φ; τ ) read

cn(φ; τ ) =
∫ ∞

−∞
dvψn(v)W (φ,v; τ )/ψ0(v). (A16)

Using Eqs. (A6)–(A11) we can construct the Brinkman
hierarchy equivalent to the Fokker–Planck equation (3):

∂

∂τ
cm(φ; τ ) = −√

mD2cm−1(φ; τ ) − γmcm(φ; τ )

−√
m + 1D1cm+1(φ; τ ). (A17)

1. Stationary Distribution and Mean Voltage

Because of the chosen potential (A5) the Fokker–Planck
operator (A10) commutes with the translation operator T

defined by

T W (φ,v; τ ) ≡ W (φ + 2π,v; τ ), (A18)
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and, therefore, the eigenfunctions ϕn(k,φ,v) of operator LFP

and its adjoint operator L+
FP

LFPϕn(k,φ,v) = λn(k)ϕn(k,φ,v),

L+
FPϕ

+
n (k,φ,v) = λn(k)ϕ+

n (k,φ,v),
(A19)

with k ∈ (−1/2,1/2] restricted to the first Brillouin zone can
be written in the form of the Bloch waves:

ϕn(k,φ,v) = e−ikφun(k,φ,v),

un(k,φ,v) = un(k,φ + 2π,v),

ϕ+
n (k,φ,v) = eikφu+

n (k,φ,v),

u+
n (k,φ,v) = u+

n (k,φ + 2π,v).

(A20)

Consequently, the solutions of the Eq. (A3) can be chosen to be

Wstat(φ,v) = e−ikφu(k,φ,v), (A21)

with e−i2πk (−1/2 < k � 1/2) being the eigenvalues of the
translation operator T . The stationary expansion coefficients
cn(φ) ≡ limτ→∞ cn(φ; τ ) must thus have the form

cn(φ) = e−ikφun(k,φ), un(k,φ) = un(k,φ + 2π ). (A22)

Note that the stationary form of the Brinkman hierarchy (A17)
reads

√
1D1c1(φ) = 0,

√
1D2c0(φ) + 1γ c1(φ) +

√
2D1c2(φ) = 0, (A23)

√
2D2c1(φ) + 2γ c2(φ) +

√
3D1c3(φ) = 0,

...

from which it is obvious that c1(φ) = c1 = const. Since c1 is
related by Eq. (A15) to the mean voltage being generically
nonzero, the constancy of c1 implies k = 0 for the stationary
solution. Thus, the stationary distribution function is periodic

Wstat(φ,v) = Wstat(φ + 2φ,v), cn(φ) = cn(φ + 2π )
(A24)

and can be normalized in one period:∫ 2π

0
dφ

∫ ∞

−∞
dvWstat(φ,v) =

∫ 2π

0
dφc0(φ) = 1, (A25)

〈v〉 =
∫ 2π

0
dφ

∫ ∞

−∞
dvvWstat(φ,v)

=
√

�

∫ 2π

0
dφc1(φ) =

√
�2πc1. (A26)

To solve Eq. (A3) for the periodic coefficients cm(φ) we
have used the Fourier series expansion

cm(φ) = 1√
2π

∑
p∈Z

cp
meipφ, (A27)

allowing us to define the matrix elements of operators
D+

m ,Dm,D−
m :

(D+
m )pq ≡ −

√
m + 1

2π

∫ 2π

0
dφe−ipφD1e

iqφ

= −i
√

m + 1
√

�pδp,q,

(Dm)pq ≡ −γmδp,q, (A28)

(D−
m )pq ≡ −

√
m

2π

∫ 2π

0
dφe−ipφD2e

iqφ

= −i
√

m
√

�

[(
p + i

ib

�

)
δp,q + δp,q−1 − δp,q+1

2�

]
,

which can be used to recast Eq. (A23) into the form of a vector
tridiagonal recurrence relation

D−
m cm−1 + Dmcm + D+

m cm+1 = 0, (A29)

where cm is a time-independent vector of expansion coeffi-
cients c

p
m from Eq. (A27)

cm =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c−1
m

c0
m

c1
m

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A30)

For solving relation (A29) we have defined matrices Sm

obeying

cm+1 = Smcm, cm = S−1
m cm+1, (A31)

which transforms Eq. (A29) into

D−
mS−1

m−1c
m

+ Dmcm + D+
mSmcm = 0, (A32)

and, consequently, a matrix continued-fraction structure can
be constructed:

Sm−1 = −(Dm + D+
mSm)−1D−

m . (A33)

By truncating the recurrence at m = M , i.e., setting cm>M ≡ 0
in Eq. (A29) and using the normalization condition (A25),
together with the fact that the coefficient c1 is constant we
obtain for the vector c0

c
p

0 = 1√
2π

(
S−1

0

)p0(
S−1

0

)00 . (A34)

All other vectors cm follow from Eq. (A31). In particular, the
average voltage reads

〈v〉 =
√

�2πc1 ≡
√

2π�c0
1 =

√
�(

S−1
0

)00 . (A35)

2. Voltage noise

We obtained the numerical solution of Eq. (10) analogously
to the solution of Eq. (A3)—the main difference is that, for Eq.
(10), the vector tridiagonal recurrence relation has a right-hand
side

D−
m am−1 + Dmam + D+

m am+1 = αm, (A36)

with am being a time-independent vector of expansion coef-
ficients a

p
m of R(φ,v) obtained in the same procedure as for

coefficients c
p
m in Eq. (A27) for Wstat(φ,v) and

αm =
√

�mcm−1 − 〈v〉cm +
√

�(m + 1)cm+1. (A37)
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Introducing the correction vectors gm satisfying

am+1 = Smam + gm, (A38)

Eq. (A36) gives a recurrent prescription for their evaluation

gm−1 = −(Dm + D+
mSm)−1(D+

m gm − αm). (A39)

After truncation of Eq. (A36) at m = M and using the
proper normalization conditions together with Eq. (A38) this
recurrent relation is used to obtain the auxiliary quantity
R(φ,v) and, consequently, the voltage noise.

3. Nonstationary solution

Because we are interested in the statistics of 2πn phase-
slips we have to consider also nonperiodic solutions of the
Fokker–Planck equation in the nonstationary case. Recalling
the expansion Eq. (A11) and the Brinkman hierarchy Eq. (A17)
it is clear that in order to make use of the MCF method we need
a complete set of functions ϕp(φ) in which the coefficients
cm(φ; τ ) can be expanded. One of the possibilities is to use
the eigenfunctions Eq. (A20) or, equivalently, make use of the
Floquet theorem as an ansatz for the nonperiodic solution,

W (φ,v; τ ) =
∫ 1

2

− 1
2

dkW(k,φ,v; τ )e−ikφ, (A40)

where W(k,φ,v; τ ) is periodic in φ with period 2π and k is
again restricted to the first Brillouin zone. Similarly as done
before for the distribution function, the function W(k,φ,v; τ )
can be expanded in

W(k,φ,v; τ ) = ψ0(v)
∑

n

∑
p

cp
n (k; τ )eipφψn(v), (A41)

yielding the complete set of functions

ϕp(k,φ) = 1√
2π

ei(p−k)φ, (A42)

in which the coefficients cm(φ; τ ) are expanded. Using time-
dependent vectors cm(k; τ ) of expansion coefficients c

p
m(k; τ ),

Eq. (A29) changes to

D−
m cm−1(k; τ ) + Dmcm(k; τ ) + D+

m cm+1(k; τ ) = ċm(k; τ ),

(A43)

with

(D+
m )pq = −

√
m + 1

2π

∫ 2π

0
dφe−i(p−k)φD1e

i(p−k)φ

= −i
√

m + 1
√

�(p − k)δp,q,

(Dm)pq = −γmδp,q, (A44)

(D−
m )pq = −

√
m

2π

∫ 2π

0
dφe−i(p−k)φD2e

i(p−k)φ

= −i
√

m
√

�

[(
p − k + i

ib

�

)
δp,q

+ δp,q−1 − δp,q+1

2�

]
.

One way to solve this initial-value problem is to use the Laplace
transform

c̃m(k; s) =
∫ ∞

0
dτcm(k; τ )e−sτ , (A45)

which turns Eq. (A43) into

D−
m c̃m−1(k; s) + D̃mc̃m(k; s) + D+

m c̃m+1(k; s) = −cm(k; 0),

(A46)

with

D̃m ≡ Dm − sI. (A47)

This equation can be solved analogously to the solution of
Eq. (A36) and the resulting s-dependent quantities can be
inverse Laplace transformed to the time domain. Alternatively,
one can use the homogeneous version of Eq. (A46) for deter-
mining the eigenvalues of the Fokker–Planck operator from the
condition

Det
[
Dm − λI + D−

mS−1
m−1(λ) + D+

mSm(λ)
] = 0 (A48)

and, consequently, for finding the nonstationary solution by
the spectral decomposition

W (φ,v; τ ) =
∫ 1/2

−1/2
dk

∑
n

e−ikφun(k,φ,v)eλn(k)τ . (A49)

The advantage of the eigenfunction expansion is that the
transition probability from state φ′,v′ to φ,v has the simple
form (Ref. [3, Sec. 11.7])

P (φ,v; τ |φ′,v′,0) =
∫ 1/2

−1/2
dk

∑
n

u+
n (k,φ′,v′)un(k,φ,v)

× e−ik(φ−φ′)eλn(k)τ , (A50)

whose long-time asymptotics is easily determined as [we
assume that the eigenvalue λ0(k) with the highest real part
corresponding to the stationary solution with λ0(0) = 0 is
separated by a finite gap from other eigenvalues Re[λn(k) −
λ0(k)] < 0 for n � 1]

P (φ,v; τ → ∞|φ′,v′,0)

≈
∫ 1/2

−1/2
dku+

0 (k,φ′,v′)u0(k,φ,v)e−ik(φ−φ′)eλ0(k)τ , (A51)

or

W (φ,v; τ → ∞) =
∫ 1/2

−1/2
dkI0(k)u0(k,φ,v)e−ikφeλ0(k)τ ,

(A52)
with I0(k) being determined solely by the initial condition.

4. Full Counting Statistics

As pointed out in the end of Sec. II an alternative method
for the evaluation of the voltage cumulants is to use the full
counting statistics (FCS) approach pioneered in this context
in Ref. [20]. The aim of that method is the calculation of the
k-dependent (k is the counting field) cumulant generating func-
tion (CGF) F (k; τ ) ≡ ln

∫∞
−∞ dφeikφ

∫∞
−∞ dvW (φ,v; τ ) from

a nonstationary solution W (φ,v; τ ) of Eq. (3) (Ref. [3, Sec.
11.7]). Using the Floquet theorem and Eq. (A52) once again

134305-10



VOLTAGE NOISE, MULTIPLE PHASE-SLIPS, AND . . . PHYSICAL REVIEW B 91, 134305 (2015)

the CGF can be written as

exp[F (k; τ → ∞)] ≡
∫ ∞

−∞
dφ

∫ ∞

−∞
dvW (φ,v; τ → ∞)eikφ

≈
∫ ∞

−∞
dφ

∫ ∞

−∞
dv

∫ 1
2

− 1
2

dlI0(l)u0(l,φ,v)eλ0(l)τ ei(k−l)φ

= 1√
2π

∫ ∞

−∞
dφ

∫ 1
2

− 1
2

dlI0(l)
∑

p

c
p

0 (l)ei(p−l+k)φeλ0(l)τ

= 1√
2π

∫ 1
2

− 1
2

dlI0(l)eλ0(l)τ
∑

p

c
p

0 (l) lim
N→∞

N∑
n=−N

{∫ 2π(n+1)

2πn

dφei(p−l+k)φ

}

= 1√
2π

∫ 1
2

− 1
2

dlI0(l)eλ0(l)τ
∑

p

c
p

0 (l)
∫ 2π

0
dφei(p−l+k)φ lim

N→∞

N∑
n=−N

e2πi(p−l+k)n

= 1√
2π

∫ 1
2

− 1
2

dlI0(l)eλ0(l)τ
∑

p

c
p

0 (l)�(p − l + k)
∫ 2π

0
dφei(p−l+k)φ. (A53)

As both l and k are from the first Brillouin zone and p

is an integer the use of the Dirac comb function �(x) =∑
n∈Z δ(x − n) implies p = 0 and k = l which leads to

F (k; τ → ∞) = λ0(k)τ + ln
√

2πI0(k)c0
0(k). (A54)

The second term depends on the initial state of the system and
is irrelevant in the long-time limit. The zero-frequency nth
cumulant of v follows from [20]

Cn = lim
τ→∞

(−i)n

τ

∂nF (k,τ )

∂kn

⌋
k=0

= (−i)n
∂nλ0(k)

∂kn

⌋
k=0

.

(A55)
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[15] M. Šiler and P. Zemánek, New J. Phys. 12, 083001 (2010).
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