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Theory of anharmonic phonons in two-dimensional crystals
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Anharmonic effects in an atomic monolayer thin crystal with honeycomb lattice structure are investigated
by analytical and numerical lattice dynamical methods. Starting from a semiempirical model for anharmonic
couplings of third and fourth orders, we study the in-plane and out-of-plane (flexural) mode components of
the generalized wave vector dependent Grüneisen parameters, the thermal tension and the thermal expansion
coefficients as a function of temperature and crystal size. From the resonances of the displacement-displacement
correlation functions, we obtain the renormalization and decay rate of in-plane and flexural phonons as a function
of temperature, wave vector, and crystal size in the classical and in the quantum regime. Quantitative results
are presented for graphene. There, we find that the transition temperature Tα from negative to positive thermal
expansion is lowered with smaller system size. Renormalization of the flexural mode has the opposite effect and
leads to values of Tα ≈ 300 K for systems of macroscopic size. Extensive numerical analysis throughout the
Brillouin zone explores various decay and scattering channels. The relative importance of normal and umklapp
processes is investigated. The work is complementary to crystalline membrane theory and computational studies
of anharmonic effects in two-dimensional crystals.
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I. INTRODUCTION

Phonon-phonon interactions due to the anharmonicity of
lattice forces are essential for the understanding of thermoelas-
tic properties and heat transport in solids [1]. While for three-
dimensional (3D) crystals the subject is well established [2],
the discovery of graphene and of other two-dimensional (2D)
crystals [3–5] has given new impetus to experimental and
theoretical studies of anharmonicity related phenomena in
ultrathin crystals with a countable number of layers.

Electron microscopy and diffraction studies have proven
the existence of ripples in single- and bilayer graphene
membranes [6]. The thermal expansion of graphene has been
found to be negative [7] in the measured temperature range
between 200–400 K, while earlier experiments [8] had led
to the estimate that a transition to positive values occurs
near 350 K. Measurements of thermal conductivity � on
suspended single-layer graphene revealed an anomalous large
value above the in-plane bulk graphite value [9]. Since then the
determination of � as a function of temperature T in suspended
and in supported [10] single- and few-layer graphene [11] is an
important topic of experimental and theoretical research [12].

Theoretical explanations of all these phenomena are related
to the anharmonic coupling between in-plane stretching and
out-of-plane bending or flexural phonon modes. Such a
coupling was originally suggested [13] as a membrane effect
and explains the negative coefficient of thermal expansion
in layered structures. Ab initio density functional theory
(DFT) calculations [14] show that the thermal contraction
in graphene subsists up to T > 2000 K. Atomistic Monte
Carlo simulations [15] exhibit a crossover from contraction
to expansion near 900 K. Most recently, the thermal
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expansion in monolayer graphene has been calculated by the
unsymmetrized self-consistent field method [16]. Monte Carlo
simulations also suggest that the formation of ripples [6] due to
anharmonic coupling leads to the stabilization of graphene as
a 2D crystal [17]. Acoustic phonon lifetimes in free standing
and in strained graphene have been calculated by DFT
methods [18,19] and the results have been used to estimate
the T dependence of the intrinsic anharmonic thermal con-
ductivity [19]. Recent analytic studies [20] of thermodynamic
properties by continuum field-theory methods exploit the
equivalence [21] between graphene treated in the continuum
approximation and a crystalline (polymerized) membrane [22].
Within the continuum theory of thin sheets [21,23], the
in-plane strains comprise terms that are quadratic in
the out-of-plane fluctuations. These terms then lead to
anharmonic couplings in the elastic free energy. The resulting
phonon mediated interactions between Gaussian curvatures
increase the bending rigidity and stabilize the membrane [24].

In the present paper, we start from a somewhat different
approach based on a discrete atomistic model of a monolayer
crystal. We consider a Hamiltonian where the potential energy
has been expanded up to fourth order in the atomic displace-
ments. The harmonic and anharmonic coupling coefficients
are determined by means of empirical data of phonon disper-
sions [25] and Grüneisen parameters [26]. As an advantage
of such a concept, we consider the fact that we can use to a
large extent well established analytical and numerical methods
from lattice dynamics and at the same time take into account
the specific structural properties of a 2D hexagonal crystal.

We will restrict ourselves to the study of thermal tension
(equivalently thermal expansion) and of phonon resonances
(shifts and linewidths). Although the thermal conductivity
is from the technological point of view the more important
quantity, a comprehensive study is beyond the scope of the
present work. For an outline of different theoretical approaches
developed so far for phonon transport in graphene, see
Refs. [27–30].
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The content of the paper is as follows. In Sec. II, we
recall some basic concepts and definitions of the theory of
lattice dynamics and anharmonic phonons. Next, in Sec. III,
we first express the thermal tension in terms of phonon
related quantities such as vibrational energy and generalized
Grüneisen coefficients. We distinguish in-plane and out-of-
plane acoustic modes. Secondly, we study the resonances of the
corresponding displacement-displacement Green’s functions,
thereby paving the way for a later discussion of phonon
linewidths and band shifts. In Sec. IV, we describe a central
force constants model which will be used for quantitative cal-
culations. In Sec. V, we present detailed analytical calculations
of the generalized Grüneisen coefficients and of the thermal ex-
pansion. The competing interplay of out-of-plane modes which
favor thermal contraction and of in-plane modes, which favor
thermal expansion is investigated as function of temperature
and crystal size. In Sec. VI, we study line shifts and decay rates
of in-plane and out-of-plane modes and the effect of flexural
mode renormalization on thermal expansion. In Sec. VII,
we present extensive numerical calculations of Grüneisen
coefficients, thermal expansion, phonon line shift, and decay
rates. Concluding remarks (Sec. VIII) close the paper.

II. BASIC CONCEPTS

We recall some elements of lattice dynamics of a nonprim-
itive nonionic crystal [2,31] and apply these concepts to 2D
graphene [32,33]. The crystal consists of N unit cells, each
unit cell contains two C atoms, which we label by an index
κ = 1,2. The positions of the unit cells are fixed by the lattice
vectors

�X(�n) = n1�a1 + n1�a2. (1)

Here, �aα α = 1,2 are two noncolinear basis vectors while �n =
(n1,n2), where ni are integers, labels the unit cells. The equi-
librium positions of the atoms in the lattice plane are given by

�X(�nκ) = �X(�n) + �r(κ), (2)

where �r(κ) specifies the positions of the κth atom in the �nth
unit cell. We use ui(�nκ) for the ith Cartesian components
(i = x,y,z) of the instantaneous displacement vector of atom
(�nκ) away from its equilibrium position, the z component
refers to the out-of-plane displacements.

The crystal potential energy � is a function of the
instantaneous positions �R(�nκ) = �X(�nκ) + �u(�nκ) of the atoms.
Expansion of the potential energy in terms of displacements
away from the equilibrium position gives

� = �(0) + �(2) + �(3) + �(4) + . . . . (3)

Here, �(0) is the rigid lattice potential, �(2) the harmonic
potential and �(3), �(4) are the third-order and fourth-order
anharmonic potential contributions. Explicitly we write

�(2) = 1

2

∑
�nκ

∑
�n′κ ′

∑
ij

�
(2)
ij (�nκ; �n′κ ′)ui(�nκ)uj (�n′κ ′), (4a)

�(3) = 1

3!

∑
�nκ

∑
�n′κ ′

∑
�n′′κ ′′

∑
ijk

�
(3)
ijk(�nκ; �n′κ ′; �n′′κ ′′)

× ui(�nκ)uj (�n′κ ′)uk(�n′′κ ′′), (4b)

�(4) = 1

4!

∑
�nκ

∑
�n′κ ′

∑
�n′′κ ′′

∑
�n′′′κ ′′′∑

ijkl

�
(4)
ijkl(�nκ; �n′κ ′; �n′′κ ′′; �n′′′κ ′′′)

× ui(�nκ)uj (�n′κ ′)uk(�n′′κ ′′)ul(�n′′′κ ′′′). (4c)

The coupling parameters �
(2)
ij (�nκ; �n′κ ′),

�
(3)
ijk(�nκ; �n′κ ′; �n′′κ ′′), and �

(4)
ijkl(�nκ; �n′κ ′; �n′′κ ′′; �n′′′κ ′′′) are

the second-, third-, and fourth-order derivatives of the
potential energy with respect to the displacements, taken at
the equilibrium positions.

The kinetic energy of the crystal is given by

T =
∑
�nκ

∑
i

p2
i (�nκ)

2Mκ

, (5)

where pi(�nκ) are the components of the momentum conjugate
to ui(�nκ) and where Mκ is the mass of the κ-th atom. In
case of graphene with two C atoms per unit cell, one has
M1 = M2 = MC , where MC = 12 au is the mass of the carbon
atom. The area of the unit cell is given by v2D = a2

√
3/2, with

|�a1| = |�a2| = a = 2.46 Å.
In the following we restrict ourselves to lowest-order

anharmonicities and consider �(3) and �(4) as perturbations
to the harmonic Hamiltonian Hh = (T + �(2)). We introduce
Fourier transforms in space and time by writing

ui(�nκ) = 1√
MCN

∑
�q

uκ
i (�q)ei �q· �X(�nκ)−iωt . (6)

Here, �q is the wave vector in the 2D Brillouin zone (BZ) while
ω is the frequency. The 6 × 6 dynamical matrix D(�q) has the
elements

Dκκ ′
ij (�q) = 1

MC

∑
�n′

�
(2)
ij (�nκ; �n′κ ′)ei �q·[ �X(�n′κ ′)− �X(�nκ)] (7)

and is Hermitian. Solving the secular equation one obtains the
eigenfrequencies ω(�q,λ), λ = 1, . . . ,6, and the eigenvectors
�e(�q,λ) with components eκ

i (�q,λ), κ = 1,2 and i = x,y,z. As
is well known [32] there are three acoustical branches which
we label by ZA, TA, and LA and three optical branches which
we label by ZO, TO, and LO (see Fig. 1).

In terms of phonon annihilation and creation operators bλ
�q

and b
λ†
−�q , that satisfy the usual commutation relations for Bose

operators, the harmonic part of the Hamiltonian reads

Hh =
∑

�q

∑
λ

�ω(�q,λ)

(
b

λ†
�q bλ

�q + 1

2

)
. (8)

With B( λ
�q ) = (bλ

�q + b
λ†
−�q). The third-order anharmonic contri-

bution in Eq. (3) is given by

�(3) = �
3/2

3!N1/2

∑
�q1 �q2 �q3

∑
λ1λ2λ3

�(3)

(
λ1λ2λ3

�q1 �q2 �q3

)

×B

(
λ1

�q1

)
B

(
λ2

�q2

)
B

(
λ3

�q3

)
, (9)
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FIG. 1. Phonon modes of graphene along the high symmetry
crystallographic direction �K-M� (Ref. [35]).

with

�(3)

(
λ1λ2λ3

�q1 �q2 �q3

)
=

∑
κ1i

∑
κ2j

∑
κ3k

e
κ1
i (�q1,λ1)eκ2

j (�q2,λ2)eκ3
k (�q3,λ3)√

8ω(�q1,λ1)ω(�q2,λ2)ω(�q3,λ3)

×�
(3)
ijk

(
κ1κ2κ3

�q1 �q2 �q3

)
. (10)

Invariance of the crystal by a displacement through a lattice
translation vector implies that

�
(3)
ijk

(
κ1κ2κ3

�q1 �q2 �q3

)
= 1√

M3
C

∑
�n1 �n2

�
(3)
ijk(�n1κ1; �n2κ2; �0κ3)

× ei[�q1· �X(�n1κ1)+�q2· �X(�n2κ2)+�q3·�r(κ3)]

×	(�q1 + �q2 + �q3), (11)

where
	(�q1 + �q2 + �q3) =

∑
�G

δ�q1+�q2+�q3, �G. (12)

Here, 	 vanishes unless (�q1 + �q2 + �q3) is equal to a lattice
vector �G in 2D reciprocal space. In the latter case, 	 = 1. A
phonon scattering process with �G = 0 is called normal, while
when a nonzero �G is needed to bring back the scattered phonon
inside the first BZ the process is called umklapp [34].

The fourth-order anharmonic term reads

�(4) = �
2

4!N

∑
�q1 �q2 �q3 �q4

∑
λ1λ2λ3λ4

�(4)

(
λ1λ2λ3λ4

�q1 �q2 �q3 �q4

)

×B

(
λ1

�q1

)
B

(
λ2

�q2

)
B

(
λ3

�q3

)
B

(
λ4

�q4

)
, (13)

with

�(4)

(
λ1λ2λ3λ4

�q1 �q2 �q3 �q4

)

=
∑
κ1i

∑
κ2j

∑
κ3k

∑
κ4l

× e
κ1
i (�q1,λ1)eκ2

j (�q2,λ2)eκ3
k (�q3,λ3)eκ4

l (�q4,λ4)√
16ω(�q1,λ1)ω(�q2,λ2)ω(�q3,λ3)ω(�q3,λ3)

×�
(4)
ijkl

(
κ1κ2κ3κ4

�q1 �q2 �q3 �q4

)
, (14)

where

�
(4)
ijkl

(
κ1κ2κ3κ4

�q1 �q2 �q3 �q4

)

= 1

M2
C

∑
�n1 �n2 �n3

�
(4)
ijkl(�n1κ1; �n2κ2; �n3κ3; �0κ4)

× ei[�q1· �X(�n1κ1)+�q2· �X(�n2κ2)+�q3· �X(�n3κ3)+�q4·�r(κ4)]

×	(�q1 + �q2 + �q3 + �q4). (15)

Invariance of the potential energy against infinitesimal
translations of the crystal implies, for ν � 2,3, . . . ,∑

κ1 �n1

�
(ν)
ij..(�n1κ1,�n2κ2, . . . ,�nνκν) = 0. (16)

III. PHYSICAL QUANTITIES

For the study of thermal expansion and phonon renor-
malization effects we restrict ourselves to acoustic modes
LA, TA, and ZA, which we denote by L, T, and Z. In
the long-wavelength regime, the in-plane mode frequencies
read ω(�q,λ) = cλq, where for λ ∈ {L,T}, cL and cT are the
longitudinal and transverse sound velocities, respectively. The
out-of-plane mode (also called flexural mode) has frequency
ω(�q,Z) = √

κ0q
2, where κ0 = κB/ρ2D, κB is the bending

rigidity coefficient and ρ2D the density. With the harmonic
force constant model [35] for graphene, we obtain κ0 =
42.48 × 10−6 cm4 s−2, which corresponds to κB = 3.23 ×
10−12 erg ≈ 2.01 eV. Due to a numerical error, the value
1.12 eV quoted in Ref. [35] is wrong. One finds a broad range
of values for κB for graphene in the literature (units eV):
1.68 (Ref. [36]), 1.1 (Ref. [20]). From out-of-plane phonon
dispersions measured by neutron scattering on graphite [37],
we estimate κB = 2.4 eV.

A. Thermoelastic phenomena

We want to calculate thermodynamic quantities such as
thermal tension and thermal expansion which depend on
lattice anharmonicities. We start from an undeformed graphene
crystal at an initial temperature T and in the absence of external
forces. We recall that the elastic properties of the 2D hexagonal
crystal reflect the symmetry of an isotropic solid. A small
temperature change will cause isotropic lattice deformations,
which are described by the thermal expansion coefficient αT =∑

i dεii/dT . Here, the strain
∑

i εii ≡ εxx + εyy characterizes
the change of the unit cell area. The thermal expansion is
related to the thermal tension βT by

αT = βT B−1
2D . (17)

Here, B2D = λ2D + μ2D is the bulk modulus, λ2D = γ12

and μ2D = γ66 are the elastic tension coefficients [35]. For
graphene, we use B2D = 24.89 × 104 dyn/cm.

Starting from the vibrational energy per unit cell in the
quasiharmonic approximation [38], one obtains the tension
coefficient as

βT = 1

v2DN

∑
�qλ

γ (�q,λ)
∂E(ω(�q,λ),T )

∂T
. (18)
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Here,

E(ω(�q,λ),T ) = �ω(�q,λ)

[
n(�q,λ) + 1

2

]
, (19)

is the vibrational energy of phonons with harmonic frequency
ω(�q,λ) and n(�q,λ) = (e�ω(�q,λ)/kBT − 1)−1 is the phonon ther-
mal density at temperature T . The generalized Grüneisen
coefficient reads

γ (�q,λ) = − 1

ω(�q,λ)

∑
i

∂ω(�q,λ)

∂εii

, (20)

where λ ∈ {T,L,Z} characterize the relative changes of the
acoustic phonon frequencies by strains.

The evaluation of the Grüneisen coefficient requires the
calculation of ∂ω(�q,λ)/∂εii , which involves anharmonic in-
teractions. Details of the calculation are given in Appendix A
and the results are discussed in Sec. V.

B. Phonon resonances

The anharmonic potentials �(3) and �(4) change the har-
monic phonon frequencies ω(�q,λ). We study the resonances of
the frequency dependent displacement-displacement Green’s
function D(�q,λ; z).

One derives the Dyson equation [39]

[z2 − ω2(�q,λ) − �(�q,λ; z)]D(�q,λ; z) = �, (21)

where z = ω + iε, ε → 0+, is the frequency. The self-energy
�(�q,λ; z) reads [39]

�(�q,λ; z) = �′(�q,λ; ω) + i�′′(�q,λ; ω), (22)

where

�′(�q,λ; ω) = �(3)′(�q,λ; ω) + �(4)(�q,λ), (23)

with

�(3)′ (�q,λ; ω) = �ω(�q,λ)

N
P

∑
�q2 �q3

∑
λ2λ3

∣∣∣∣�(3)

(
λλ2λ3

−�q �q2 �q3

)∣∣∣∣
2

×
{

1 + n(�q2,λ2) + n(�q3,λ3)

ω − ω(�q2,λ2) − ω(�q3,λ3)

− 1 + n(�q2,λ2) + n(�q3,λ3)

ω + ω(�q2,λ2) + ω(�q3,λ3)

+ 2[n(�q2,λ2) − n(�q3,λ3)]

ω + ω(�q2,λ2) − ω(�q3,λ3)

}
, (24)

with P standing for the principal part,

�(4)(�q,λ) = �ω(�q,λ)

N

∑
�q1λ1

�(4)

(
λλ1λ1λ

−�q �q1 − �q1 �q
)

× [1 + 2n(�q1,λ1)], (25)

and where

�′′(�q,λ; ω) =−π�ω(�q,λ)

N

∑
�q2 �q3

∑
λ2λ3

∣∣∣∣�(3)

(
λλ2λ3

−�q �q2 �q3

)∣∣∣∣
2

×{[1 + n(�q2,λ2) + n(�q3,λ3)]

× [δ(ω − ω(�q2,λ2) − ω(�q3,λ3))

− δ(ω + ω(�q2,λ2) + ω(�q3,λ3))]

+ 2[n(�q2,λ2) − n(�q3,λ3)]

× δ(ω + ω(�q2,λ2) − ω(�q3,λ3))}. (26)

Within lowest-order perturbation theory �(4)(�q,λ) is real.
In expressions (24)–(26), the summations in �q space run over
the 2D Brillouin zone.

The resonances of D(�q,λ,z) near ω = ω(�q,λ) are given by

z = ±{[ω2(�q,λ) + �′(�q,λ)]2 + �
′′2(�q,λ)}1/4e±i�(�q,λ),

(27)

where

�(�q,λ) = 1

2
tan−1

[
�′′(�q,λ)

ω2(�q,λ) + �′(�q,λ)

]
. (28)

Here, �′(�q,λ) and �′′(�q,λ) stand for �′(�q,λ; ω) and
�′′(�q,λ; ω) with ω = ω(�q,λ).

For the in-plane modes λ = {L,T}, where the harmonic
phonon dispersion is linear in the long-wavelength regime, we
obtain the renormalized phonon frequency

�(�q,λ) = ω(�q,λ) + 	(�q,λ), (29)

where

	(�q,λ) = �′(�q,λ)

2ω(�q,λ)
(30)

is the phonon frequency shift.
The phonon damping (linewidth) is given by

�(�q,λ) =−�′′(�q,λ)

2ω(�q,λ)
. (31)

Expressions corresponding to Eqs. (29)–(31) for 	(�q,λ)
and �(�q,λ) have been obtained originally by diagrammatic
techniques for 3D anharmonic crystals [40,41].

For the out-of-plane mode, (λ = Z), �′(�q,Z) is quadratic
in q (see Sec. VI) and cannot be treated as a perturbation to
ω2(�q,Z) = κ0q

4 in the long-wavelength regime. We write

�′(�q,Z) ≡ q2c2
Z, (32)

where cZ, to be determined later, has the dimension of a
velocity. In case that �′′(�q,Z) in Eq. (27) can be neglected,
we define the renormalized flexural mode frequency

�(�q,Z) =
√

ω2(�q,Z) + q2c2
Z. (33)

For short wavelengths q 	 qc, where

qc = cZ

√
2

κ0
, (34)

�(�q,Z) reduces to ω(�q,Z) = √
κ0q

2. At long wavelengths
q 
 qc, the dispersion becomes linear:

�(�q,Z) = cZq. (35)

In the intermediate regime, where qc/2 < q < qc, we ob-
tain from Eq. (27) �(�q,Z) = √

κoqcq
3/2. These results are

familiar from first-order perturbation theory in crystalline
membranes [22]. Concepts from membrane theory have been
applied to the continuum theory of graphene [17,20,42] and

134302-4



THEORY OF ANHARMONIC PHONONS IN TWO- . . . PHYSICAL REVIEW B 91, 134302 (2015)

graphene nanoribbons [43]. In Sec. VIB, we will show that cZ

depends on temperature and on the size of the system.

IV. INTERACTION PARAMETERS

We will use phonon dispersions [35] calculated by means
of an harmonic force constant model (Fig. 1). Such a force
constant model has been suggested from in-plane inelastic
x-ray scattering experiments in graphite [25].

In the absence of an empirical model for the an-
harmonic coupling parameters �

(3)
ijk( �n1κ1; �n2κ2; �n3κ3) and

�
(4)
ijkl( �n1κ1; �n2κ2; �n3κ3; �n4κ4), we take an heuristic approach.

We assume a central force interatomic potential, where the po-
tential function of interaction ϕ( �n1κ1; �n2κ2) between an atom
κ ′ at site �X( �n′κ ′) and an atom κ at site �X(�nκ) depends only on
the interatomic distance r = | �X(�nκ) − �X′(�n′κ ′)|. One has [2]

�
(3)
ijk(�nκ; �nκ; �n′κ ′) =−ϕ

(3)
ijk(�nκ; �n′κ ′) (�nκ) �= ( �n′κ ′), (36a)

�
(3)
ijk(�nκ; �nκ; �nκ) =

′∑
�n′κ ′

ϕ
(3)
ijk(�nκ; �n′κ ′). (36b)

Here, ϕ
(3)
ijk are the third-order derivatives of the potential

ϕ(r). Similarly, one has

�
(4)
ijkl(�nκ; �nκ; �nκ; �n′κ ′) =−ϕ

(4)
ijkl(�nκ; �n′κ ′) (�nκ) �= ( �n′κ ′),

(37a)

�
(4)
ijkl(�nκ; �nκ; �n′κ ′; �n′κ ′) = ϕ

(4)
ijkl(�nκ; �n′κ ′) (�nκ) �= ( �n′κ ′),

(37b)

�
(4)
ijkl(�nκ; �nκ; �nκ; �nκ) =

′∑
�n′κ ′

ϕ
(4)
ijkl(�nκ; �n′κ ′). (37c)

All these quantities are invariant with respect to a permuta-
tion of the indices i,j, . . . .

Using Eqs. (36a), (36b), and (11), we get

�
(3)
ijk

(
AAA

�q1 �q2 �q3

)
= 1√

M3
C

∑
α

ϕ
(3)
ijk(A; Bα)	(�q1 + �q2 + �q3),

(38a)

�
(3)
ijk

(
BAA

�q1 �q2 �q3

)
= −1√

M3
C

∑
α

ϕ
(3)
ijk(A; Bα)

× ei �q1·�r(Bα)	(�q1 + �q2 + �q3), (38b)

etc. for �
(3)
ijk

(
BBA

�q1 �q2 �q3

)
, �

(3)
ijk

(
BBB

�q1 �q2 �q3

)
.

Similarly, we obtain from Eqs. (15) and (37a)–(37c),

�
(4)
ijkl

(
AAAA

�q1 �q2 �q3 �q4

)
= 1

M2
C

∑
α

ϕ
(4)
ijk(A; Bα)

×	(�q1 + �q2 + �q3 + �q4), (39a)

�
(4)
ijkl

(
BAAA

�q1 �q2 �q3 �q4

)
= −1

M2
C

∑
α

ϕ
(4)
ijk(A; Bα)

× ei �q1·�r(Bα )	(�q1 + �q2 + �q3 + �q4). (39b)

FIG. 2. Schematic plot of A1 and B1 atoms belonging to the unit
cell with its corresponding first-nearest neighbors.

Replacement of �(n)( ..A..
..�q..

) by �(n)( ..B..
..�q..

) leads to an addi-

tional phase factor ei �q·�r(Bα ) on the right-hand side.
For interactions between nearest-neighbor atoms A and

B1, at equilibrium positions (0,0) and a/
√

3,0, respectively
(Fig. 2), we retain ϕ(3)

xxx(A; B1) = f (3); ϕ(3)
xyy(A; B1) = g(3);

ϕ(3)
xzz(A; B1) = h(3). The interactions between A and B2 at

(−a/2
√

3,a/2) as well as between A and B3 at (−a/2
√

3,

− a/2) are obtained by using the transformation laws of
third-rank tensors under rotations by ±120◦, respectively. The
results are summarized in Table I. The numerical values of
f (3), g(3), and h(3) are for the 2D crystal graphene and are
determined from the acoustic mode Grüneisen parameters (see
Sec. V).

The negative value of h(3) is motivated by an argument
originally put forward by I. M. Lifshitz (Ref. [13]) in
formulating the dispersion law for layered structures in the
long-wavelength limit. In the present case of a discrete
crystal structure the force in the x direction on atom B1

due to an out-of-plane displacement of atom A1 (Fig. 2)
reads MCüx(B1) = −�(3)

zzx(A1; A1; B1)u2
z(A1). Since this force

has to be attractive, −�(3)
zzx(A1; A1; B1) = ϕ(3)

zzx ≡ h(3) < 0. In
Sec. V, we will see that the negative value of h(3) is related
to a negative value of the out-of-plane Grüneisen coefficient
γ (�q,Z) and hence, as has been emphasized by Mounet and
Marzari (Ref. [14]), favors a negative contribution to the
thermal expansion.

Numerical values of the fourth-order force constants
j (4),k(4), . . . ,l(4) are estimated as shown in Table II by dividing
the second-order force constant of graphene [25] by the square
of the C-C bond distance. In analogy with the reasoning

TABLE I. Third-order anharmonic force constants for nearest-
neighbor atoms. Numerical values are for graphene and are in units
of 1012 erg/cm3.

Bα B1 B2 B3

ϕ(3)
xxx(A; Bα) f (3) = 124.12 −1

8

(
f (3) + 9g(3)

) −1
8

(
f (3) + 9g(3)

)
ϕ(3)

xyy(A; Bα) g(3) = 40.43 −1
8

(
3f (3) − 5g(3)

) −1
8

(
3f (3) − 5g(3)

)
ϕ(3)

xxy(A; Bα) /
√

3
8

(
f (3) + g(3)

) −√
3

8

(
f (3) + g(3)

)
ϕ(3)

yyy(A; Bα) / 3
√

3
8

(
f (3) + g(3)

) −3
√

3
8

(
f (3) + g(3)

)
ϕ(3)

zzx(A; Bα) h(3) = −3.35 −1
2 h(3) −1

2 h(3)

ϕ(3)
zzy(A; Bα) /

√
3

2 h(3) −√
3

2 h(3)
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TABLE II. Fourth-order anharmonic force constants for nearest-
neighbor atoms. Due to symmetry ϕ(4)

... (A; B3) = ϕ(4)
... (A; B2). Numer-

ical values are for graphene and are in units of 1020 erg/cm4.

Bα B1 B2

ϕ(4)
xxxx(A; Bα) j (4) = fr/r2

a = 20.56 1
16

(
j (4) + 9k(4) + 18m(4)

)
ϕ(4)

yyyy(A; Bα) k(4) = fi/r2
a = 6.69 1

16

(
9j (4) + k(4) + 18m(4)

)
ϕ(4)

xxyy(A; Bα) m(4) = √
fifr/r2

a = 7.32 1
16

(
3j (4) + 3k(4) − 2m(4)

)
ϕ(4)

xxzz(A; Bα) n(4) = √
frfo/r2

a = 6.27 1
4

(
n(4) + 3p(4)

)
ϕ(4)

yyzz(A; Bα) p(4) = √
fifo/r2

a = 3.58 1
4

(
p(4) + 3n(4)

)
ϕ(4)

zzzz(A; Bα) l(4) = fo/r2
a = 3.06 l(4)

about ϕ(3)
zzx , we consider the force −�(4)

zzxx(A1; A1; B1; B1) ×
u2

z(A1)ux(B1) < 0 where ux(B1) > 0. By means of Eq. (37b)
follows ϕ(4)

zzxx(A1; A1; B1; B1) = n(4) > 0. The same holds for
p(4).

V. THERMAL EXPANSION

Here we present analytical calculations of the generalized
Grüneisen coefficients and the thermal expansion. Although
we explicitly discuss graphene, the analytical results are
applicable to other layered 2D crystals with D3h symmetry
by replacing MC by 2μ, where μ is the reduced mass, and by
adapting the corresponding numerical values for the material
constants.

We will need the anharmonic coupling coefficients for
acoustic phonons in the long-wavelength regime. We use
eA
i (�k,λ) = eB

i (�k,λ) as well as eA
i (�k − �q,λ) ∼ eA

i (�k,λ) for �q →
0. From Eqs. (10), (11) and (36a), (36b), we obtain

�(3)

(
λ λ1 λ2

−�q �k �q−�k
)

= i
√

2

4
√

M3
Cω(�q,λ)ω(�k,λ1)ω(�q − �k,λ2)

×
∑

α

∑
ijk

eA∗
i (�q,λ)eA

j (�k,λ1)eA∗
k (�k,λ2)

×ϕ
(3)
ijk(A; Bα)(�q · �r(Bα))(�k · �r(Bα))

× ((�k − �q) · �r(Bα)). (40)

We have performed a series expansion in �q and in �k of
the exponentials. Similarly, we proceed with Eqs. (14), (15)
and (37a)–(37c), and obtain

�(4)

(
λ λ′ λ′ λ

−�q �k −�k �q
)

= 1

4M2
Cω(�q,λ)ω(�k,λ′)

∑
α

∑
ijkl

eA∗
i (�q,λ)

× eA
j (�k,λ′)eA∗

k (�k,λ′)eA
l (�q,λ) ϕ

(4)
ijkl(A; Bα)

× (�q · �r(Bα))2(�k · �r(Bα))2. (41)

In Sec. III, we have seen that the thermal tension βT and
equivalently the thermal expansion αT depend linearly on the
third-order anharmonicities through the generalized Grüneisen
coefficient γ (�q,λ), Eq. (20). From Eq. (A9), we obtain in the

long-wavelength regime,

∂ω(�q,λ)

∂εii

=− 1

4ω(�q,λ)MC

∑
α

∑
kl

ϕ
(3)
kli (A; Bα)ri(Bα)

× eA∗
k (�q,λ)eA

l (�q,λ)(�q · �r(Bα))2. (42)

Here, �r(Bα), α = 1,2,3 runs over the three nearest-neighbor
atoms Bα of A1 [see Fig. (2)].

In order to obtain quantitative results for βT , one has to
evaluate the �q sum in Eq. (18). We have used analytical
methods that allow us to investigate the limit cases of high
and low T and to discuss singularities in �q space.

We start from Eq. (42) with the out-of-plane mode λ = Z.
The polarization vectors in the long-wavelength regime are
eκ
k (�0,Z) = √

1/2δkz for κ = A, B. Carrying out the summation
over neighbor atoms using Table I, we obtain

∂ω(�q,Z)

∂εxx

= −a3h(3)

64
√

3MCω(�q,Z)

(
3q2

x + q2
y

)
. (43)

Since h(3), the anharmonic force constant ϕzzx is negative,
the frequency ω(�q,Z) increases with in-plane strain. The
corresponding expression for ∂ω(�q,Z)/∂εyy is obtained by
an interchange of q2

x ↔ q2
y in Eq. (43). Addition of both

contributions and use of Eq. (20) leads to

γ (�q,Z) = a3h(3)q2

16
√

3MCω2(�q,Z)
, (44)

where q2 = q2
x + q2

y . Since ω2(�q,Z) = κ0q
4, the wave-vector

average of γ (�q,Z) diverges logarithmically with q → 0. We
then consider a finite 2D crystal with linear dimensions l.
The corresponding wave vector ql = 2π/l entails a lowest
nonzero frequency ωl(Z) = √

κ0q
2
l . Transforming the �q sum

in a frequency integral, the wave-vector average of Eq. (44)
reads

γ (Z) = γ̃ (Z)v2D

4πκ0
ln

(
ωs(Z)

ωl(Z)

)
, (45)

where γ̃ (Z) = a3h(3)/(16
√

3MC). We take for γ (Z) the
empirical numerical value γZA = −1.5 from Ref. [26]. As
upper frequency limit we choose ωs(Z) = 94.3 THz, which
corresponds to ν̃ = 500 cm−1 for the ZA branch in Fig. 1.
With l = 104a the lower frequency limit is ωl(Z) = 4.25 MHz.
Solving Eq. (45) with respect to h(3), we obtain the value
quoted in Table I.

Considering the in-plane displacement modes T and L, we
use in the long-wavelength regime the polarization vectors
eκ
k (�0,T) = √

1/2δky and eκ
k (�0,L) = √

1/2δkx , for κ = A,B.
Proceeding as before, we obtain

γ (�q,T) = a3

64
√

3MCω2(�q,T)

× [(
f (3) + 3g(3)

)
q2

x + (
3f (3) + g(3)

)
q2

y

]
. (46)

The expression for γ (�q,L) is obtained from Eq. (46) by
interchange of q2

x ↔ q2
y and by replacing ω(�q,T) by ω(�q,L).

The long-wavelength acoustic phonons in a 2D crystal have
frequencies ω(�q,T) = cTq and ω(�q,L) = cLq, where cT and
cL are the transversal and longitudinal sound velocities. Using
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the Debye interpolation scheme, we define an average sound
velocity ĉ by

2

ĉ2
= 1

c2
L

+ 1

c2
T

, (47)

and replace both ω(�q,T) and ω(�q,L) by ĉq. With the model
of Ref. [35], we have cL = 23.1 × 105 cm s−1, cT = 14.3 ×
105 cm s−1 and hence ĉ = 17.2 × 105 cm s−1.

Adding the long-wavelength expressions for γ (�q,T) and
γ (�q,L), we obtain the in-plane Grüneisen constant γ (⊥),
which is independent of the wave vector:

γ (⊥) = a3
(
f (3) + g(3)

)
16

√
3MCĉ2

. (48)

Here and in the following, ⊥ has the meaning of in-plane,
i.e., normal to the highest-symmetry axis. We identify γ (⊥),
Eq. (48) with the average (γLA + γTA)/2 = 1.5, taken from
Ref. [26]. Comparison with Eq. (48) yields (f (3) + g(3)) =
164.55 × 1012 erg/cm3. Assuming that the ratio f (3)/g(3) is
equal to 25.88/8.42 = 3.07 as inferred from the second-order
stretching and shearing force constants [25], we obtain the
values quoted in Table I.

Conversely, we have used the present values of f (3) and g(3)

to calculate the E2g in-plane optical mode Grüneisen parameter
(biaxial stress) and obtain γ (E2g) = 1.51. We recall that the in-
plane E2g Grüneisen parameter inferred from Raman scattering
spectra on graphite under hydrostatic pressure [44] leads to
γ (E2g) = 1.59, as quoted in Ref. [33]. Raman spectroscopy
on uniaxially strained graphene [45] leads to γ (E2g) = 1.99.

We turn now to the thermal tension defined by Eq. (18).
Given the different analytic behavior of γ (�q,Z) and γ (⊥) we
will consider separately the out-of-plane contributions to βT

by writing

βT = βT (Z) + βT (⊥) (49)

with βT (⊥) = βT (T) + βT (L). We start with λ = Z. Trans-
forming the �q sum into a frequency integral we get

βT (Z) = γ̃ (Z)�2

4πkBT 2κ0

∫ ωs (Z)

ωl (Z)
dω

ωe�ω/kBT

(e�ω/kBT − 1)2
. (50)

Here and in the following, we use the third-order anhar-
monic force constants from Table I. Then γ̃ (Z) = −9.03 ×
1010 cm2 s−2, which implies that βT (Z) is negative. The size
dependence is accounted for by ωl(Z). In the high-T limit
(classical case), kBT > �ω, this expression reduces to

βT (Z) = γ̃ (Z)

κ0

kB

4π
ln

(
ωs(Z)

ωl(Z)

)
, (51)

and in the low-T limit (quantum case), kBT < �ωl(Z) <

�ωs(Z),

βT (Z) = γ̃ (Z)

κ0

�ωl(Z)

4πT
e−�ωl (Z)/kBT . (52)

While βT (Z) is constant at high T , it vanishes with T →
0, in accordance with Nernst’s theorem [46]. In Fig. 3(a), we
plotted βT (Z), Eq. (50), as a function of temperature for two
different crystal sizes.

In studying the contribution βT (⊥) due to the in-plane
modes, we make use of the linear dispersion and replace

-0.6

-0.4

-0.2

0

β T

  102a
  104a

1 10 100

1

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

β T

(a) Out-of-plane

(b) In-plane

T (K)

T (K)

−1×10−6

−1×10−12

−1×10−18

FIG. 3. (Color online) Thermal tension coefficient βT for system
sizes l = 102a (circles) and 104a (squares). The (a) out-of-plane
βT (Z) and (b) in-plane βT (⊥) components are given in units of dyn
cm−1K−1. Notice in the inset the size dependence at low T of βT (⊥).

ω(�q,T) and ω(�q,L) by ĉq. The upper frequency limit is
ωs(⊥) = (4πĉ2/v2D)1/2. For the sake of consistency, we take a
crystal with finite size where ωl(⊥) = ĉ 2π/l. We then obtain

βT (⊥) = γ (⊥)�2

2πĉ2kBT 2

∫ ωs (⊥)

ωl (⊥)
dω

ω3e�ω/kBT

(e�ω/kBT − 1)2
, (53)

where γ (⊥) = 1.5, which implies that βT (⊥) is positive. In
contradistinction with Eq. (50), the integral exists also for
ωl(⊥) = 0, i.e., for l → ∞. In the high-T regime where
kBT > �ωs(⊥) > �ωl(⊥), we obtain

βT (⊥) = γ (⊥)kB

v2D

(
1 − π

v2D

l2

)
. (54)

In the low- T regime kBT < �ωl(⊥) < �ωs(⊥), we obtain

βT (⊥) = γ (⊥)�

2πĉ2T
ω3

l (⊥)e−�ωl (⊥)/kBT . (55)

In Fig. 3(b), we plotted βT (⊥), Eq. (53), as a function of T

for two different crystal sizes. Notice here again the agreement
with the limit cases Eqs. (54) and (55) of high and low T ,
respectively. In particular, it follows from Eq. (54) that βT (⊥)
is quasi-size-independent at large T .

Evaluation of Eqs. (50) and (53) shows that |βT (Z)| >

βT (⊥) at low T and hence βT , Eq. (49) is negative. A change
of sign to positive values becomes possible with increasing
temperature. Solution of the equation

|βT (Z;T ,l)| = βT (⊥ ;T ,l) (56)

yields pairs of values {Tα,lα} where βT , Eq. (49), changes
sign (Fig. 4). Here Tα is an implicit function of lα . We obtain
{lα = 102a,Tα = 407 K}; {lα = 103a,Tα = 697 K}. In case
of an infinite system (thermodynamic limit), βT (Z) diverges
logarithmically [see Eq. (51)]. Then Eq. (56) has no solution
and βT remains negative up to the highest T. With our model
parameters we find that for l = 104a, Tα becomes already
unphysically large (104 K).

We will show below (Sec. VI) that the renormalization of the
flexural mode however decreases |βT (Z)| and results in room
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FIG. 4. (Color online) Thermal expansion coefficient αT for
l = 102a and 104a sample sizes. Units K−1.

temperature values of Tα for graphene samples of macroscopic
size. Since the ratio |βT (Z)| versus βT (⊥) depends on material
constants, it is conceivable that for some finite size monolayer
materials |βT (Z)| < βT (⊥) always holds and the thermal
expansion is positive, as has been concluded [47] for MoS2.

VI. FREQUENCY SHIFTS AND LINEWIDTHS

Phonon line shifts are due to third and fourth-order
anharmonicities and phonon dampings due to third-order.

A. In-plane modes

We study the case where a long-wavelength in-plane
phonon (λ = L, T) of wave vector �q decays into two out-of-
plane phonons (λ = Z) with wave vectors �k and �q − �k. Since
all wave vectors are small, there are no umklapp processes. The
frequency shift due to third-order anharmonicities, obtained by
means of Eqs. (30), (23), and (24), reads

	(3)(�q,λ) = �

2N
P

∑
�k

∣∣∣∣�(3)

(
λ Z Z

−�q �k �q − �k
)∣∣∣∣

2

×
[

1 + n(�k,Z) + n(�k − �q,Z)

ω(�q,λ) − ω(�k,Z) − ω(�k − �q,Z)

]
. (57)

With �q = (q,0) taken as polar axis along the x direction, we
have �k = k(cos ϕ, sin ϕ). We approximate the polarization
vectors entering |�(3)( λ Z Z

−�q �k �q−�k )| by eA
i (�q,λ) = √

1/2δiζ , with
ζ = x for λ = L and ζ = y for λ = T. Furthermore, we use
eA
j (�k,Z) ≈ eA

j (�k − �q,Z) ≈ √
1/2δjz, approximate ω(�k − �q,Z)

by ω(�k,Z) and sin2(�k · �r(Bα)) by (�k · �r(Bα))2. From Eq. (40),
we then obtain for λ = L

�(3)

(
L Z Z

−�q �k �q−�k
)

= i
√

qh(3)a3(2cos2ϕ + 1)

64
√

3M3
CcLκ0

. (58)

The expression for λ = T is obtained from Eq. (58) replacing
(2cos2ϕ + 1) by 2 cos ϕ sin ϕ and cL by cT. Transforming the
�k-sum in Eq. (57) to a 2D integral, we have

	(3)(�q,λ) = �qC(3)(λ)

2
P

∫ ωs (Z)

ωl (Z)
dω

(1 + 2n(ω))

ω(�q,λ) − 2ω
, (59)

where n(ω) = (e�ω/kBT − 1)−1. Here, we have defined for λ =
L

C(3)(L) =
(
h(3)a4

)2
3
√

3

π (256)2cLM3
Cκ

3/2
o

, (60)

while for λ = T, cL has to be replaced by cT and 3
√

3
by 1/

√
3. We obtain C3(L) = 7.51 × 1027 cm−1 g−1 and

C3(T) = 1.35 × 1027 cm−1 g−1. Carrying out the integration,
we obtain in the quantum case,

	(3)(�q,λ) = �q

4
C(3)(λ) ln

(
ω(�q,λ) − 2ωl(Z)

2ωs(Z) − ω(�q,λ)

)
. (61)

In the classical case, we get

	(3)(�q,λ) = kBT C(3)(λ)

cλ

ln

{
ωs(Z)[ω(�q,λ) − 2ωl(Z)]

ωl(Z)[2ωs(Z) − ω(�q,λ)]

}
.

(62)

For T = 1000 K and q = π/10a, we get 	(3)(�q,L) = 6.83 ×
109 s−1, i.e., 3.6 × 10−2 cm−1, and 	(3)(�q,T) = 1.91 ×
109 s−1, i.e., 1.00 × 10−2 cm−1.

Turning to the corresponding linewidth, we find by means
of Eqs. (26) and (31):

�(�q,λ) = π�

2N

∑
�k

∣∣∣∣�(3)

(
λ Z Z

−�q �k �q − �k
)∣∣∣∣

2

× (1 + n(�k,Z) + n(�k − �q,Z))

× δ(ω(�q,λ) − ω(�k,Z) − ω(�k − �q,Z)). (63a)

With the same approximations as outlined before, we obtain

�(�q,λ) = π

4
�qC(3)(λ)

[
1 + 2n

(
ω(�q,λ)

2

)]
, (63b)

which in the quantum regime becomes

�(�q,λ) = π

4
�qC(3)(λ). (64)

In the classical regime, we get

�(�q,λ) = π

cλ

kBT C(3)(λ), (65)

the result is independent of the wave vector [18]. Plots of the
linewidths evaluated by means of Eq. (63b) for λ = L and T
are given in Fig. 5.

The frequency shift due to scattering of an in-plane phonon
with a flexural mode (fourth-order anharmonic process) reads

	(4)(�q,λ) = �

2N

∑
�k

�(4)

(
λ Z Z λ

−�q �k −�k �q
)

[1 + 2n(�k,Z)]. (66)

Using long-wavelength approximations as before, we obtain
from Eq. (41),

�(4)

(
L Z Z L

−�q �k −�k �q
)

= qa4

16 × 96M2
C

√
κ0cL

× [(
11n(4) + p(4)) cos2 ϕ + (

n(4) + 3p(4)) sin2 ϕ
]
. (67)
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FIG. 5. (Color online) Linewidths for λ = L (circles) and T
(squares) at different temperatures as indicated. The 2D crystal size
is l = 104a.

The expression for λ = T is obtained by replacing cL by cT and
interchanging n(4) with p(4). The summation over the Brillouin
zone in Eq. (66) is readily transformed into a frequency integral

	(4)(�q,λ) = �qC(4)(λ)
∫ ωs (Z)

ωl (Z)
dω [1 + 2n(ω)], (68)

where for λ = L,

C(4)(L) = a6
√

3
(
3n(4) + p(4)

)
128 × 96πM2

CcLκo

. (69)

Again C(4)(T) is obtained by the substitutions just mentioned.
In the quantum limit, kBT 
 �ωl(Z), we have

	(4)(�q,λ) = �qC(4)(λ)[ωs(Z) − ωl(Z)], (70)

and in the classical limit, kBT 	 �ωs(Z),

	(4)(�q,λ) = 2qkBT C(4)(λ) ln

(
ωs(Z)

ωl(Z)

)
. (71)

Notice that in both cases, the linear dependence on the wave
vector of the in-plane mode. Since n(4) and p(4) are positive (see
Table II), we conclude that the lineshifts above are positive.

B. Flexural mode

We first investigate the decay and the lineshift of the
flexural mode due to third-order anharmonicities. As already
emphasized [18], the scattering rate is dominated by the
absorption processes ZA+ZA → LA(TA). The frequency
dependent self-energy (see Sec. III B) reads

�(3)(�q,Z; z) = 2�ω(�q,Z)

N

∑
�kλ

∣∣∣∣�(3)

(
Z Z λ

�q �k − �q −�k
)∣∣∣∣

2

× n(�k − �q,Z) − n(�k,Z)

z + ω(�k − �q,Z) − ω(�k,λ)
, (72)

where z = ω + iε, ε → 0+, and λ = L(T). We investigate
this quantity for ω = ω(�q,Z). In order to get an analytically
tractable problem, we take �q = (q,0,0). In addition, we replace
(�k − �q) · �r(Bα) in Eq. (40) by its supremum |�k − �q||�r(Bα)|. As
a consequence of these approximations only the scattering into
the L mode is different from zero. From the study of �(3)′′ , we
obtain the decay rate [compare Eq. (31)]

�(�q,Z) = �q4 128κ
3/2
0

9c3
L

C(3)(L)csch

(
�ω(q,Z)

kBT

)
. (73)

In the classical regime, we get

�(�q,Z) = q2kBT
128πκ0

9c3
L

C(3)(L), (74)

and in the quantum regime,

�(�q,Z) = �q4 256κ
3/2
0

9c3
L

C(3)(L)e−�ω(q,Z)/kBT . (75)

The q2 dependence in the classical regime has been predicted
earlier [18].

From the study of �(3)′ , we find in the classical regime,

�(3)′(�q,Z) =− 32

9cL
q2√κ0kBT C(3)(L) ln

(
ωs(L)

ωl(L)

)
, (76)

where ωl(L) = cL2π/l and ωs(L) = 245 THz. The phonon
self-energy is negative and diverges logarithmically with the
size of the system. In the quantum regime, the self-energy
�(3)′ (�q,Z) vanishes exponentially with lowering T .

We next investigate the renormalization of the flexural mode
due to fourth-order anharmonicities. From Eqs. (23) and (25),
we get

�(4)(�q,Z) = �ω(�q,Z)

N

∑
�k,λ

�(4)

(
Z λ λ Z

−�q �k −�k �q
)

[1 + 2n(�k,λ)],

(77)

where λ = {L, T, Z}. Separating in-plane and out of plane
scattering modes λ, we write

�(4)(�q,Z) = �(4)(�q,Z; ⊥) + �(4)(�q,Z; Z), (78)

where ⊥ stands for {L, T}. We readily transform to frequency
integrals and obtain

�(4)(�q,Z; ⊥) = q2
�

∑
λ

C(4)(Z; λ)
∫ ωs (λ)

ωl (λ)
dω ω2 [1 + 2n(ω)],

(79)

where for λ = L,

C(4)(Z;L) = a6
√

3
(
3n(4) + p(4)

)
32 × 96πM2

Cc4
L

, (80)

while for λ = T, n(4) and p(4) are interchanged and cL is
replaced by cT. In Eq. (79), the integration limits are ωs(L) =
245 THz, ωs(T) = 151 THz, and for the sample with l = 104a,
ωl(L) = 5.9 × 1010 Hz, ωl(T) = 3.65 × 1010 Hz.

In the classical case, we have

�(4)(�q,Z; ⊥) = q2kBT
∑

λ

C(4)(Z; λ)
[
ω2

s (λ) − ω2
l (λ)

]
. (81)
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In the quantum regime, zero-point motion gives at T = 0:

�(4)(�q,Z; ⊥) = q2
�

3

∑
λ

C(4)(Z; λ)
[
ω3

s (λ) − ω3
l (λ)

]
. (82)

Likewise, we obtain

�(4)(�q,Z; Z) = q2
�C(4)(Z; Z)

∫ ωs (Z)

ωl (Z)
dω [1 + 2n(ω)], (83)

where

C(4)(Z;Z) = a6
√

3 l(4)

16 × 96πM2
Cκ0

(84)

with ωs(Z) = 94.25 THz and ωl(Z) = 4.25 MHz. In the
classical limit, we get

�(4)(�q,Z; Z) = 2q2kBT C(4)(Z; Z) ln

(
ωs(Z)

ωl(Z)

)
, (85)

which diverges for an infinite system where ωl(Z) = 0. Here,
zero-point motion gives at T = 0,

�(4)(�q,Z; Z) = q2
�C(4)(Z; Z)[ωs(Z) − ωl(Z)]. (86)

From Eqs. (76), (79), and (81), we see that the contributions
to the flexural mode self-energy are due to third and fourth-
order anharmonicities and are proportional to q2 at long
wavelengths. We then identify c2

Z introduced in Eq. (32) as

c2
Z = �(3)′ (�q,Z) + �(4)(�q,Z)

q2
. (87)

Notice that the in-plane and out-of-plane contributions to
�′(�q,Z) are proportional to q2, as anticipated in Eq. (32).
In the language of membrane theory [24] this result cor-
responds to a q−2 singularity due to the first anharmonic
correction to the bare bending rigidity. We have evaluated
expressions (76), (79), and (83) as a function of temperature
in the interval 0.1–2000 K. We find that the negative term
�(3)′ (�q,Z) is more than two orders of magnitude smaller
than the positive term �(4)(�q,Z) and hence negligible. Both
�′(�q,Z; ⊥) and �′(�q,Z;Z) are monotone increasing functions
with increasing T , with �′(�q,Z; Z) > �′(�q,Z; ⊥). Above T =
100K,�′(�q,Z; Z) is more than one order of magnitude larger.
In Fig. 6(a), we have plotted the sum c2

Z = �′(�q,Z)/q2 for
the case l = 104a. We find that for the case l = 102a the
renormalization effect is about a factor 2 smaller.

Finally, we have studied the effect of renormalization on
the thermal expansion. Therefore we have evaluated βT (Z)
by means of Eqs. (18) and (44), with ω(�q,Z) replaced by the
renormalized frequency �(�q,Z), Eqs. (32) and (33). Thereby
we take into account self-consistently that c2

Z depends on l and
T . We obtain

βT (Z) = γ̃ (Z)�2

2πkBT 2

∫ qs

ql

dq q3 e��(�q,Z)/kBT(
e��(�q,Z)/kBT − 1

)2 , (88)

where qs = (ωs(Z)/
√

κ0)1/2 = 1.20 × 108 cm−1 and ql =
(ωl(Z)/

√
κ0)1/2 = 2.56 × 104 cm−1. In Fig. 6(b), we have

plotted βT (Z) as a function of T . Notice that the
renormalized βT (Z) is in absolute value smaller than
the unrenormalized quantity (empty squares). Hence the

Σ’
/q

2
1 10 100 1000

    (K)

0

-0.4
-0.3
-0.2
-0.1

0

β T
(Z

)

(a)

(b)

(c)

T

−2×10−6

−1×10−6

1×10−6

2×10−6

1×108

1×109

1×1010

FIG. 6. (Color online) (a) Quantity c2
Z = �′(�q,Z)/q2 as a func-

tion of T , units cm2s−2. (b) Thermal tension βT (Z) and (c) thermal
expansion αT evaluated with renormalized flexural mode frequency
�(�q,Z) (filled squares) as a function of T . βT (Z) is given in units
of dyn cm−1K−1 and αT in K−1. The 2D crystal size is l = 104a.
Compare with Fig. 4.

renormalization of the flexural mode favors the transi-
tion from negative to positive thermal expansion. The
transition temperature Tα decreases with increasing size
of the system. This is shown in Fig. 7, obtained by

290 295 300 305 310 315 320
Tα (K)

lα

104 a

105 a

106 a

107 a

108 a

FIG. 7. System size lα as a function of temperature Tα for change
from negative to positive thermal expansion. Discrete points are
calculated self-consistently with renormalization of flexural mode.
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FIG. 8. (Color online) Generalized Grüneisen parameters γ (�q,λ)
for (a) ZA, (b) TA, and (c) LA acoustic phonon modes of graphene.
γx(�q,λ) (γy(�q,λ)), where x (y) refer to strain εxx (εyy), contribution
is indicated by a dashed-red (dotted-blue) line.

solving Eq. (56) self-consistently for the renormalized
case. Although c2

Z diverges in the thermodynamic limit, the
weak logarithmic divergence allows one in fact to consider
systems of macroscopic size (l = 108a). For a recent discus-
sion of the experimental situation, which includes analysis of
substrate corrections, see Ref. [48].

VII. NUMERICAL RESULTS

The physical quantities outlined above were calculated
independently by numerical techniques. This approach serves
for verifying the analytical predictions and for obtaining valid
results in an extended range of temperatures and wave vectors.
We investigate umklapp processes at the edges of the BZ.
The calculation was realized through a discrete mesh of �q
points in the BZ, which was designed following the description
presented in Ref. [49]. The basic steps of the algorithm are
given in Appendix B.

The generalized Grüneisen parameters γ (�q,λ) [Eq. (20)]
obtained for �q along the �-K-M-� high-symmetry crystallo-
graphic path are shown in Fig. 8. The results are to be compared
with their analytical counterparts Eq. (44) for γ (�q, Z) and
Eq. (48) for γ (⊥). In particular in Eq. (44), we have shown that
γ (�q, Z) is negative and diverges as q−2 in the thermodynamic
limit. Notice that even in the case of a relatively dense mesh
of �q values we are limited in the numerical approach as will
be discussed below. For the in-plane contributions γ (T) and
γ (L), we find that both are positive and approach finite values,
in agreement with Eq. (48).

The thermal expansion coefficient αT [Eq. (17)], displayed
in Fig. 9, behaves also as predicted (see Fig. 4). The flexural
(in-plane) mode(s) contribution is negative (positive) in the
whole range of T . However, here the crossover from negative
to positive thermal expansion takes place at ≈275 K. This value
is expected from the discrete mesh adopted in the calculation
where the smallest values of �q considered correspond to a
system size l ≈ 80a (see Appendix B). Inclusion of smaller

0 300 600 900 1200 1500 1800
    (K)

0

α Τ 
  

Total
L
T
Z

T

−1×10−6

1×10−6

2×10−6

1.5×10−6

−5×10−7

5×10−7

FIG. 9. (Color online) Temperature dependence of the thermal
expansion coefficient αT of graphene. Units K−1. Sample size
l = 80a.

values of �q (larger system sizes) is out of reach due to numerical
inaccuracy in the diagonalization of the dynamical matrix.
Notice that this result does not include the renormalization of
the flexural mode discussed at the end of Sec. VI B.

We proceed now with the study of the frequency shifts and
linewidths. In the previous analysis (Sec. VI) we restricted
ourselves, for simplicity, to the most important scattering
processes at low �q. The numerical treatment of the problem,
nevertheless, allows a complete survey of every possible
scattering mechanism. We start with the frequency linewidths
which, using the same notation as before, can be calculated
through

�(�q,λ) = π�

2N

∑
�q2 �q3

∑
λ2λ3

∣∣∣∣�(3)

(
λλ2λ3

−�q �q2 �q3

)∣∣∣∣
2

{[1 + n(�q2,λ2)

+ n(�q3,λ3)]δ(ω(�q,λ) − ω(�q2,λ2) − ω(�q3,λ3))

+ 2[n(�q2,λ2) − n(�q3,λ3)]

× δ(ω(�q,λ) + ω(�q2,λ2) − ω(�q3,λ3))}. (89)

The δ function was represented as δ(ω) =
limξ→0 e−ω2/ξ 2

/(ξ
√

π ). After having analyzed a broad
range of parameters we found good convergence for the
results by adopting ξ = 5 cm−1 (see Appendix B). This value
is comparable to the one used in related studies [19,49,50].

In Fig. 10, we show the total phonon linewidths �(�q,λ)
obtained for the three acoustical modes λ = ZA, TA, and LA,
at different temperatures as indicated. Notice the different
scales that have been adopted on the � axes. This behavior
is a result of the larger possibilities for damping, satisfying
conservation laws, available for LA, and then, subsequently for
TA and ZA. Similar to what happens in normal 3D metals, such
as Cu, Ag, and Au, peaked structures located at intermediate
values of �q are present [51,52]. As we show below, they
are associated with different active scattering channels. With
increasing temperature, higher phonon occupations in Eq. (89),
produce an increase in the phonon linewidths due to the thermal
activation of additional scattering processes for every value
of �q.
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FIG. 10. (Color online) Temperature dependence of �(�q,λ) for
(a) ZA, (b) TA, and (c) LA acoustic phonon modes of graphene.
Units cm−1.

The total linewidths, together with its contributions from
normal and umklapp processes for T = 1 and 300 K, are
displayed in Fig. 11. Umklapp processes become comparable
to normal processes only near the border of the BZ, close
to the K and the M points [53]. For the flexural phonon
mode at T = 1 K, �(�q, Z) is null (<10−7) irrespective of
the value of �q. Then at 300 K, �(�q, Z) is nonzero in a
large region of the �-K-M-� path but it still vanishes in the
limit q → 0. On the other hand, in-plane mode linewidths,
�(�q, T) and �(�q, L), experience larger changes with T in the
long-wavelength regime. In this limit, they both vary about
two orders of magnitude with increasing T from 1 to 300 K
(from ∼10−3 to ∼10−1) and, as we discussed before, different
behaviors for low and high T can be identified.

The relative importance of the scattering mechanisms is
obtained by considering separately each of the summands in

Eq. (89). The dependence with the wave vector �q for all of the
active scattering channels at T = 1 and 300 K are shown in
Fig. 12. Partial contributions to the linewidth of the flexural
mode ZA are finite in a large sector of the �-K-M-� path
only at 300 K [the case T = 1 K is included to emphasize
that �(�q, Z) is null]. Here, the main important active channels
are ZA ↔ ZA-TA and ZA-LA (top right panels). It has been
reported that processes where ZA phonons are present can
exist only if two of them participate simultaneously in the
scattering. This result, which has been referred as a selection
rule [29,36], is verified by our findings.

The scattering of in-plane phonons presents more compli-
cated characteristics than that of the flexural phonons discussed
above. In this case, a larger number of channels are already
open at low T . For the TA mode at T = 1 K, the active
scattering channels are TA ↔ ZA+ZA and TA+TA (middle
left). Then, at 300 K, TA ↔ TA-LA, TA-TA, and LA-LA
become also activated by T and the relative dominance of each
of them depends strongly on �q in a non trivial way (middle
right). For the LA mode, the picture is more complex. Due to its
larger frequency, already at low T , LA ↔ ZA+ZA, TA+TA,
LA+LA, and LA+TA are all active (bottom left). Then,
at 300 K, additionally LA ↔ LA-LA becomes important,
particularly in the limit q → 0 (bottom right).

The behavior of the scattering channels in the long-
wavelength regime is analyzed in more detail in Fig. 13. In
agreement with the analytical description, we observe that at
low T (T = 1 K) the dominant scattering processes are TA ↔
ZA+ZA and LA ↔ ZA+ZA (left panels). At 300 K, however,
TA ↔ TA-TA and LA ↔ LA-LA become more important
(right panels). Notice that while in the analytical approach
presented before, we were able to study larger system sizes
(l = 104a) with the current numerical treatment, we are limited
to l ≈ 80a. Therefore, in the long-wavelength regime, the
results shown in Fig. 5 for the ZA+ZA scattering channel
of in-plane phonon modes are complementary to those in
Fig. 13. We remark the good agreement obtained between
both independent calculations (see the values of q in the x axis
of both figures).
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FIG. 11. (Color online) Phonon linewidths �(�q,λ) for T = 1 (left) and 300 K (right). The logarithmic scale for the y axis is used to allow
comparison of normal and umklapp contributions. Units cm−1.
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FIG. 12. (Color online) Contribution of the different scattering channels to the phonon linewidths at T = 1 K (left) and 300 K (right). The
total linewidth (a) is composed of normal (b) and umklapp (c) processes. Units cm−1.

Further interesting insights on the features of the anhar-
monic scattering for the in-plane phonon modes are presented
in Fig. 14. Here, we show the spatial distribution inside the BZ

for a few selected relevant scattering channels with �q equal to
�qA, �qB , and �qC (middle points of �-K-M-�) at 300 K. These
curves can be interpreted as follows. The plot displayed on
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FIG. 13. (Color online) Contribution of the different scattering channels to the phonon linewidths at 1 K (left panels) and 300 K (right

panels) in the long-wavelength regime. Units cm−1 [qx (x axis) is given in units of Å
−1

].

the top left panel describes the processes where an excited TA
phonon, with fixed momentum �q = �qA, is scattered through
every possible �q2 by the channel ZA+ZA (remember that
�q3 = −�qA − �q2 ± �G). Notice that due to the conservation of
energy and momentum only a reduced number of processes are
active. The resulting circular shaped line (around �qA) indicates
that ZA phonons propagating in every possible direction
will be generated from the original unperturbed in-plane TA
�qA phonon. The blue-dashed line separates Normal (region
enclosing �qA) from umklapp processes. Here, the absence of
umklapp contributions is consistent with the result of Fig. 12

(middle-right panel) where the umklapp TA ↔ ZA+ZA
process vanishes for values of �q right above �qA.

Similar analysis can be performed for the remaining panels
of Fig. 14. Observe in particular that for �q = �qB , with �qB

located at the border of the BZ, umklapp processes become
more important. Additional similar plots are presented in
Appendix B. These results are relevant for the microscopical
understanding of the thermal conductivity since they determine
to which extent any excited phonon, in any given initial
direction, will be scattered by phonons propagating in any
other direction.
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FIG. 14. (Color online) Contour plots of the contribution of selected scattering channels inside the BZ for the TA and LA acoustic phonon
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Finally, we study the third- and fourth-order [54,55]
frequency shifts, which can be calculated through

	(3)(�q,λ) = �

2N

∑
�q2 �q3

∑
λ2λ3

∣∣∣∣�(3)

(
λλ2λ3

−�q �q2 �q3

)∣∣∣∣
2

×P

{
1 + n(�q2,λ2) + n(�q3,λ3)

ω(�q,λ) − ω(�q2,λ2) − ω(�q3,λ3)

− 1 + n(�q2,λ2) + n(�q3,λ3)

ω(�q,λ) + ω(�q2,λ2) + ω(�q3,λ3)

+ 2[n(�q2,λ2) − n(�q3,λ3)]

ω(�q,λ) + ω(�q2,λ2) − ω(�q3,λ3)

}
, (90)

	(4)(�q,λ) = �

2N

∑
�q1,λ1

�(4)

(
λλ1λ1λ

−�q �q1 − �q1 �q
)

[1 + 2n(�q1,λ1)].

(91)

In this case, the principal part P was represented as P {1/ω} =
ω/(ω2 + η2) with η = 1 cm−1 (Appendix B).

The obtained results are displayed in Fig. 15. In agreement
with the analytical prediction, the third-order frequency shift of
the flexural ZA mode is negative and experiences a logarithmic
divergence in the long-wavelength regime. In this limit, for
the in-plane modes on the contrary, 	(3)(�q,T) tends to zero
with almost no appreciable variation versus T and 	(3)(�q,

L) is negligibly small at low T but it increases smoothly
with T .

The strong third-order negative bandshift 	(3)(�q, Z) near �

means, in principle, that another configuration different from
a flat sample, will be more stable. As we show in Fig. 15
(right), fourth-order anharmonic interactions counterbalances
the third-order bandshift, at �q → 0, for the ZA mode and
stabilize the layer. Other characteristics in this regime are
the linear dependence with �q of 	(4)(�q,T) and 	(4)(�q,L),
which are in agreement with the conclusions derived in
Eq. (71).

VIII. CONCLUSIONS

We have studied thermal expansion and phonon broad-
enings and lineshifts of nonionic 2D crystals by means of
anharmonic lattice dynamics, thereby implementing analytical
and numerical methods. We have used a semiempirical
model for the interatomic force constants, comprising in-plane
acoustic phonons and out-of-plane flexural modes.

Analytical techniques allow to investigate the long-
wavelength limit, which is beyond the reach of numerical
calculations and ab-initio methods. Since the out-of-plane
Grüneisen constant γ (Z) diverges logarithmically in the �q → 0
limit, we have considered crystals of finite size and investigated
finite size effects. We have taken graphene as an example for
quantitative evaluations. Thereby we have found a change of
sign of the thermal expansion as a function of crystal size.
A change of sign has been found earlier by Monte Carlo
calculations [15], there the finite size of the system is inherent
in the method.

We have investigated analytically the wave-vector depen-
dence of the decays and lineshifts of in-plane and out-of-plane
phonons in the classical (high T ) and in the quantum regime.
In the classical regime we confirm earlier results about the
decay rates of an in-plane phonon into two flexural modes
and of the inverse absorption process [18]. In the quantum
regime, the wave-vector dependence and the T dependence of
these processes are different. We have studied the lineshifts
(equivalently the real part of the self energy) due to third and
fourth-order anharmonicities. In the classical regime, the real
part of the self-energy of the flexural mode in a third-order
absorption process is found to be negative, proportional to
T and q2, and diverging logarithmically with the size of the
system. In the quantum regime, it vanishes exponentially with
decreasing T . Self-energy corrections of the flexural mode
due to fourth-order anharmonic processes are positive and
proportional to q2 in the classical as well as in the quantum
regime. Similar results have been obtained for crystalline
membranes in the classical [24] and in the quantum [20]
regimes. As a consequence of the corresponding change of the
dispersion of the flexural mode at long wavelengths [20,42],
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FIG. 15. (Color online) Temperature dependence of the third- (left panel) and fourth-order (right panel) band shifts for the (a) ZA, (b) TA,
and (c) LA acoustic phonon modes of graphene. Units cm−1.
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we find that the temperature Tα of the change from negative to
positive thermal expansion is lowered and close to 300 K for
systems of macroscopic size.

The numerical analysis (Sec. VII and Appendix B) is
complementary to the analytical treatment of Sec. VI. Special
care has been devoted to obtain a dense grid of �q points
covering the BZ. Various scattering channels that contribute
to decays and lineshifts of the in-plane and out-of-plane
modes have been investigated in a systematic way. In the
nearest numerically attainable neighborhood of the � point,
we find agreement between analytical and numerical results.
In addition, beyond the long-wavelength regime, we have
studied umklapp processes and compared their contributions
with normal processes for various scattering channels. We
find that in a broad T range below room temperature the
decay rate of flexural modes is much less affected by Umklapp
processes than the decay rate of in-plane modes. This result
supports earlier theoretical conclusions that flexural modes
are responsible for an anomalous large intrinsic thermal
conductivity [18,19,29,30,56].
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APPENDIX A

We calculate the change of the phonon frequency ω(�q,λ)
under homogeneous strains εij (i,j ∈ {1,2}) in two dimensions
for a non primitive crystal. Homogeneous strains are related
to the center of mass displacement of the unit cell �n by

si(�n) =
∑

j

εijX
s
j (�n), (A1)

where the center of mass equilibrium position reads

�Xs(�n) =
∑

κ

Mκ

M
Xj (�nκ), (A2)

and where M = ∑
κ Mκ is the total mass per unit cell. Hence

si(�n) =
∑

κ

ui(�nκ), (A3)

with

ui(�nκ) =
∑

j

εij

Mκ

M
Xj (�nκ). (A4)

We need to calculate

δω(�q,λ) =
∑

i

∂ω(�q,λ)

∂Xi(�nκ)
ui(�nκ), (A5)

where ui(�nκ) is given by Eq. (A4). Starting from Eq. (7), we
obtain

δω(�q,λ) = 1

2ω(�q,λ)

∑
kl

∑
κ1κ2

e
κ1∗
k (�q,λ)eκ2

l (�q,λ)√
Mκ1Mκ2

×
∑
�h2

δ�
(2)
kl (�0κ1; �hκ2)ei �q[ �X(�hκ2)− �X(�0κ1)]. (A6)

The change of the second-order coupling parameter due to the
displacements ui(�nκ) reads

δ�
(2)
kl (�0κ1; �hκ2) =

∑
�nκi

�
(3)
kli(�0κ1; �hκ2; �nκ)ui(�nκ), (A7)

where �(3) is the third-order anharmonic coupling.
Differentiation of Eq. (A6) with respect to the strains yields

∂ω(�q,λ)

∂εij

= 1

2ω(�q,λ)

∑
kl

∑
κ1κ2κ

∑
�n�h

e
κ1∗
k (�q,λ)eκ2

l (�q,λ)√
Mκ1Mκ2

×�
(3)
kli(�0κ1; �hκ2; �nκ)Xi(�nκ)

Mκ

M
ei �q[ �X(�hκ2)− �X(�0κ1)].

(A8)

For the case of central forces, we obtain

∂ω(�q,λ)

∂εii

=− 1

4ω(�q,λ)MC

∑
kl

∑
κκ ′

∑
�n

ϕ
(3)
kli (�0κ; �nκ ′)

× [Xi(�nκ ′) − Xi(�0κ)]
{
eκ∗
k (�q,λ)eκ ′

l (�q,λ)

− eκ ′∗
k (�q,λ)eκ

l (�q,λ)ei �q·[ �X(�nκ ′)− �X(�0κ)]
}
. (A9)

Using ϕ
(3)
kli (�0κ; �nκ ′) = −ϕ

(3)
kli (�nκ ′; �0κ), we see that the right-

hand side of (A9) is symmetric with respect to an interchange
of atoms (�nκ ′) ↔ (�0κ). In case of graphene, acoustic modes
satisfy eA

k (�q,λ) = eB
k (�q,λ).

APPENDIX B

Anharmonic force constants �(3)
(
λ1λ2λ3

�q1 �q2 �q3

)
[Eq. (10)] and

�(4)
(
λ1λ2λ3λ4

�q1 �q2 �q3 �q4

)
[Eq. (14)] are defined by Fourier transforms

given by rather complex summations where each term contains
multiple factors such as the energy ω(�q,λ) and the polarization
vector eκ

i (�q,λ) evaluated at distinct values of �q and λ simul-
taneously. The first step in the construction of an algorithm
is therefore to obtain and store ω(�q,λ) and eκ

i (�q,λ) for the
�q-points which will be included in the calculation.

This first step was done here by using a code developed
previously for the study of harmonic phonons in graphene
reported in Ref. [35]. Due to the symmetry of the crystal,
numerical diagonalization of the dynamical matrix D(�q), car-
ried out through packages from the LAPACK libraries [57], is
performed only inside the irreducible part (IP) of the Brillouin
zone (1BZ) [Fig. 16(left)]. Further phonon frequencies and
polarization vectors, on the remaining �q-points in the entire
1BZ, are generated by symmetry operations satisfying the
properties �e(�q,λ) = �e∗(−�q,λ) and ω(�q,λ) = ω(−�q,λ), as well
as the orthonormality and closure conditions:∑

κi

eκ∗
i (�q,λ)eκ

i (�q,λ′) = δλλ′ , (B1a)

∑
λ

eκ∗
i (�q,λ)eκ ′

j (�q,λ) = δij δκκ ′ . (B1b)

Because of the band-crossing as function of the phonon
momentum �q, the use of an auxiliary algorithm, based on the
eigenvector orthogonality, is needed to maintain the sorting of
phonon modes after diagonalization [58].
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FIG. 16. (Color online) Discrete mesh with 225 �q points inside the irreducible part (IP) of the 1BZ (left). Comparison of meshes in the
vicinity of the � point (right).

Momentum conservation in Eq. (12) implies that �q1, �q2, and
�q3 included in the calculation must satisfy

�q1 + �q2 + �q3 = ± �G, (B2)

where �G is a vector of the reciprocal lattice. For this purpose,
we adopted a special finite mesh in such a way that �q1, �q2, and
�q3, satisfying Eq. (B2), belong to the mesh itself what reduces
considerably the number of diagonalizations of the dynamical
matrix. The mesh is defined such that every �q point is given
by

�q = n1�δ1 + n2�δ2, (B3)

where n1 and n2 are integers and �δ1 and �δ2 are the unit vectors
that define the mesh. The algorithm was designed following
closely the steps described in Ref. [49] where anharmonicities
of surface phonons in Al were studied [59]. We refer the reader
to that work for further details on the construction of the mesh.

Convergence of numerical results was verified by com-
paring results for three different meshes with 81, 225, and
729 distinct �q points inside the IP. Figure 16(left) displays

the case with 225 �q points. A comparison of the different
meshes near the � point is displayed in Fig. 16(right). Note that
smaller meshes are subsequently contained in the larger ones.
Thus, by increasing the mesh we keep the existing �q points
and new ones, lying at the intermediate distance between two
consecutive wave vectors, are added.

Contributions from the normal and umklapp processes are
identified in a simple way. Given a fixed �q1, the summation
over �q2 in Eqs. (89) and (90) runs over the whole BZ. For
each pair, �q1, �q2, and �q3 becomes unambiguously defined by
�q3 = −�q1 − �q2. Then, if the wave vector �q3 lies inside the
BZ the process is normal. Otherwise, a nonzero ±G is used
to remap �q3 to its equivalent �q point inside the BZ and the
process is counted as umklapp.

The dependence of the numerical results for the third-order
linewidths �(ω,�q) and bandshifths 	(ω,�q) with the number
of �q-points of the mesh at T = 100 K is analyzed in Fig. 17.
The overall agreement as function of the phonon momentum is
evident. Similar results were found also for other temperatures.
The total number of individual scattering processes, for every
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FIG. 17. (Color online) Comparison of results for the linewidth (left panels) and phonon shift (right panels) for different number of q points
in the mesh along the BZ.
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TABLE III. Total number of scattering processes included in the
calculation for the whole high-symmetry crystallographic path �-K-
M-�.

Mesh Normal Umklapp

729 922 594 621 662
225 118 407 77 689
81 15 581 9697

possible scattering channel, considered in the whole path
�-K-M-� for each mesh is shown in Table III.

The auxiliar variables ξ and η required to evaluate the δ

function and the principal part P , respectively, are studied
on Fig. 18. Here, we show the case of 729 �q points inside
the IP at T = 100 K. As is expected, when ξ is too small
the phonon linewidths �(�q,λ) results in uncorrelated peaks,
i.e., ξ = 0.1 cm−1 (solid-red curve). In the opposite limit, i.e.,
ξ = 20 cm−1 (dot-dashed light-blue curve), the peaks become
over-broadened and the phonon linewidth is over-estimated.
Therefore we used ξ = 5 cm−1 (solid black curve), which
results in good convergence and is consistent with values
adopted in previous related studies [19,49,50]. Similar trend
is present with the behavior of η. In this case the best choice
turned out to be ξ = 1 cm−1.

A last point, which deserves special mention, is the
determination of the scattering channels. This point constitutes
a mayor test for the accuracy of the code. Given a particular
�q, any scattering process

λ1 ↔ λ2 + λ3
(B4)

(λ1 ↔ λ2 − λ3)

should be identically to

λ1 ↔ λ3 + λ2
(B5)

(λ1 ↔ λ3 − λ2)

for arbitrary λi= ZA, TA, and LA, with i = 1,2,3. These
processes, however, are calculated independently and the
equality is valid only after the complete summations [Eqs. (89)
and (90)] over the entire BZ (every possible �q2 is included) are
performed. Thus every single process involving different �q1,

�q2 (and �q3) has to be taken into account properly, otherwise
the equivalence will not be satisfied.

The relationships (B5) and (B6) can be viewed as a
consequence of the symmetry of the lattice and the properties
of the interatomic force constants under interchange of �q2 with
�q3. Note for instance that using the equations of the Sec. IV, it
can be shown that

�
(3)
ijk

(
BBB

�q1 �q2 �q3

)
= �

(3)
ijk

(
BBB

�q1 �q3 �q2

)
. (B6)

The same is valid for �
(3)
ijk( AAB

�q1 �q2 �q3
), �

(3)
ijk( AAA

�q1 �q2 �q3
), and

�
(3)
ijk( BAA

�q1 �q2 �q3
). The remaining anharmonic force constant satisfy

instead the following conditions where, in addition to �q2 and
�q3, the order of the A and B atoms must be also interchanged:

�
(3)
ijk

(
BAB

�q1 �q2 �q3

)
= �

(3)
ijk

(
BBA

�q1 �q3 �q2

)
, (B7)

�
(3)
ijk

(
ABA

�q1 �q2 �q3

)
= �

(3)
ijk

(
AAB

�q1 �q3 �q2

)
, (B8)

�
(3)
ijk

(
AAB

�q1 �q2 �q3

)
= �

(3)
ijk

(
ABA

�q1 �q3 �q2

)
, (B9)

�
(3)
ijk

(
AAB

�q1 �q2 �q3

)
= �

(3)
ijk

(
ABA

�q1 �q3 �q2

)
. (B10)

With the replacement of expressions in Eqs. (B6) to (B10)
into the Eq. (90) for �(3)

(
λ1λ2λ3

�q1 �q2 �q3

)
together with the interchange

of λ2 and λ3, it can be shown that

�
(3)
AAA

(
λ1λ2λ3

�q1 �q2 �q3

)
= �

(3)
AAA

(
λ1λ3λ2

�q1 �q2 �q3

)
, (B11)

�
(3)
ABB

(
λ1λ2λ3

�q1 �q2 �q3

)
= �

(3)
ABB

(
λ1λ3λ2

�q1 �q2 �q3

)
, (B12)

�
(3)
BBB

(
λ1λ2λ3

�q1 �q2 �q3

)
= �

(3)
BBB

(
λ1λ3λ2

�q1 �q2 �q3

)
, (B13)

�
(3)
BAA

(
λ1λ2λ3

�q1 �q2 �q3

)
= �

(3)
BAA

(
λ1λ3λ2

�q1 �q2 �q3

)
, (B14)
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FIG. 18. (Color online) Effects of the auxiliar variables η and ε on the evaluation of the principal part and the delta function in the
calculation of the phonon shift (right panels) and linewidths (left panels).
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FIG. 19. (Color online) Contour plots of the contribution of selected scattering channels along the BZ for the TA and LA acoustic phonon
modes of graphene at �qA, �qB , and �qC (i.e., the middle points of �-K-M-�). Units cm−1 [qx (x axis) and qy (y axis) are given in units

of Å
−1

].

and, for example, that

�
(3)
BBA

(
λ1λ2λ1

�q1 �q2 �q3

)
= �

(3)
BAB

(
λ1λ1λ2

�q1 �q2 �q3

)
, (B15)

�
(3)
AAB

(
λ1λ2λ3

�q1 �q2 �q3

)
= �

(3)
ABA

(
λ1λ2λ1

�q1 �q2 �q3

)
, (B16)

and other similar ones, where we have used the notation

�(3)
κ1κ2κ3

(
λ1λ2λ1

�q1 �q2 �q3

)
= e

κ1
i (�q1,λ1)eκ2

i (�q2,λ2)eκ3
i (�q3,λ3)√

8ω(�q1,λ1)ω(�q2,λ2)ω(�q3,λ3)

×�
(3)
iii

(
κ1κ2κ3

�q1 �q2 �q3

)
. (B17)

In addition, the calculation of any given �
(3)
ijk requires

the evaluation of exponential functions where the scalar
product �q · �X may result in an integer fraction of π .
Any small error or loss of precision in the sum over the
wave vectors �q1, �q2, �q3 (normal) and ± �G (umklapp) can
prevent the numerical equivalence between Eqs. (B5) and
(B6).

Finally, the spatial distribution inside the BZ of the
scattering channels (Fig. 19) is also representative of the
accuracy of the code (this figure is complementary to Fig. 14).
Notice therein the perfect match of the blue dotted line
between normal and umklapp contributions which, as we
explained above, require the inclusion of a reciprocal lattice
vector �G.
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