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Active loaded plasmonic antennas at terahertz frequencies: Optical control of their
capacitive-inductive coupling
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We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This
is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our
experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon
polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes.
Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load
can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel
circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple
concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for
optoelectronic devices.
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I. INTRODUCTION

Optical antennas are crucial components in the design of
future optoelectronic devices. Their main function is to convert
free-space electromagnetic radiation into localized energy and
vice versa [1]. Over the past decade plasmonic antennas have
gained an exceptional popularity mainly because of their abil-
ity to confine visible and infrared radiation into lengths much
smaller than the free-space wavelength [2]. Their prospective
use in nanoscale electronic devices and detectors [3–5] as
well as in systems that arbitrarily control wavefronts [6] has
stimulated many research groups to thoroughly investigate
their optical far-field properties and near-field interactions
with neighboring elements. The configurations that have been
proposed, inspired by their radio-frequency analogs, include
among others, dipole [7], Yagi-Uda [8,9], and bowtie [10–12]
antennas whose purpose is to control directivity and bandwidth
of visible and infrared waves. Furthermore, new antenna
designs that exhibit more exotic properties have been proposed
recently. These designs combine multiple resonating elements
to achieve asymmetric Fano-like resonances [13–18] and
electromagnetically induced transparency [19,20] as well as
metasurfaces that introduce gradual phase retardation along
the propagation direction [6,21,22].

In addition to these studies, a great emphasis has been
given to the investigation of actively controlling the optical
properties of plasmonic antennas. For this purpose dielectric
and metallic loading of antenna elements has been considered
and lumped circuit theory has been used to describe their
resonant properties [23–25]. Near-field optical microscopy
has been used to study the amplitude and phase of the fields
in loaded nanoantennas verifying the validity of the lumped
circuit theory at the nanoscale [26]. A similar design has been
used recently to investigate the scattering and nonlinear optical
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properties of such loaded antennas [27,28]. These works have
laid a solid ground for actively controlling the properties of
metallic antennas.

Semiconducting materials could be the ultimate candidate
for actively controllable antennas, owing to their versatile
nature. Their optical properties can be easily adjusted by
simply controlling the density of free charge carriers, which
leads also into a tunability of their plasmonic behavior from
the infrared to the far-infrared (THz) regime [29,30]. Several
studies have exploited the flexible nature of semiconductors in
combination with metals to achieve tunability of resonances
in plasmonic and metamaterial structures [31–34]. Besides
these studies, an all-optical control of plasmonic antennas
made completely out of semiconductors has been recently
demonstrated using a spatial light modulator (SLM) [35].

In this paper we present an experimental and theoretical
study on photogenerated coupled plasmonic antennas, made
out of semiconductors and functioning at THz frequencies.
Furthermore, we explore the photoexcitation of loads at the
gaps of these antennas that act as capacitors or inductors,
and discuss the optical response of the antennas in terms
of a simple electrical circuit model. In contrast to previous
studies [26,27], using the information of the complex electric
field provided by THz time domain spectroscopy we are
able to determine experimentally an effective impedance
of the equivalent resonant LC circuit. Finally, we observe
the existence of a capacitive and an inductive behavior
of localized surface plasmon polaritons formed at different
frequencies.

II. PHOTOEXCITATION OF ACTIVE LOADED ANTENNAS

Our experiments have been performed using a time-
resolved THz time domain spectrometer (TDS). For this
pump-probe technique a commercial amplified laser system
has been utilised (Legend Elite HE+ seeded with the Mantis
Ti:Sapphire laser). The laser delivers 100 fs amplified pulses
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FIG. 1. (Color online) Photogenerated dimer THz antennas. (a) Schematic of a time-resolved THz spectrometer (DS: delay stage; BS:
beam splitter; PBS: polarizing beam splitter; PL: projection lens; WP: Wollaston prism; BP: balanced photodiode). (b) The two components
of the coupled antennas are merged together forming a single linear antenna. (f) The coupled antennas are separated by a dielectric gap with
length Lg = 53 ± 3 μm. (c)–(e) Intermediate cases where the two constituent components of the dimer antenna are bridged with a metalliclike
connector. (g) shows a detailed analysis of (d). The color scale and the vertical scale of the horizontal and vertical cuts illustrates the pump
fluence.

with wavelength λ = 800 nm and pulse energy 6 mJ at 1 KHz
repetition rate. These pulses are used for THz generation and
detection as well as for band-to-band carrier excitation in
the semiconducting sample. For the generation and detection
of THz pulses we use 20% of the intensity. Out of this
intensity 95% is used for THz generation through difference
frequency mixing in a 0.5 mm ZnTe crystal, while the rest is
used for electrooptical detection in a 1 mm ZnTe crystal as
illustrated in Fig. 1(a). By controlling the time delay between
the beam that generates the THz radiation and the one used
for the detection we can reconstruct the THz electric field
transients. The remaining 80% of the initial intensity is used for
photoexciting free carriers in the semiconductor. This beam,
which is spatially shaped by a SLM and projected on the
sample, excites free electrons at the illuminated areas of a
semiconductor surface in the form of coupled dimer antennas
(Fig. 1(b)–1(g) and Fig. S-1 [36]). The sample used for the
experiments is a 1 μm thick single crystalline GaAs bonded
on to a 1 mm thick amorphous quartz substrate [35].

The pump-probe time delay �τp−p in our experiment
is defined as the temporal separation between the optical
pump pulse, which excites the free charge carriers and the
THz probe pulse. With this definition a �τp−p < 0 indicates
that the THz pulse propagates through the semiconductor
before the excitation of free carriers. On the other hand
�τp−p > 0 implies that the THz pulse propagates through
the semiconductor after the free carriers have been excited
by the pump pulse. A �τp−p = 10 ps was chosen for our
experiments. This time delay is sufficiently short, such that
the spatial diffusion of the free carriers does not modify the
dimensions of the photoexcited structures. It is also essential to
mention that at this time scale we did not observe any ballistic
electrons that could potentially modify the dimensions of the
structures. The dynamics of the photoexcited carriers display
an almost single-exponential behavior that leads to an effective
carrier recombination time, which includes surface and bulk
recombination, of around τr ∼ 300 ps (see Fig. S–2 in Sup-
plemental Material). Moreover, the number of photoexcited
carriers remains unchanged during the propagation of the THz
pulse through the sample since its temporal envelope τTHz is

much shorter than the recombination time τr of the free charge
carriers in GaAs (τTHz ∼ 1 ps � τr).

Figures 1(b)–1(f) show images of the photoexcited struc-
tures taken by placing a CCD camera at the sample position.
As can be appreciated in this figure the total length and
width of the antennas is kept constant and only the intensity
in the gap is varied. Figure 1(g) represents a more detailed
analysis of Fig. 1(d). To have an estimate of the photoinduced
antenna dimensions, we define an effective length and width
by taking the size at which the pump intensity drops at half
of its maximum (FWHM). This gives an effective length of
L = 195 ± 3 μm and width of W = 56.5 ± 3 μm, where the
uncertainties in the estimated values are associated with half
of the pixel size of the CCD camera. The single linear antenna
[Fig. 1(b)] is being split into two coupled antennas that are
connected with a bridge that has constant effective length
of Lg = 53 ± 3 μm and varying width Wb from 0–56.5 μm.
Determining the bridge dimensions as well as the carrier
concentration is critical. The bridge width is defined by
summing the number of pixels in the gap area that have
an intensity larger than the intensity at half the maximum
(FWHM). Taking into consideration the pixel dimensions
(6.452 μm2) of the camera, this calculation will result into an
effective area that has intensity higher than half the maximum.
Subsequently, we define the effective bridge width, Wb, by
dividing the calculated area by the gap length Lg. The values
of Wb are reported in the insets of Fig. 2 for each case. The
photogenerated loaded antennas are positioned in a random
distribution (see Fig. S–1 in Supplemental Material [36])
with average density of ∼9.5 antennas/mm2. The random
distribution ensures that features associated to diffractive
orders in the far-field spectrum are suppressed.

As it can be seen by the detailed analysis on one of
the intermediate antennas [Fig. 1(g)], the maximum pump
fluence is 70 μJ/cm2. To understand the behavior of our
sample at these high pump fluences we have performed a
pump-probe analysis. In this analysis we have measured
the THz transmission through a homogeneously pumped
GaAs layer. From this measurement we have determined the
conductivity of the sample, which has a Drude-like behavior
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FIG. 2. (Color online) (a) Far-field extinction measurements of randomly positioned loaded antennas with different bridge widths, as
shown in the insets. The symbols are the experimental data and the solid curves represent bi-Lorentzian fits to the data. (b) Numerical FDTD
calculations of far field extinction. The curves are displaced for clarity by a vertical shift of 0.2, 0.15, 0.1, 0.05, and 0 from red to blue
respectively.

with carrier density N = 2 × 1018 cm−3 and carrier mobility
of μ = 0.15 m2 V−1 s−1. It is worthwhile to note that the
finite contrast of the image projected by the SLM leads to
a finite pump fluence in the regions defined as dark by the
SLM. This fluence is lower than <0.25 μJ/cm2. A detailed
analysis on a transmission measurement from a fully dark
image, as defined by the SLM, showed that the conductivity of
the sample follows a Drude-like behavior with carrier density
N = 3 × 1015 cm−3 and mobility μ = 0.7 m2 V−1 s−1.

III. RESULTS

To determine the THz response of the dimer antennas, we
excite them at normal incidence and we measure the THz
transmission spectrum in the forward direction. Figure 2(a)
illustrates the main experimental results of this paper. This plot
shows the far-field extinction spectra, defined as one minus
the normalized transmittance, as a function of wavelength
(bottom axis) and frequency (top axis). The extinction is
equal to the sum of scattering and absorption. The symbols
are the experimental data points while the solid lines are
bi-Lorentzian fits to the data. The main feature of this figure is
a resonance at long wavelengths that red shifts from 850 μm
to 1034 μm as we decrease the width of the bridge. This
resonance corresponds to the fundamental resonant mode
of the plasmonic antennas (λ/2 resonance), defined by an
effective length that characterizes the entire loaded antenna as
described above. Moreover, as the bridge width decreases (i.e.,
bridge width of 8.6 μm) a second resonance appears at shorter
wavelengths (λ = 327 μm, dark blue curve). This resonance
is slightly blue shifted with respect to the λ/2 resonance of
the individual arms of the dimer antenna at λ = 380 μm (see
light blue curve, which corresponds to Wb = 3.1 μm). The
transition from the λ/2 resonance of the entire plasmonic
antenna to the λ/2 resonance of the dimer antenna is controlled
by the width of the gap linking the two components. As it
is elucidated later in the manuscript, this behavior can be

explained by a simple lumped circuit model. Figure 2(b)
represents full three-dimensional (3D) electrodynamic calcu-
lations of the far-field extinction using the finite difference in
the time domain (FDTD Lumerical) method. The design of
the structures used for the simulations incorporates a graded
carrier concentration towards the edges of the antenna to
mimic as close as possible the conditions of the experiment
[35]. The simulations qualitative reproduce the main far-
field resonant features of the experimental observations. The
small quantitative discrepancies between measurements and
simulations can be attributed to the difficulty in defining from
the CCD images the exact antenna geometry and dimensions
for the simulations.

Although the spectra from both the experiment and simula-
tions provide qualitative information about the different modes
of this system, it is important to investigate more in detail the
interaction of the antenna with its load. Therefore, with use of
the FDTD method we have numerically calculated the electric
field enhancement |E(r,ω)/E0(r,ω)| and the surface charge
σ (r,ω) distribution of one of the antennas (Wb = 8.6 μm),
at the short- and long- wavelength resonances. We should
note that the obtained surface charge distributions have been
smoothed, in order to remove the artificial (much lower)
surface charges induced by the sequential shells of graded
carrier concentrations. In Fig. 3(a) we show the electric field
enhancement at λ = 327 μm, calculated at the middle of
the antenna’s height, i.e. 0.5 μm. The corresponding surface
charge distribution σ (r,ω) is displayed in Fig. 3(b), where
a dipole-dipole distribution typical of a bonding mode can
be observed [37]. This mode, which is slightly blue shifted
with respect to the corresponding mode in the absence of a
conducting bridge (see Fig. 2), indicates a capacitive load.

On the other hand, the presence of the photoinduced bridge
allows for charge transfer along the entire antenna, which
manifests itself by the appearance of a charge transfer mode
at longer wavelengths [37]. In the particular case we are
examining here, due to the small width of the bridge, this
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FIG. 3. (Color online) (a) Electric field enhancement (|E/E0|) and (b) surface charge distribution (σ ), calculated for an antenna with bridge
width 8.6 μm, along an in-plane cross section of the antenna through its height center, at λ = 327 μm. (c) Electric field enhancement (|E/E0|)
and (d) surface charge distribution of the same antenna at λ = 1030 μm. The red and blue areas in (b) and (d) denote positive and negative
charges, respectively.

mode appears as a very broad, low-intensity mode. As the
width of the bridge increases, charge transfer along the dimer
is easier, and this mode becomes more intense and blue shifts,
eventually becoming the antenna λ/2 mode of a continuous
rod, as can be seen in Fig. 2. For this mode the electric field
(shown in Fig. 3(c) for Wb = 8.6 μm and at λ = 1030 μm) is
distributed along the entire antenna, which resembles a long
dipole, as observed also in the surface charge distribution of
Fig. 3(d). This field distribution indicates an inductive behavior
of the antenna load for this bridge width and wavelength. A
non-negligible electric field intensity is also obtained around
the bridge, associated with the presence of small surface charge
densities of opposite sign at the crevices around the bridge.

An important parameter characterizing the resonant behav-
ior of these loaded antennas is their impedance. The impedance
determines the interaction of a dipole antenna with its load.
More precisely, it is defined as the ratio of the input voltage
over the displacement current and it quantifies the total amount
of energy dissipated or stored in the system. In terms of the
electromagnetic properties, the impedance is defined as,

Z ≡ R − iX =
√

μ0 μ

ε0 ε
, (1)

where R is the resistance, X the reactance, μ0 = 4π ×
10−7 H.m−1 and ε0 = 8.85 × 10−12 F.m−1 are the vacuum
permeability and permittivity respectively. The impedance is
a complex quantity with its real component being twice the
average power dissipated in the system and its imaginary
component related to the difference between the average
inductive and capacitive energies stored in the system [38].

The estimation of the complex impedance from the ex-
perimental data is difficult since it requires the complex
transmitted and reflected signals [39]. However, in the simplest
case, where there are no intrinsic magnetic fields due to

circulating currents in the photogenerated antennas, we can
assume that the magnetic permeability is equal to unity.
Using this assumption the calculation of the impedance is
simplified to only the knowledge of the complex transmitted
signal.

In contrast to other works, where the optical properties
and therefore the impedance of such loaded devices are
estimated from the far-field transmission intensity measure-
ments and assuming a lumped circuit model [27], here we
measure the complex transmission and thus extract these
values directly from the experimental data, i.e., without any
a priori assumption. As it is demonstrated later in the text,
the retrieved quantities are in a very good agreement with the
far-field resonant frequencies. In the following we discuss the
retrieval of the effective load impedance describing the random
distribution of the antennas. This analysis is thus performed
for the whole sample and not for single loaded antennas. In
a conventional THz-TDS experiment the measured signal is
the electric field as a function of time, which when Fourier
transformed results in the complex electric field as a function
of frequency, encompassing information about the amplitude
and phase accumulated by the transmitted field. In order to
retrieve the complex effective permittivity from transmission
measurements we use the transfer matrix method [40]. In a
sample that consists of a thin layer of material on a substrate
(such as the one studied here), the wavelength is much longer
than the thickness of the layer, d � λ. Therefore, the thin film
approximation can be applied without any loss of generality.
In this approximation the complex effective permittivity can
be obtained from

Ẽsam(ν)

Ẽsub(ν)
� 1 + iβ

√
ε̃eff

1 + iβ
(1−√

ε̃eff )(
√

ε̃eff−
√

ε̃sub)
1+√

ε̃sub

, (2)
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FIG. 4. (Color online) Detailed analysis of the transmitted signals through the photogenerated antennas. (a)–(b) Real (ε1) and imaginary
(ε2) components of the effective permittivity for the randomly positioned loaded antennas as determined by the transfer matrix method in the
thin film approximation. (c)–(f) Real component of the effective impedance (resistance, Rload

eff ), (g)–(j) imaginary component of the effective
impedance (reactance, Xload

eff ). The black dashed lines illustrate the conjugate effective reactance of the randomly positioned dimer antennas
(X∗dimer

eff ).

where Ẽsam(ν) and Ẽsub(ν) are the THz electric fields transmit-
ted through the sample and through the substrate respectively,
β = ωd/c, ω is the angular frequency, c is the speed of
light in vacuum, ε̃sub is the complex permittivity of the
substrate and ε̃eff is the effective complex permittivity of
the photogenerated structures. The experimentally obtained
effective permittivities for the loaded antennas are illustrated
in Figs. 4(a)–4(b). The real component of the effective
permittivity exhibits a resonant Drude-Lorentz-like behavior
[41]. This response is characteristic for the motion of free
charge carriers in the presence of an external driving force,
which in our case is the THz electric field [42]. The frequency
that corresponds to the transition through the ε̃eff = ε∞ dashed
line indicates the dominant resonant frequency of the antennas,
where ε∞ is the contribution of the ion lattice and bound
charges to the permittivity of GaAs. This is also depicted in
the imaginary component of the effective permittivity, which
exhibits a resonant behavior. The increasing character of the
imaginary component of the permittivity at low frequencies is
due to the nonresonant absorption of THz radiation.

In order to define the effective permittivity of the load
we divide the transmitted THz electric fields measured for
the photogenerated loaded antennas [Figs. 1(a)–1(d)] with the
transmission measured from the dimer antenna [Fig. 1(e)] [see
Eq. (2) and Supplemental Material]. The obtained electric
field corresponds to an effective response of the antenna
load. This field is then normalized by the transmitted electric
field obtained through a dark image as defined by the
SLM. Consequently, the effective permittivity of the load

is retrieved by using the transfer matrix method in the thin
film approximation (see Supplemental Material). By defining
the permittivity of the load we calculate the effective load
impedance (Zload

eff ) using Eq. (1). To calculate the impedance
of the dimer, Zdimer

eff , we use an approach similar to the one
described above, in which we normalize the THz electric
field transmitted through the photogenerated dimers with the
electric field taken when there are no pumped structures
(reference). As the measurement that defines the impedance of
the dimer contains also the contribution from the free charge
carriers that are being generated in the background due to the
finite contrast of the SLM, it is necessary to correct for this
background. Therefore, we subtract the impedance of a dark
image, Zdark

eff .
Figures 4(c)–4(f) show the resistive (Reff) component while

Figs. 4(g)–4(j) show the reactive (Xeff) component of the
effective impedance for different bridge widths, from Wb =
56.5 μm (red) to Wb = 8.6 μm (blue). As can be observed in
the figure, the real and imaginary components of the impedance
show a resonant feature. An interesting aspect of the load
behavior relies on the imaginary component of impedance
[Figs. 4(g)–4(j)] that undergoes a change of sign from negative
at high frequencies to positive at low frequencies. This change
of sign is directly related to a transition from an inductive to a
capacitive behavior of the effective load. It is also noteworthy
that we observe a red shift of the resonance as we decrease
the bridge size. This means that the transition from inductive
to capacitive behavior also red shifts. From this analysis
we observe experimentally that the behavior of the effective
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FIG. 5. (Color online) Lumped circuit model (lines) and experi-
mental values (symbols) for varying bridge width. The blue dotted
line corresponds to the capacitive mode for the λ/2 mode of the
individual component of the dimer, while the red solid and dashed
lines correspond to the λ/2 (long wavelengths) and 3λ/2 (short
wavelengths) inductive modes. The gray circles correspond to the
resonant frequencies of the loaded antennas as obtained from a
bi-Lorentzian fit to the far-field extinction measurements of Fig. 2.
The blue/red triangles and red circles are the wavelength at which the
effective dimer reactance equals to minus the effective load reactance
of the measured sample as shown in Figs. 4 (g)–(j) (Xdimer

eff = −Xload
eff ).

The inset illustrates a representation of the theoretical model that has
been used for the calculations.

impedance exhibits a similar behavior to the impedance of a
resonating LC circuit connected in parallel, as it was previously
predicted [24,43], where L is the inductive load added by the
conductive bridge and C the parallel capacitive load introduced
by the dielectric gap. In addition to this behavior, we show on
the reactance plots the conjugate values of the reactance for
the dimer, X∗ dimer

eff (dashed black line). The intersection points
in the effective reactance plots [Figs. 4(g)–4(j)] correspond
to the impedance matching conditions between the antenna
and its load (Xdimer

eff = −Xload
eff ). The frequencies for which

these impedance matching conditions are fulfilled are shown
in Fig. 5 as circles and triangles, and they are in excellent
agreement with the positions of the far-field resonances
extracted from Fig. 2(a) and displayed as gray points in
Fig. 5.

To qualitatively explain the spectral response of the loaded
dimers we theoretically employ impedance matching condi-
tions between the dimer antenna and its load. The impedance
of a dimer antenna is similar to the response of an RF
antenna [44] with the difference that its effective length is
larger, due to its plasmonic nature and geometry [45]. The
impedance of the load is defined by a parallel addition of
the plasmonic bridge, Zb = iLg/ωεbdWb and the dielectric
gap, Zg = iLg/ωεgd(W − Wb) [43], where W and Wb are the
experimentally obtained width of the gap and bridge respec-
tively, d is the thickness of the sample and εb,g are the per-
mittivities of the bridge and gap calculated from the Drude
model. For the calculation of the permittivities a carrier

concentration of 1018 cm−3 for the bridge, 1016 cm−3 for
the gap and 3 × 1015 cm−3 for the surrounding semiconductor
were used. An illustration of the model used for the calculation
is shown in the inset of Fig. 5.

The results of this calculation display three distinct regimes
as shown in Fig. 5. The first one, represented by the red
solid line at long wavelengths, is the fundamental resonant
mode, λ/2, of the entire loaded antenna and corresponds to
an inductive behavior. To confirm the inductive nature of
the mode our FDTD simulations have shown that in contrast
to the undoped GaAs layer, the magnetic field around the
loaded antenna with bridge width 47.9 μm has a fourfold
enhancement and decreases as the bridge width becomes
smaller. This mode diverges for small bridge widths due to
the high resistance and capacitance added by the dielectric
surrounding the bridge. Additionally, at short wavelengths we
observe two modes. The first one for large bridge widths (red
dashed line) corresponds to the higher-order resonant mode,
3λ/2, of the entire resonant antenna while the second one
for small bridge sizes (blue dotted line) is related to the λ/2
resonant mode of the individual components of the dimer. The
above theoretical calculations are in a very good agreement
with the experimental data shown by gray points in Fig. 5.

IV. CONCLUSIONS

In summary, we have demonstrated the all-optical gener-
ation of loaded plasmonic antennas for THz radiation on a
flat GaAs layer using a spatial light modulator. The proposed
concept allows a full control over the antenna properties and
provides flexibility on defining the applied load. Furthermore,
we are able to retrieve experimentally the effective impedance
of the load and verify the validity of the lumped circuit theory
in semiconducting systems by recovering a resonant behavior
that is analogous to an LC circuit. We have also shown the
existence of a capacitive and an inductive behavior of localized
surface plasmon polaritons at THz frequencies. Our results
indicate that the transition between these two regimes can be
actively controlled by tuning the design of the loaded antennas,
which is controlled by the optical illumination pattern on a
flat GaAs layer. The demonstration of active semiconductor
lumped circuits and the possibility of optically generating
these circuits will open new venues for fundamental research
and new technologies. Examples of these are the ultrafast
dynamics of photogenerated circuits [46] or their applications
for resonant THz sensing and spectroscopy [47,48] on flat
layers that are optically structured.
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[10] F. González and G. Boreman, Infrared Phys. Tech. 46, 418

(2005).
[11] H. Fischer and O. J. F. Martin, Opt. Express 16, 9144 (2008).
[12] H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer,

and H. Giessen, Opt. Express 16, 7756 (2008).
[13] A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, Nano

Letters 9, 1651 (2009).
[14] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.

Nordlander, H. Giessen, and C. T. Chong, Nature Mater. 9, 707
(2010).

[15] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.
Phys. 82, 2257 (2010).

[16] Y. Francescato, V. Giannini, and S. A. Maier, ACS Nano 6, 1830
(2012).

[17] M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and
O. L. Muskens, ACS Nano 6, 6462 (2012).

[18] A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, ACS
Nano 7, 4527 (2013).

[19] N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L.
Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008).

[20] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T.
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