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Topological semimetals in three-dimensions (e.g., a Weyl semimetal) can be built by stacking two-dimensional
topological phases. The interesting aspect of such a construction is that even though the topological building
blocks in the low dimension may be gapped, the higher dimensional semimetallic phase emerges as a gapless
critical point of a topological phase transition between two distinct insulating phases. In this work, we extend this
idea by constructing three-dimensional topological semimetallic phases akin to Weyl systems by stacking one-
dimensional Aubry-Andre-Harper (AAH) lattice tight-binding models with nontrivial topology. The generalized
AAH model is a family of one-dimensional tight-binding models with cosine modulations in both hopping
and on-site energy terms. In this paper, we present a two-parameter generalization of the AAH model that can
access topological phases in three dimensions within a unified framework. We show that the π -flux state of this
two-parameter AAH model manifests three-dimensional topological semimetallic phases where the topological
features are embedded in one dimension. The topological nature of the band touching points of the semimetallic
phase in 3D is explicitly established both analytically and numerically from the 1D perspective. This dimensional
reduction provides a simple protocol to experimentally construct the three-dimensional Brillouin zone of the
topological semimetallic phases using “legos” of simple 1D double well optical lattices. We also propose Zak
phase imaging of optical lattices as a tool to capture the topological nature of the band touching points. Our work
provides a theoretical connection between the commensurate AAH model in 1D and Weyl semimetals in 3D, and
points toward practical methods for the laboratory realization of such three-dimensional topological systems in
atomic optical lattices.
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I. INTRODUCTION

Topological semimetals (TS) are gapless phases of matter
where the metallic nature is attributed to an underlying band
topology [1]. For example, in three dimensions, a broken time
reversal or inversion symmetry can lead to nondegenerate
valence and conduction bands to touch at some diabolic
points in the Brillouin zone. These band touching points are
topological in nature and are dubbed as Weyl semimetals
(WSM) [1–4]. The topological robustness against symmetry
breaking terms of these band touching points manifests in
the underlying low-energy excitation structure. Expanding the
Hamiltonian around these band touching points yields the 3D
Weyl equation [5,6]. The characteristic of a 3D Weyl equation
is that it exhausts all the available Pauli matrices such that one
cannot add an anticommuting Pauli matrix that can generate
a “mass” term or in other words open a gap at these band
touching points. These low-energy excitations not only allow
for exotic surface effects such as Fermi arcs, but also lead
to nontrivial transport phenomena such as chiral magnetic
effect [7–9].

The gapless nodal region in the TS can be viewed as a
critical point of a phase transition in the momentum space
between two topologically distinct insulating phases residing
in a lower dimensional subspace. These insulating phases
are classified by the symmetry and the dimensionality of the
lower dimensional manifold. For example, a 3D WSM can
be viewed as a momentum space phase transition between a
Chern insulator and a normal insulator in 2D with the gapless
(nodal) points appearing at the critical point of this topological
phase transition. This effect has been proposed to exist in a
ferromagnetic compound HgCr2Se4 [10].

A natural question then arises whether one can construct
TS by stacking topological phases in one dimension. So far,
this idea [11,12] has not been quantified in terms of a rigorous
model. The central goal of our work is to understand TS in 3D
from the point of view of 1D models manifesting topological
phases. In this work, we show that the π -flux state of the gener-
alized Aubry-Andre-Harper (AAH) model [13–15] in 1D can
be used as a theoretically unifying framework to understand
semimetallic phases in both two and three dimensions. The
simplest AAH model is a 1D tight-binding model with on-site
cosine modulation with a phase parameter corresponding to
the momentum in the second dimension [16]. In the absence
of discrete symmetries, 1D AAH models are topologically
trivial [17]. Thus it is imperative that the 1D building blocks
must have discrete symmetries in order to have a nontrivial
topological index. To allow for discrete symmetries within the
AAH framework, this model can be expanded to a generalized
AAH model that contains cosine modulations in both hopping
(off-diagonal AAH) and on-site terms [18–20]. The off-
diagonal AAH model for π -flux state has some surprising
connections to the well-known Su-Schreiffer-Heeger (SSH)
model [21] with inversion symmetry and was recently [22,23]
mapped to the double Majorana chain, which is known to
manifest a Z2 topological invariant [24]. This 1D topological
phase was attributed to an underlying chiral symmetry which
leads to topological zero-energy modes in agreement with the
classification scheme [17]. Recent work [25,26] has identified
various 2D topological phases such as Haldane model within
the generalized AAH scheme. AAH models with π flux can
be thought of as a 2D TS as a function of the phase parameter
of the hopping modulation in the corresponding 1D model. In
the case of the off-diagonal AAH model with π flux, the gap
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closing point is a topological quantum phase transition point
at which the topological zero modes terminate [22].

To access 3D physics, we extend the generalized AAH
model to contain two cosine modulations on both hopping
and on-site terms. These modulations contain different phase
parameters corresponding to the momentum in each additional
dimension. Note that this model is a 1D real-space model
(with two distinct phase parameters) manifesting topological
features in accordance with the symmetries present [22] in
1D. The presence of the phase parameters in the cosine
terms of the AAH model provides the flexibility necessary
for studying 3D topological features using an effective 1D
model. Within the generalized AAH scheme, we uncover
a remarkable connection between the symmetry protected
gapless topological phases in one dimension and semimetallic
phases in two and three dimensions. The idea is to construct
the Brillouin zone (BZ) (momentum space) of the semimetallic
phases in higher dimensions by stacking the real-space AAH
models in 1D with the phase parameters sweeping the whole
BZ of higher dimensions. Although the topological nature
of the band touching points arises from the symmetries that
are implicit in the 1D AAH model, the unique topological
phases exclusive to higher dimensions emerge on breaking
these symmetries. In this context, the AAH framework presents
itself as an ideal platform to explore semimetallic phases in
three dimensions with their topological aspects rooted in 1D
systems. We explicitly show the topological nature of the
semimetallic phase by mapping these one-dimensional slices
containing the zero-energy end states to double Majorana
chains manifesting the Z2 index. These zero-energy modes
are the topological end states of a 1D system and construct
the 3D surface states in the form of Fermi arcs. Within
our construction these arc states form the zero-energy Fermi
surface, which can be attributed to the presence of the chiral
symmetry in the 1D model. Our theory allows us to trace
the exotic Fermi arcs or nodal lines unique to the 3D WSM.
Understanding WSM with nodal points within 1D framework
is advantageous in the context of anomalous transport and has
been addressed recently in Ref. [12]. Similar construction has
been carried out for 3D topological insulators using Shockley
model [27]. Our construction of Fermi arcs can be thought of
as a generalization of the Shockley criterion for surface states
of topological insulators to the case of surface arc states of
Weyl semimetals.

A particular advantage in working within the AAH
framework is that all the parameters of this model can
be accessed within the existing technology of cold-atomic
experiments. In the past few years, cold-atom experiments
have developed great control of 1D optical lattices with double
well potentials [28–32]. The parameters associated with the
AAH models are equivalent to different double well potentials
corresponding to different dimer configurations. A recent
experiment (Ref. [32]) has been successful in imaging the
Zak phase (polarization) between two different SSH dimer
realizations of double well potentials. In the light of recent
experimental advances, the two-parameter generalized AAH
model provides a protocol to construct three-dimensional
semimetallic phases in the optical lattice systems. We show
that the spectral features of different realizations of double well
lattices form the three-dimensional BZ (momentum space)

of WSM on breaking the inversion symmetry. Our work
provides simple methods to tune these double well potentials
where each configuration is equivalent to a 1D BZ slice of a
3D WSM. These different configurations can be constructed
via experimentally tunable parameters (on-site energy and
hopping modulations) of a double well optical lattice.

This paper is organized as follows. In Sec. II, we define
AAH models with two phase parameters with both diagonal
and off-diagonal hopping elements. In Sec. III, we present
the π -flux AAH model with two phase parameters and show
that it can be mapped on to the double Majorana chains
that manifest topological zero-energy modes. In Sec. IV, we
add on-site modulations and write down analytical conditions
for the existence of the “topologically unavoidable” band
touching points. We show that these conditions manifest nodal
lines and Weyl arcs, which are the hallmark of the 3D TS
phases. In Sec. V, we present an alternative way to identify
the topological nature of theses band touching points using
polarization (Zak phase) method to make contact with the
experimental capabilities. Finally, in Sec. VI, we discuss the
experimental feasibility of our work and in Sec. VII conclude
the paper. In Appendix, we derive the two parameter AAH
model starting from a 3D cubic lattice with a tilted flux in yz

plane.

II. MODEL

In order to build TS in 2D and 3D, we consider a 1D
model with two phase parameters that can sweep 3D BZ. This
1D model can be derived from a parent 3D model shown in
Appendix. We would like to emphasize that the topological
properties we consider will be associated with the 1D model
for any choice of the two phase parameters. This allows us
to make contact with the physics of the 3D systems. We start
with the following 1D tight-binding model Hamiltonian:

H (φy,φz) =
N−1∑
n=1

t
(
1 + λxygn

(
bz,φ

od
y

)

+ λxzgn

(
by,φ

od
z

))
c
†
n+1cn + H.c.

+
N∑

n=1

(
λygn

(
bz,φ

d
y

) + λzgn

(
by,φ

d
z

))
c†ncn. (1)

We have defined gn(b,φ) = cos(2nπb + φ). The above 1D
chain in Eq. (1) has N sites (n = 1, 2, . . . ,N ). We adopt
open boundary conditions with n = 1 and N being the two
end sites. We mention that, although we explicitly discuss
fermion hopping in tight-binding lattices as appropriate for
band electrons in solids, all our conclusions are equally
valid for the corresponding bosonic case in atomic optical
or photonic lattices since we are considering a noninteracting
1D quantum system. The first term in the Hamiltonian is the
kinetic energy from the nearest-neighbor hopping, and the
second describes the on-site potential energy. We have derived
this model starting from a special 3D lattice model with a tilted
magnetic field. The details of this derivation are given in the
Appendix.

All the parameters in the 1D model [Eq. (1)] are indepen-
dently tunable from an experimental perspective, irrespective
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of how they are obtained starting from the 3D model. In
this sense, the 1D model is more flexible and general from
an experimental point of view. In the rest of this paper, we
will work with this effective 1D AAH Hamiltonian with two
phase parameters. The hopping strength (t , λy (z) λxy (xz)),
phases (φd

y (z),φ
od
y(z)), and flux fractions (by,bz) appearing in

the Hamiltonian can be treated as controllable parameters in
the experimental context.

A simpler version of the incommensurate AAH model has
also been successfully implemented in photonic waveguide
experiments [33,34]. The phase of the on-site modulation
assumes the role of the propagation direction of light injected
in to the waveguide. Photonic waveguides simulating incom-
mensurate AAH model have realized the 1D localization-
delocalization transition [33] and topological pumping of
light [35,36]. Topological aspects of an incommensurate AAH
model have been discussed and debated in Refs. [20,35–38]
and do not concern us at all in the current work. We
emphasize that all our analysis and results are based on the
physics of the commensurate π -flux AAH model and not the
incommensurate 1D model.

III. TOPOLOGICAL SEMIMETAL IN 3D
WITH INVERSION SYMMETRY

In this section, we start from the simplest case of the
off-diagonal AAH model with two cosine modulations. This
case corresponds to the parameter values of λy (z) = 0 and
consequently has full inversion symmetry in 3D.

The off diagonal AAH equation with two phase parameters
can be written as

H =
N−1∑
n=1

[t(1 + λxygn(bz,φy) + λxzgn(by,φz)]c
†
n+1cn+H.c.].

(2)

In the above equation, we have set φd
y (z) = φod

y(z) = φy(z)

without loss of generality. The above Hamiltonian reduces
to a 1D off-diagonal Hamiltonian for bz = by = 1/2, which
was recently [22,23] mapped to decoupled Majorana chains
that manifest topological zero-energy modes and support a
Z2 topological index [24]. λxz �= λxy �= 0 provides general-
ized conditions for the existence of the zero-energy modes.
Following Ref. [22], we rewrite the Hamiltonian in Eq. (2)
in the Majorana basis for bz = by = 1/2. We define c2n =
γ2n + iτ2n, c2n+1 = τ2n+1 + iγ2n+1, where γ and τ are two
species of Majorana fermions. In this new basis, Eq. (2)
becomes

H =
∑

n

[�−(φy,φz)(γ2nγ2n−1) + �+(φy,φz)(γ2nγ2n+1)]

−
∑

n

[�−(φy,φz)(τ2nτ2n−1) + �+(φy,φz)(τ2nτ2n+1)],

(3)

where �±(φy,φz) = 2it(1 ± λxy cos φy ± λxz cos φz). For
|�+(φy,φz)| > |�−(φy,φz)|, the Majorana chain is topologi-
cally nontrivial and has one zero-energy Majorana mode local-
ized at each end [22]. For the opposite regime |�+(φy,φz)| <

|�−(φy,φz)|, the system is topologically trivial with no end

(a) (b)

(c) (d)

FIG. 1. (Color online) Numerical energy spectrum for tight-
binding chain of 100 sites with open boundary conditions and
parameter value λxy = λxz = 0.3, λy = λz = 0, t = 1. (a)–(c) shows
the evolution of the spectrum as a function of φy for φz = 0,π/2,π , re-
spectively. (d) Region plot for the inequality condition |�+(φy,φz)| >

|�−(φy,φz)| as a function of for existence of zero-energy modes. The
shaded region corresponds to the zero-energy states and the boundary
of the region corresponds to the topological phase transition where
the zero-energy states terminate as seen in (a)–(c).

modes. In Fig. 1, we show the numerical energy spectrum
as a function of one of the phase parameters φy and monitor
the spectral evolution as a function of φz. In Figs. 1(a)–1(c),
we see that the zero-energy modes exist between the band
touching points. The band touching points can be moved using
the second phase parameter φz. Figure 1(c) shows maximal
separation of band touching points for φz = 0 connected by
degenerate zero-energy modes. For φz = π , Fig. 1(c) shows
that the two band touching points merge thereby collapsing
the line of zero-energy modes to a single band touching
point. We plot the regions in (φy,φz) plane, which satisfy
the condition |�+(φy,φz)| > |�−(φy,φz)| for the existence
of the zero-energy modes [see Fig. 1(d)]. The zero mode
existence condition in the (φy,φz) plane can be interpreted
as the zero-energy Fermi surface of the 3D band structure.

A. Discrete symmetries and robustness

The topology of the 1D model defined in Eq. (2) is
associated with the chiral symmetry. Chiral symmetry arises as
a combination of the time reversal and particle-hole symmetry.
Under time-reversal transformation, a π flux simply turns
into a −π flux. Since the magnetic flux terms are only well
defined modulo 2π for a lattice, the system is then invariant
under the time-reversal transformation. Therefore the system
shows no QH effect and thus has no QH edge modes. In
fact, this lattice model has no band gap but contains two
Dirac points with linear dispersion in analogy to graphene.
The invariance of the 1D model under cn → (−1)nc†n and
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c
†
n → (−1)ncn demonstrates particle hole symmetry. In terms

of the Altland-Zirnbauer classification, the 1D topology
belongs to the BDI class [17], which has an integer (Z)
invariant. Since we only allow for short range (nearest-
neighbor) hopping terms in our model, the integer Z index
can only take values 0 or 1 (i.e., Z2). If the kinetic energy
is dominated by the longer-range hopping terms, a higher
topological index can be achieved. We do not consider longer
range hopping in this paper. As long as the particle-hole
symmetry is preserved [39], the mapping to two decoupled
Majorana chains remains valid and thus the end modes are
stable with their energy pinned to zero. The robustness of
the zero-energy end modes on weakly breaking the particle
hole symmetry has been established in Ref. [22]. The on-site
modulations breaking the inversion symmetry (time reversal)
has a physical role in 3D. We will be considering such terms
in detail in Sec. IV.

IV. TOPOLOGICAL SEMIMETAL IN 3D
WITH BROKEN INVERSION SYMMETRY

In this section, we break the inversion symmetry by adding
on-site modulation terms. on-site cosine terms with π -flux
break the inversion symmetry (while retaining the particle-hole
symmetry). We can write down general conditions for the
existence of 3D TS phase for the general model in Eq. (4) in
the π -flux state (bz = by = 1

2 ). The general 1D Hamiltonian
in the π -flux state can be written as

H =
N−1∑
n=1

[t(1 + (−1)nλxy cos φy + (−1)nλxz cos φz)]c
†
n+1cn

+ H.c. +
N∑

n=1

(−1)n(λy cos φy + λz cos φz)c
†
ncn. (4)

To outline the symmetries of this 1D Hamiltonian, we can
write it in the Rice-Mele [40] form,

H =
N−1∑
n=1

�+(φy,φz)a
†
nbn + �−(φy,φz)a

†
nbn−1 + H.c.

+
N∑

n=1

ε(φy,φz)(a
†
nan − b†nbn), (5)

where we have defined �±(φy,φz) = t(1 ± λxy cos φy ±
λxz cos φz) and ε(φy,φz) = (λy cos φy + λz cos φz). The cor-
responding Bloch Hamiltonian h in the bipartite sublattice
basis [32] can be written as

h(k,φy,φz) =
(

ε(φy,φz) �(k,φy,φz)

�∗(k,φy,φz) −ε(φy,φz)

)
, (6)

where �(φy,φz) = �+eikd/2 + �−e−ikd/2 and d is the lattice
constant. Note that ε(φy,φz) = 0 for some values of (φy,φz)
corresponds to an inversion symmetric (where the center of
inversion is defined about a bond connecting two sites (see
Fig. 6) 1D chain and the topological invariant is given in
terms of the quantized Zak phase (0 or π ) [32]. The BZ space
satisfying the constraint ε(φy,φz) = 0 can be deconstructed
into topological 1D slices with Zak phase either 0 or π . Based
on this principle, we can develop a general algorithm for

identifying topologically protected band touching points and
surface states of a 3D TS or WSM:

(I) Identify points (φy,φz) for which on-site terms (diagonal
term ε(φy,φz) = 0 in Eq. (6)) breaking the inversion symmetry
vanish. The set of inversion symmetric points (φy,φz) admits
exact mapping to double Majorana chains.

(II) Within the subspace of inversion symmetric points
(ε(φy,φz) = 0), the conditions for the existence of topological
zero-energy modes can be identified from the zero mode
existence condition of double Majorana chain as shown in
Eq. (3) (or Zak phase of π ).

The above criterion is closely related to the Shockley
criterion for the end states of a 1D chain and our model can
be thought of as a generalization of the Shockley criterion
for surface states of topological insulators to the case of
WSM [27].

The above set of criteria translates to the following condi-
tions for the existence of topologically protected zero-energy
modes (band touching points):

λygn(bz,φy) + λzgn(by,φz) = 0, (7)

|t(1 + λxygn(bz,φy) + λxzgn(by,φz))|
> |t(1 − λxygn(bz,φy) − λxzgn(by,φz))|. (8)

These conditions are not limited to the π -flux case and can be
generalized for any flux fraction by = bz = 1/(2q). The zero
mode existence condition generalizes for b = 1/(2q) as shown
in Ref. [22]. Writing out the above conditions explicitly for
by = bz = 1/2, we obtain

λy cos(φy) + λz cos(φz) = 0, (9)

|1 + λxy cos(φy) + λxz cos(φz)|
> |1 − λxy cos(φy) − λxz cos(φz)| (10)

In Fig. 2, we present an example satisfying the above
conditions for the parameter values λy = λxz = 0.6, λz =
λxy = 0.4 and t = 1. In Fig. 2(a), the red line shows the locus
of (φy,φz) satisfying Eq. (9) corresponding to the vanishing

(a) (b)

Net Solution

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Φz Π

Φ y
Π

FIG. 2. (Color online) Solution of (φy,φz) satisfying Eqs. (9)
and (10) for λy = λxz = 0.6, λz = λxy = 0.4, and t = 1. (a) The
red line denotes the contour satisfying the first equality condition
of Eq. (9) for which the on-site modulation vanishes. Shaded region
denotes the Brillouin zone patch satisfying the second inequality
condition in Eq. (10) for the existence of the zero modes. (b) The red
line corresponds to the zero-energy (Weyl) arcs, which is the region
satisfying the intersection of both constraints.
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of the on-site modulations. Note that in three dimensions,
these points are topologically unavoidable. The shaded region
corresponds to the region of (φy,φz) for which the double
Majorana chain admits zero-energy solutions. Figure 2(b)
plots the intersection of these conditions that constraints the
topological band touching points to arcs in the zero-energy
Fermi surface thus giving rise to the Weyl arcs for the 3D
WSM.

A. Example I: λz �= 0, λx y �= 0 λ y = λxz = 0

In this part, we forbid NN hopping in the y direction and
NNN hopping in the xz plane as a starting example, then
allow them to have nonzero values in the next sections. From
the point of view of the cubic lattice, this case is equivalent
to stacking inversion symmetric 2D planes and gluing them
via NN hopping in the z direction along which the inversion
symmetry is broken:

H =
N−1∑
n=1

(t(1 + (−1)nλxy cos(φy))c†n+1cn + H.c.

+
N∑

n=1

λz(−1)n cos(φz)c
†
ncn. (11)

This simple form of the Hamiltonian enables us to directly
deconstruct the topological features in the 3D Brillouin
zone. Each value of (φy,φz) corresponds to a specific 1D
Hamiltonian. Note that the coordinates of (φy,φz) at which
the zero-energy modes occur correspond to the set of 1D
chains that are topologically nontrivial with an invariant that is
associated with the two decoupled Majorana chains of Eq. (3).
This is due to the fact that the 3D TS acquires its topological
features from a lower dimensional (1D) symmetry protecting
the topology. The interesting feature of the 3D physics here
is that the topologically nontrivial slices of BZ cannot be
removed by breaking the symmetries that protect the invariant.
The addition of the on-site term coming from the z direction
hopping of the cubic lattice breaks the inversion symmetry
along this direction and opens a gap in the spectrum. This
spectrum is gapped everywhere except for the points in the
Brillouin zone that satisfy the conditions [Eqs. (9) and (10)]

cos(φz) = 0, cos(φy) � 0, (12)

for which the BZ slice is inversion symmetric. For the points
φz = ±π

2 , H is inversion symmetric and admits mapping to
the Majorana basis as shown in Eq. (3). The conditions for the
existence of Majorana zero modes are given in Eq. (12). Thus
the set of constraints φz = ±π

2 and π
2 < φy < π

2 define the
zero-energy Fermi surface in the 3D BZ. One can immediately
recognize that the Fermi surface is reduced to zero-energy
lines (nodal lines) that connect the band touching points
similar to that of nodal semimetal. In Fig. 3, we plot the
numerical energy spectrum of the 1D AAH model given in
Eq. (11) for a tight-binding chain of 100 sites with open
boundary conditions and the parameter values λz = λxy = 0.3,
λy = λxz = 0, t = 1. The topologically trivial (gapped) 2D
layers (φz �= ±π/2) manifest dispersionless states or flat bands
[see Figs. 3(a) and 3(c)]. This case been identified as the
“topological nodal semimetals” with line nodes in Ref. [2]

(a) (b)

(c) (d)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Φz Π

Φ y
Π

FIG. 3. (Color online) Numerical energy spectrum for tight-
binding chain of 100 sites with open boundary conditions and
parameter value λz = λxy = 0.3, λy = λxz = 0, t = 1. (a)–(c) show
the evolution of the spectrum as a function of φy for φz = 0,π/4,π/2,
respectively. (d) Region plot for the inequality condition |�+| > |�−|
as a function of (φy,φz) for existence of zero-energy modes. The
red lines corresponds to the zero-energy states and the ends of
the lines corresponds to the topological phase transition point where
the zero-energy states terminate as seen in (a)–(c).

at which the valence band and the conduction band touch [see
Fig. 3(b)]. The nodal lines of zero modes are attributed to the
underlying inversion symmetry in the 2D layer of the (n,φy)
for the values of φz = ±π/2.

B. Example II: λz �= 0, λx y �= 0 λ y �= 0, λxz �= 0

Now we consider the general 3D AAH model for by = bz =
1
2 containing all terms appearing in Eq. (1). For this general
case, the Hamiltonian becomes

H =
N−1∑
n=1

[t(1 + (−1)nλxy cos φy + (−1)nλxz cos φz)]c
†
n+1cn

+ H.c. +
N∑

n=1

(−1)n(λy cos φy + λz cos φz))c
†
ncn. (13)

Using methods developed in the previous section, we try to
identify special points (φy,φz) in the 3D Brillouin zone for
which the 1D Hamiltonian defined by Eq. (11) admits mapping
to the double Majorana chain. In spite of breaking the inversion
symmetry in the xy plane, there are “topologically unavoid-
able” points where the zero-energy states must appear. Solving
the constraints in Eqs. (9) and (10) for (φy,φz), we obtain
conditions for the existence of topologically protected zero-
energy modes. In addition to the one-dimensional topological
features, this case manifests a 2D topological transition in the
three-dimensional Brillouin zone. To understand this effect,
we plot the numerical energy spectrum in Fig. 4 as a function
of one of the phases φy and monitor its evolution as a function
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(a) (b)

(c) (d)

(e) (f)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Φz Π

Φ y
Π

FIG. 4. (Color online) Numerical energy spectrum for tight-
binding chain of 100 sites with open boundary conditions and
parameter value λz = λxy = 0.4, λxz = 0.6, λy = 0.4, t = 1. (a) and
(b) show the evolution of the spectrum as a function of φy for
φz = −π, −3π/4, respectively. (c)–(e) show the evolution of the
spectrum as a function of φy for φz = −π/2, −π/4, 0 respectively. (f)
Region plot tracing the locus of zero-energy Fermi surface or the Weyl
arc states for the condition given in Eqs. (9) and (10) as a function
of (φy,φz). The red lines corresponds to the zero-energy states and
end of the line corresponds to the topological phase transition point
where the zero-energy states terminate or the Weyl nodes as seen in
the spectrum plot (c).

of the other phase angle φz. We fix λy = λxz = 0.4 and
λxy = λz = 0.6, which indicates that the inversion symmetry is
strongly broken in all planes. As a consequence we see a topo-
logical phase transition driven by φz between two distinct 2D
phases. In Figs. 4(a) and 4(b), we see a completely gapped en-
ergy spectrum corresponding to a normal spectrum for the 2D
planes labeled by φz = −π,−3π/4,−π/2. Figures 4(c)–4(e)
describing a topologically nontrivial two mirror copies of a
Chern insulator state (due to time reversal symmetry). The
mid-gap states of these insulator planes cross at zero-energy
and the topological nature of these degenerate points arises
from the topological invariants associated with the double
Majorana chain. This phase coincides with the existence
of the topological zero-energy modes and can be extracted
by solving the conditions outlined in Eqs. (9) and (10).
Topological insulator planes with time reversal symmetry
are separated from the normal insulating planes by a critical
2D plane where the pair of the Weyl nodes appear in the

3D BZ shown in Fig. 4(c). Thus the 3D BZ separates in
to trivial and nontrivial topological stacks of 2D insulating
planes. For −π < φz < −π/2 and π/2 < φz < π , the 2D
planes corresponds to topologically trivial insulators. For
−π/2 < φz < π/2, the 2D planes correspond to topologically
nontrivial topological insulators which are same as two mirror
copies of Chern insulators due to the presence of time reversal
symmetry. φz = ±π/2 correspond to the critical semimetallic
2D plane. Similar momentum space crossover between normal
and topological insulators has been identified as “Chern
semimetals” and has been predicted from first principles
calculations [10] in a ferromagnetic compound HgCr2Se4. The
topological planes for this case manifest Chern number = ±2,
which is different from our theory where the topological planes
have Chern number ±1 corresponding to each mirror copy
of Chern insulator in the half Brillouin zone. In our theory,
this Chern semimetal arises naturally as a consequence of
constructing the 3D topological phase from generalized 1D
two-parameter AAH models and connecting the physics to the
double Majorana chain systems with zero-energy topological
states. In the next section, we obtain topological invariants
corresponding to these 2D planes using the polarization theory.

V. TOPOLOGICAL INVARIANT FROM POLARIZATION
THEORY (ZAK PHASE)

Polarization (P ) or equivalently the Zak phase provides a
natural framework to map the topological invariants [41,42]
within the AAH framework and has been recently put forward
as a tool to study topological invariants in cold atoms [43].
Modern theory of polarization of insulators [41,42] is directly
related to the geometry of underlying Bloch bands:

P (Zak phase) = i

∮
〈uk|∂k|uk〉dk. (14)

P on its own is a gauge noninvariant quantity and is defined
modulo the choice of a unit cell. However, the change in
polarization is a well defined (and gauge invariant) physical
observable, which captures the topological invariants for
the underlying topologically nontrivial bands. Polarization is
also sometimes expressed as a Zak phase, which has been
experimentally measured for an SSH model in a double well
optical lattice [32]. The polarization of a finite 1D insulator
can be expressed in terms of the average position of the charge
centers of hybrid Wannier functions (HWF). This polarization
is a function of the phase parameters (φy,φz), which act
as an adiabatic flux under which the polarization changes.
For topologically nontrivial systems of IQH type, there is a
discontinuous change in the polarization that represents the
topological charge transferred from one edge to the other edge,
akin to the Laughlin IQHE gauge argument [44]. The average
position of the charge center of HWF is given by [43]

n̄(φy,φz) =
∑

n〈nρ(n,φy,φz)〉∑
n〈ρ(n,φy,φz)〉 ,

ρ(n,φy,φz) =
∑

occupied states

|n,φy,φz〉〈n,φy,φz|, (15)

where n is the real-space site index and |n,φy,φz〉 is the hybrid
eigenstate of the system.
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FIG. 5. (Color online) Average hybrid Wannier charge center for
tight-binding chain of 100 sites with open boundary conditions and
parameter value λz = λxy = 0.4, λxz = 0.6, λy = 0.4, t = 1. (b) and
(d) show n̄(φy,φz) vs φy for trivial (insulator) Brillouin zone slices
φz = −π, −3π/4. (h) and (j) show n̄(φy,φz) vs φy for topologically
nontrivial (two mirror copies of the Chern insulator) BZ slices φz =
−π/4,and 0. (f) show the topological transition at φz = −π/2, which
is a semimetallic 2D plane containing the band touching points or
Weyl nodes. We plot the bands corresponding to the polarization plot
for each 2D plane in (a), (c), (e), (g), and (i).

In Fig. 5, we plot the average HWF charge center as a
function of φy for different slices of φz. Figures 5(b) and 5(d)
correspond to the topologically trivial insulators where n̄

changes continuously as a function of φy . The topologically
trivial insulating 2D slices of the Brillouin zone [see Figs. 5(a)
and 5(c)] do not have the band touching points and they have

a smoothly varying Wannier charge center as a function of the
phase φy as shown in Figs. 5(b) and 5(d). The spectrum plots
corresponding to the critical 2D planes [Fig. 5(e)] manifest the
topological transition at φz = −π/2 which is a semimetallic
2D plane containing the band touching points or Weyl nodes.
The corresponding polarization plot for this critical plane with
the Weyl nodes is given in Fig. 5(f). The energy spectrum
corresponding to topologically non-trivial 2D slices are given
in Figs. 5(g) and 5(i) for which the HWF charge center has
discontinuous jumps as shown in Figs. 5(h) and 5(j) at the band
touching points for the Brillouin zone slices φz = −π/4,0.
Note that the discontinuous jumps always occur in pairs and
correspond to the Chern number of opposite signs. The overall
Chern number in φy plane must add to zero due to the presence
of time reversal symmetry. Here we have normalized the size
of the jump to the size of the unit cell and in proper units this is
exactly the π shift in the Zak phase observed in Ref. [32]. Note
that the HWF charge center shows a jump of one unit cell for
−π/2 < φz < π/2 which corresponds to the band touching
points carrying Chern numbers of ±1 similar to the case
of the mirror image copies Chern insulators (Z2 topological
insulator) in the full Brillouin zone due to the presence of time
reversal symmetry.

Experimentally, Zak phase imaging can provide a striking
distinction between trivial and non-trivial topological slices of
φz. For a trivial case there will be a continuous change in the
Zak phase as a function of the parameter φy [see Figs. 5(b)
and 5(d)] whereas for a non-trivial case, there will be a sudden
discontinuous change in the Zak phase at the band touching
points as a function of the phase φy as shown in Figs. 5(h)
and 5(j). Changing φy amounts to changing the lattice
configuration, which has been accomplished experimentally
by applying a laser pulse instantaneously [32].

VI. DOUBLE WELL OPTICAL LATTICES AS
MOMENTUM SPACE BUILDING BLOCKS

OF TOPOLOGICAL SEMIMETALS

One of our main motivations to understand 3D TS state
using the generalized AAH framework is to make contact with
the existing experimental technology in cold atoms and optical
lattices, where the higher dimensional system can be (and
often is) designed by combining suitable lower-dimensional
lattices appropriately in a “lego-building” type architecture.
In recent years, cold-atom experimentalists have not only
made remarkable progress in realizing precisely designed
optical lattices but also have exercised tremendous control
over the various system parameters. Cold-atom systems have
an advantage over condensed matter systems as shown in
the recently demonstrated single-site control over the optical
potential [45]. Single-site control allows access to physical
observables like geometric phases going beyond the standard
transport measurements in condensed matter systems and
provides a new tool for understanding topological properties.
Recently, a lot of progress has been made in experimentally
simulating double-well potentials [28–31,46]. The double
well optical lattice (e.g., SSH model) has been used as a
platform to directly image topological invariants of the Bloch
bands by imaging the Zak phase [32], which is directly related
to the polarization of the 1D insulator given in Eq. (14). In this
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FIG. 6. (Color online) Schematic of a double well potential with
�(φy,φz) modulating the relative hopping amplitude of the dimerized
state. ε(φy,φz) modulates the relative on-site energy of the different
realizations of the 1D lattice.

experiment [32], different π -flux configurations (different
φ(y)z) of the AAH (or the equivalent SSH) model were
generated by instantaneously applying laser pulses of
different phases, which switch the lattice between different
configurations. The double well potential in terms of the
experimental parameters can be written as

V (x,φy,φz) = V1 sin2

(
kx + δ(φy,φz)

2

)

+V2(φy,φz) sin2

(
2kx + π

2

)
. (16)

This one-dimensional optical superlattice potential can be
engineered experimentally [32,46] by superimposing two
standing optical waves. In this experiment, one can also control
different lattice amplitudes that allow for relative detuning
between the on-site modulations in the AAH framework. Note
that in the most general 1D AAH model that we present in
Eq. (1), for any fixed value of the phase (φy,φz), the real-space
lattice corresponds to a particular configuration of a 1D double
well lattice with an on-site energy and a relative detuning
between the two barrier heights [�+(φy,φz) − �−(φy,φz)]
as shown in Fig. 6. The presence of an on-site modulation in
the AAH model appears in the theory simply as a detuning
between the relative depth of each lattice site [ε(φy,φz)]
(Fig. 6). Systematic tuning of both these parameters in
experiments has been achieved in Ref. [32]. We believe that
the 3D TS connected with the 3D Weyl systems discussed
by us in the current work can be produced experimentally
in optical lattices by realizing different configurations of
double well lattices. Topological features can then be captured
experimentally in such a system by mapping out the Zak
phase for each realization of the lattice configuration.

Thus the 3D version of the two-parameter AAH model in
Eq. (1) with two phase angles serves as an archetype to study
the Brillouin zone of the TS phase in three dimensions, which
manifest fascinating features such as “Fermi arcs” and “nodal
lines.” Experimentally, the 3D BZ of the TS phase can be
realized via double well optical lattices and their topological
properties can be captured by mapping recently developed
methods in imaging Zak phases (polarization change).

In addition to cold-atom experiments, the AAH model
can also be simulated in photonic waveguides as shown
in Refs. [22,35,36]. In a waveguide setup, the direction of
propagation of the injected light corresponds to the phase
φy . The off-diagonal AAH physics can be simulated by
modulating the lattice spacings between the neighboring
waveguides along the direction of propagation [35,36]. The on-
site modulation corresponds to the thickness or the refractive
index of the wave guides. Both these aspects can be engineered
to provide a photonic waveguide that can simulate the full
three-dimensional Brillouin zone of a TS.

VII. CONCLUSION

In this work, we derived a general one-dimensional
Aubry-Andre-Harper (AAH) model with two phase angles
corresponding to momenta in other dimensions starting from
the 3D cubic lattice model with a magnetic field in the
y-z plane. This generalized two-parameter AAH model [see
Eq. (1)] has modulations in both hopping and on-site potential
energies. These modulations are controlled by two phase angle
parameters (φy,φz). For a π flux, the AAH model is simply a
bichromatic 1D lattice with detuning in the on-site energies. In
Sec. III, we work with an inversion symmetric model without
allowing for on-site terms. For this model, we show both
analytically and numerically that there are robust topological
zero-energy modes for a range of phase φy confined between
the two band touching points. For different values of φz, the
separation between the band touching points containing the
zero modes can be varied. Varying φz between (0,2π ) brings
out the three-dimensional character in a sense that the only way
to get rid of the band touching points is to bring them together
where the two band touching points collapse to a single point
of zero energy. We also explicitly obtain the three-dimensional
zero-energy Fermi surface containing these topological zero
modes in the Brillouin zone spanned by (φy,φz). In Sec. IV, we
allow for the on-site modulations breaking inversion symmetry
and show that there are “topologically unavoidable” regions of
(φy,φz) for which there exist zero-energy modes terminating
at the band touching points. These zero-energy modes are the
manifestation of well-known Fermi arcs or nodal lines that
are the hallmark of three-dimensional Weyl semimetals. We
establish the topological properties of the 3D semimetallic
phase in two ways. We analytically show that these band
touching points come from the zero-energy modes of the
double Majorana chain which manifesting the Z2 index. We
numerically demonstrate discontinuous jumps in polarization
(change in Zak phase) at these band touching points, which is
a signature of topological charge transfer from one end of the
system to the other. Both these methods are natural frameworks
to understand the topological properties of the 1D AAH model
for different values of (φy,φz).

Finally, in Sec. VI, we show that the theory we develop can
be practically implemented within the existing capabilities of
experimentally realized double well lattices. Experimentalists
have not only demonstrated amazing control over the lattice
parameters such as the on-site modulations and the relative
barrier heights but also have measured the topological in-
variants in the form of Zak phase. Thus exotic TS phases
in three dimensions can be realized through the systematic
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implementations of different configurations of double well
lattices as shown in Fig. 6. Topological features of the full
3D Brillouin zone can be imaged by looking at the Zak
phase for each realization of the double well lattice. We
conclude by stating that we have developed a detailed theory
as well as a practical protocol for how to build 3D (as well
as 2D) TS systems using 1D double-well optical lattices as
lego-type building blocks, including the WSM of great current
interest. Our work connects several seemingly disparate
concepts in condensed matter physics in one synergistic whole:
1D Aubry-Andre-Harper and Su-Shrieffer-Heeger models,
Majorana chains and robust zero-energy modes, Fermi arcs and
nodal lines, WSM and related topological systems, topological
quantum phase transitions, and Zak phase in the polarization
theory. The topological physics of the WSM arises from its one
particle band structure and the associated symmetry properties.
In real solids, where the particles are electrons, interaction ef-
fects are invariably always present possibly masking (certainly
complicating) the topological features. In an optical lattice,
however, one can work with dilute noninteracting bosons, thus
bringing out purely the one-particle quantum physics, so the
topological Weyl physics may very well be better studied with
bosons in optical lattices than with electrons in real solids.
We believe that all the elements and building blocks for the
laboratory realization of TS in optical lattices following our
protocol already exist, and therefore, we hope that TS will
soon be realized in cold-atomic systems.
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APPENDIX: TWO-PARAMETER AAH MODEL
FROM A CUBIC LATTICE MODEL
WITH A TILTED MAGNETIC FLUX

We start with the 3D tight-binding Hamiltonian with nearest
neighbor (NN) and next-nearest-neighbor (NNN) hopping in
the presence of a tilted magnetic field (see Fig. 7). Such

Y 

Z X 

B 

α 
Z 

y 

FIG. 7. (Color online) Cubic lattice unit cell with tilted magnetic
flux in y-z plane. The solid black lines denote the nearest-neighbor
hopping and the dashed black lines denote the off diagonal or next
nearest-neighbor hopping. B is the magnetic field confined to the y-z
plane tilted by an angle α with respect to the z axis.

a real-space model with a flux can be implemented with
phase-engineered hopping in 3D optical lattices as shown in
a recent proposal for WSM [47]. We define a as the lattice
constant corresponding to the x, y, and z directions spanning
the cubic lattice. The AAH model we present in this paper can
be derived starting from a 3D lattice model with a tilted flux.
This connection allows us to study the topological features
exclusive to 3D physics while working in the generalized 1D
AAH framework. The Hamiltonian can be expressed as

H3D =
∑
n,m,l

[
t(eiθij c

†
n+1,m,lcn,m,l + H.c.)

+ λy

2
(eiθij c

†
n,m+1,lcn,m,l + H.c.)

+ λz

2
(eiθij c

†
n,m,l+1cn,m,l + H.c.)

+ λxy

2
(eiθij c

†
n+1,m+1,lcn,m,l + H.c.)

+ λxy

2
(eiθij c

†
n−1,m+1,lcn,m,l + H.c.)

+ λxz

2
(eiθij c

†
n+1,m,l+1cn,m,l + H.c.)

+ λxz

2
(eiθij c

†
n−1,m,l+1cn,m,l + H.c.)

]
, (A1)

where c and c† are the usual fermion creation and annihilation
operators. t , λy (z), and λxy (xz) correspond to the NN and NNN
hopping amplitude in the respective direction. θij characterizes
the magnetic field for the hopping between sites i and j . It is
convenient to express the magnetic field on the lattice in terms
of flux per plaquette. Note that there is no flux through the
yz plane and the off-diagonal hopping in the yz plane just
rescales the energy and hence we can ignore this term without
loss of generality. We can define the flux per plaquette as a line
integral over the vector potential as

θij = e

hc

∫ j

i

A.dl. (A2)

We consider the magnetic field to lie in yz plane with B =
(0, B sin α, B cos α), where α is the tilt angle with respect to
the z axis in the yz plane. We choose a gauge corresponding
to this magnetic field as A = (0, Bx cos α,−Bx sin α). We
define phases θij on the links of the lattice for this gauge
choice. We have defined (by,bz) = (b cos α,−b sin α). For a
cubic lattice, we can define a flux per plaquette b = Ba2

(hc/e) . The
model involves both NN and NNN hopping therefore there are
plaquettes of two different areas involved in the problem. The
first one is the square plaquette enclosing 2πby (z) flux quantum
in the xy (xz) plane. The second one is the triangular plaquette
which encloses πby (z) flux quantum in the xy (xz) plane:

θij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 i = (n,m,l), j = (n + 1,m,l)

2πnbz i = (n,m,l), j = (n,m + 1,l)

2πnby i = (n,m,l), j = (n,m,l + 1)

πbz(2n ± 1) i = (n,m,l), j = (n + 1,m ± 1,l)

πby(2n ± 1) i = (n,m,l), j = (n + 1,m,l ± 1)

.

(A3)
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We perform dimensional reduction of the 3D Hamiltonian to
an effective 1D tight-binding model with phase parameters
corresponding to the momenta in y and z directions. Using
the following Fourier representation of the fermion operators

cn,m,l =
∑
φy,φz

eimφy+ilφzcn(φy,φz), cn(φy,φz) ≡ cn, (A4)

we can define the effective 1D Hamiltonian as

H3D =
∫∫

dφydφzH1D(φy,φz). (A5)

Using Eqs. (A3)–(A5) in the original 3D lattice Hamiltonian
[Eq. (A1)], we write the 1D AAH model with two phase
parameters as

H1D(φy,φz) =
N−1∑
n=1

⎧⎨
⎩[t(1 + λxy cos(π (2n + 1)bz + φy)

+ λxz cos(π (2n + 1)by + φz)]c
†
n+1cn + H.c.

+
N∑

n=1

[λy cos(2πnbz + φy)

+ λz cos(2πnby + φz)]c
†
ncn

⎫⎬
⎭ . (A6)

Starting from a 3D model, the phases φy and φz in diagonal
and off-diagonal terms are shifted by a factor of πb due to the
two different plaquettes present in the system. Experimentally,
one can design setups where the phases φy,z can be tuned
independently, so we keep our notations general with φd

y,z

and φod
y,z as independent variables for the diagonal and the

off-diagonal definitions of the phases. A simpler version of
this 1D AAH model with just two on-site cosine terms has
earlier been considered in the context of 3D IQHE [48–50].
The effective 1D AAH model can now be written in the
following compact form (we drop the suffix 1D from the
Hamiltonian):

H (φy,φz) =
N−1∑
n=1

t
(
1 + λxygn

(
bz,φ

od
y

)

+ λxzgn

(
by,φ

od
z

))
c
†
n+1cn + H.c.

+
N∑

n=1

(
λygn

(
bz,φ

d
y

) + λzgn

(
by,φ

d
z

))
c†ncn.

(A7)

We have defined gn(b,φ) = cos(2nπb + φ).
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