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We present a theoretical study of the evolution of spatial coherence during intraband relaxation between exciton
states in a pair of vertically stacked semiconductor quantum dots coupled to acoustic phonons. We show that
spatial coherence can be transferred to the ground state even in a system of uncoupled nonidentical quantum
dots if a particular kind of degeneracy between the interlevel energy splittings is present. The phonon-assisted
mechanism of coherence transfer leads to a dependence of the amount of the resulting coherence on the interdot
distance and temperature. We analyze also the impact of carrier-phonon dynamics on a coupled system, where
spatial coherence is present in the delocalized ground state.
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I. INTRODUCTION

The physical properties of systems consisting of two or
more semiconductor quantum dots (QDs) are rich and cannot
be reduced to single-dot characteristics. Experiments demon-
strate that collective emission effects play a role in the optical
response of such systems [1,2], which can be attributed to the
formation of delocalized bright and dark states in the presence
of interdot coupling, even in energetically inhomogeneous
structures [3]. Phonon-induced carrier transfer [4] in double
quantum dots (DQDs) has been predicted to affect the optical
emission by redistributing the occupations between bright and
dark states [5]. Even though basic quantum-optical concepts of
collective emission or superradiance can be transferred from
atomic systems to QDs, the relaxation and dephasing effects
induced by the coupling to the lattice environment are specific
to QD systems and require an extended treatment, as compared
to the theory developed in the atomic context [6].

The experimental evidence of collective effects in the
emission from self-assembled QD samples, both closely
spaced stacks [2] and natural planar ensembles [1] is par-
ticularly interesting, as it suggests that such systems cannot be
treated as ensembles of independent emitters. The enhanced,
“superradiant” emission from the ground state of a QD
ensemble is rather intriguing in view of the huge energy
inhomogeneity of such a system (as compared to the emission
linewidth). While the optical effect has been successfully
modeled under the assumption that the QDs are coupled not
only by the relatively weak long-range dipole interactions
but also by short-range ones (which might result from a
combination of Coulomb couplings and tunneling) [7], the
observed difference [1] between the time-resolved ensemble
emission under quasi-resonant excitation (optical transition
to higher confined shells, leading to a collective enhance-
ment of emission) and nonresonant excitation (transition to
wetting-layer or bulk states with no enhancement of emission
observed) has not been discussed. Since collective emission
relies on constructive interference of emission amplitudes
from different atoms or QDs, which is possible due to the
formation of coherently delocalized Dicke states, description
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of the dynamics of spatial coherences in coupled QD systems
seems to be crucial for the general understanding of the
optical properties of such systems. In particular, since spatial
coherence can appear as a result of quasi-resonant coherent
optical excitation, it is interesting to find out if, and under what
conditions, it can be transferred to the ground-state manifold,
from which the emission takes place.

The principal mechanism of intraband transitions in self-
assembled QDs is the carrier-phonon coupling and, indeed,
models based on phonon-induced processes successfully
reproduce experimental data on carrier relaxation [8]. While
in single dots phonon-related effects essentially include relax-
ation [9] and pure dephasing [10], in DQDs one deals with a
broader variety of processes due to the rich structure of carrier
states in these systems. Apart from intradot relaxation, these
processes may include interdot phonon-assisted tunneling
[11–15] and Coulomb-mediated transfer [16–18] of carriers,
as well as dephasing of spatial coherence of carrier states
delocalized over two dots [19,20].

In this paper, we study theoretically another phonon-related
effect in a DQD structure, which may be of importance
for the collective luminescence: the phonon-assisted transfer
of spatial coherence from the excited shells of the DQD
system to the ground-state manifold (corresponding to the
quasi-resonant excitation conditions in an optical experiment).
We show that after a coherent excitation of the DQD to a
spatially delocalized excited states (which is a reasonable
assumption in view of the small DQD size as compared to the
relevant wavelength of the laser light), the spatial coherence
can indeed be conserved during phonon-assisted relaxation in
a system of decoupled QDs provided that the interlevel energy
differences in the two dots do not differ considerably. While
this effect is captured by a Markovian model of the system
dynamics, it is lost in the secular approximation inherent in the
most standard Lindblad equation approach. We discuss also the
evolution of the spatial coherence in a system of coupled QDs
(a quantum-dot molecule), where a certain degree of coherent
delocalization is built in already in the system ground state,
and various dynamical scenarios are possible depending on the
ratio between the intradot and interdot relaxation rates.

The paper is organized as follows. In Sec. II, we define the
model under study. Next, in Sec. III we present the simulations
of the evolution of the spatial coherence in DQDs. In particular,

1098-0121/2015/91(12)/125428(10) 125428-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.125428


PAWEŁ KARWAT AND PAWEŁ MACHNIKOWSKI PHYSICAL REVIEW B 91, 125428 (2015)

FIG. 1. (Color online) The basis exciton states in the system:
�

(e/h)
I/II and �

(e/h)
g/ex are the parameters describing the transition energy

mismatch in the dots for the electron and the hole, respectively.

Sec. III A deals with uncoupled QDs, while Sec. III B describes
coupled system. Section IV contains the final discussion and
concludes the paper.

II. MODEL

The system under study is made up of two large self-
assembled and vertically stacked QDs [21] occupied by a
single exciton, coupled to longitudinal acoustic phonons via
the deformation potential. We assume that the differences
between the corresponding single-particle levels in the two
dots are in the range of a few meV, hence much smaller than
the energy of the electron-hole Coulomb attraction. The lowest
exciton eigenstates are then formed by spatially direct states,
that is, configurations in which the electron-hole pairs reside
in the same dot [22,23] (presented in Fig. 1). We also assume
that the spins of the carriers are fixed. Under these assumptions,
the Hilbert space is spanned by eight basis exciton states
shown in Fig. 1. Here the relative energies of the exciton states
are parametrized by �

(e/h)
I/II and �

(e/h)
g/ex (see Fig. 1). For each

particle, three out of the four parameters are independent. For
simplicity, we assume that the electron-hole Coulomb energy
is similar in all the spatially direct configurations.

The total Hamiltonian of the system is

H = HDQD + Hph + Hc-ph.

The first term describes exciton states in the DQD structure
and has the form

HDQD =
∑
m

εm|m〉〈m| +
∑

m even

Vm (|m〉〈m + 1| + H.c.) ,

where εm are the exciton energies, and the interdot couplings
are parametrized by Vm which is assumed real. We consider
the simplest model that is able to account for the effect in
question and take into account only a single excited level for
each carrier in each dot. We include only couplings between
states belonging to the same electron and hole shell, which
are energetically close to each other. Even and odd labels
correspond to the lower and upper dot, respectively. In the
simplest approach, the electron and hole wave functions in
the dots are modeled by identical anisotropic Gaussians with
identical extensions l in the xy plane and lz along the growth

axis z for both particles,

ψg(r) ∼ exp

[
− r2

⊥
2l2

− (z ± D/2)2

2l2
z

]
, (1)

ψex(r) ∼ r⊥ψg(r)eiϕ, (2)

where r⊥ =
√

x2 + y2 and ϕ are cylindrical coordinates in the
xy plane, the g and ex indices refer to the ground and first
excited level, and D is the distance between the dots. The
exciton wave functions are assumed in the form of products of
single-particle functions.

We assume that interdot carrier-phonon couplings are
negligible due to small overlap of the wave functions confined
in different dots. Hence, for the interaction of carriers confined
in the DQD with phonons we retain only intradot single-
particle terms (thus neglecting also the contribution from
Coulomb correlations [24]). The exciton-phonon coupling is
then modeled by the Hamiltonian

Hc-ph =
∑
(mn)

|m〉〈n|
∑

k

Fmn(k)(bk + b
†
−k)

+
∑

n

|n〉〈n|
∑

k

Fnn(k)(bk + b
†
−k), (3)

where (mn) denotes summation over pairs of exciton states
related by single-particle relaxation within a single QD and
bk and b

†
k are the bosonic operators of the phonon modes.

For uncorrelated (product) exciton wave functions, the off-
diagonal coupling constants for the exciton states are equal to
the electron or hole coupling constant, depending on which
particle is involved in the m ↔ n transition (see Fig. 1), and
have the form [25]

Fmn(k) = Fe/h(k)e±ikzD/2, (4)

where

Fe/h(k) = σe/h

√
k

2�vcl

i
k⊥l

2
exp

[
− l2

z k
2
z + l2k2

⊥
4

]
eiφ

and the “+/−” signs correspond to the lower and upper QD.
The diagonal coupling constants are

Fnn(k) =
[
σe

(
1 − ξ (e)

n

k2
⊥l2

4

)
− σh

(
1 − ξ (h)

n

k2
⊥l2

4

)]

×
√

k

2�vcl

exp

[
− l2

z k
2
z + l2k2

⊥
4

]
,

where ξ
(e/h)
n = 1 if the electron/hole is in an excited state in

the exciton state n and ξ
(e/h)
n = 0 otherwise. Here v is the

normalization volume, k⊥/z are momentum components in
the xy plane and along the z axis, φ is the corresponding
azimuthal angle, σe/h are deformation potential constants for
electrons/holes, cl is the speed of longitudinal sound, and � is
the crystal density.

The phonon modes are described by the free-phonon
Hamiltonian

Hph =
∑

k

�ωkb
†
kbk,

125428-2



DECAY AND PERSISTENCE OF SPATIAL COHERENCE . . . PHYSICAL REVIEW B 91, 125428 (2015)

where ωk are the corresponding frequencies. We assume a
linear dispersion relation for phonons.

In our numerical simulations, we take the parameters
corresponding to large, flat self-assembled InAs/GaAs QDs:
σe = 7 eV, σh = −3.5 eV, ρ = 5350 kg/m3, cl = 5150 m/s,
and the wave function parameters l = 20 nm and lz = 1 nm.

III. SIMULATION METHOD AND RESULTS

A. Uncoupled QDs

1. Evolution equations

The general master equation in the Markov limit and in the
interaction picture [26] has the form

ρ̇ = π
∑
klmn

ei(ωkl−ωmn)tRlkmn(ωmn)

× [|m〉〈n|ρ|l〉〈k| − |l〉〈k|m〉〈n|ρ] + H.c., (5)

where

Rlkmn(ω) = 1

�2

∑
k

Flk(k)F ∗
nm(k)

× δ(|ω| − ωk)|nB(ω) + 1|. (6)

Note that Rlknm(ω) = Rmnkl(ω) = R∗
nmlk(ω). This equation

can be transformed to the Lindblad form (see Appendix A)
and therefore preserves the physicality (in particular, positive
definiteness) of the density matrix. Here ωmn = (εn − εm)/�

and nB(ω) is the Bose distribution function. For the phonon-
induced intraband transitions, the frequencies ωmn are deter-
mined by the parameters �

(e/h)
I/II and �

(e/h)
g/ex (see Fig. 1). In

deriving Eq. (5), we have assumed that the reservoir memory
is short compared to the time scales of the system evolution
and restricted the description to times long compared to the
memory time [26]. However, no secular approximation has
been performed at this point.

In the case of no degeneracy between intraband transition
energies (�(e)

I and �
(h)
I sufficiently different from �

(e)
II and

�
(h)
II , respectively), ωkl − ωmn is large unless k = m and l = n;

hence one can apply the secular approximation, neglecting
terms with k �= m or l �= n and get a Lindblad equation in the
form [26]

ρ̇ = π
∑
mn

Rnmmn(ωmn)[|m〉〈n|ρ|n〉〈m| − |l〉〈k|m〉〈n|ρ] + H.c.

= 2π
∑
mn

Rnmmn(ωmn)

[
|m〉〈n|ρ|n〉〈m| − 1

2
{|n〉〈n|,ρ}

]
(7)

where Rnmmn(ωmn) is the secular spectral density describing
the phonon-assisted relaxation of either an electron [e.g.,
R2002(ω02)] or a hole [e.g., R4004(ω04)] within one dot,
according to the electron or hole character of Fmn(k). Thus,
we have only two different secular spectral densities, denoted
R(e)

sec and R(h)
sec. Both of them are presented in Fig. 2 with red

solid and blue dash-dotted lines, respectively. They do not
depend on the distance between the dots. For comparison,
we plot in Fig. 2 also the spectral density for piezoelectric
phonons, calculated using the standard model for piezoelectric
carrier-phonon couplings [27] (green dashed line). As can be

FIG. 2. (Color online) (a) The possible transitions between the
states for the electron and the hole in the system. Red and blue
arrows indicate transitions between exciton states involving electron
and hole relaxation, respectively, while black dotted arrows show
tunnel couplings between the states localized in different dots. (b) The
secular phonon spectral densities at T = 0 K, for an electron transition
(red solid line), and a hole transition (blue dashed line), respectively,
coupled via deformation potential and for the electron/hole (green
dashed line) coupled via piezoelectric field. The vertical stripes
correspond to the range of changes of the energy-level differences
in each dot (�(e)

I/II and �
(h)
I/II), for an electron and a hole, respectively.

seen, this coupling contributes only at very low frequencies and
can be neglected in view of much larger energy-level spacings
assumed in our model (vertical stripes in Fig. 2).

From Eq. (7) we get for the interdot coherence in the ground
state

d

dt
〈0|ρ|1〉 = −1

2

∑
m

(�0m + �1m)〈0|ρ|1〉, (8)

where �nm = 2πRnmmn(ωmn). In this case we have a purely
exponential decay and no coherence can appear dynamically.

Now, let us assume that ωkl − ωmn can be small for pairs
of transitions (kl) and (mn) corresponding to relaxation of a
given particle (electron or hole) in different dots. Consistently
with this, let us keep the corresponding terms in Eq. (5).
For example, for (mn) = (02) the terms with (kl) = (02) and
(kl) = (13) are kept (both corresponding to electron relaxation
in the two dots with the hole in the ground shell). According
to Fig. 1, this condition corresponds to the degeneracy
of intraband transition energies �

(e/h)
I ≈ �

(e/h)
II . Now the

equation of motion for the ground-state spatial coherence of
interest is

d

dt
〈0|ρ|1〉 (9)

= −1

2

∑
m

(�0m + �1m)〈0|ρ|1〉

+π
∑
ln

[Rl10n(ω0n) + R1ln0(ω1l)]e
i(ω1l−ω0n)t 〈n|ρ|l〉,

where (l,n) = (3,2) or (5,4), corresponding to electron and
hole relaxation, respectively. For the geometry chosen in our
model, the nonsecular spectral densities Rl10n(ω) are real and
again we have only two different nonsecular spectral densities,
depending on whether the transitions l → 1 and n → 0 involve
an electron or hole relaxation. They will be denoted by R

(e/h)
nsec .

For this kind of a nonsecular spectral density, the expression in
Eq. (6) contains a factor cos(kzD) [originating from the phase
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FIG. 3. (Color online) The nonsecular phonon spectral densities

at T = 0 K for uncoupled QDs, for an electron transition (a), and a
hole transition (b). Different lines correspond to the three values of the
interdot distance, as shown. Here, the vertical gray lines correspond
to the values of the energy-level differences used in our simulations
in Sec. III A (�(e)

I/II = 5 meV and �
(h)
I/II = 2 meV, for the electron and

the hole, respectively).

factor in Eq. (4)] depending on the distance between the dots,

R(e/h)
nsec (ω) = 1

�2

∑
k

|Fe/h(k)|2 cos (kzD)

× δ(|ω| − ωk)|nB(ω) + 1|. (10)

This oscillating factor in the integrand leads to oscillations in
the spectral densities as shown in Fig. 3.

The second term in Eq. (9) describes the transfer of
coherence from ρ23 (electron delocalized between the QDs
in the excited shell) and ρ45 (hole in the excited shell) to the
ground-state coherence ρ01. Let us note that this term contains
the nonsecular spectral densities dependent on the interdot
distance, as given in Eq. (10); hence the resulting transfer of
the coherence is sensitive to the spatial separation of the dots.

2. Results and discussion

Let us first study the simplest situation, where the system
is prepared in the state (|2〉 + |3〉)/√2 (electron at the excited
level) in the case of exact degeneracy (ω13 = ω02, that is, the
intraband excitation energies for the electron are the same in
both QDs, �(e)

I = �
(e)
II ). In this case, the solution of Eq. (9) for

the spatial coherence ρ01 at T = 0 K reads

ρ01 = c[1 − exp (−γ t)], (11)

where γ = π [R2002(ω02) + R3113(ω13)] = 2πR(e)
sec(ω02) and

c = 1

2

R3102(ω02) + R1320(ω13)

R2002(ω02) + R3113(ω13)
= 1

2

R(e)
nsec(ω02)

R
(e)
sec(ω02)

.

The results are presented in Fig. 4 for a few values of the
interdot distance. As follows from Eq. (11), the rate of the
coherence transfer is directly related to the relaxation rate.
However, the maximum value reached by the spatial coherence
depends on the ratio of the magnitude of the additional term
in Eq. (9) to the usual carrier relaxation (or thermalization)
rates, which reflects the competition between the coherence
transfer and its decay in the initial state due to relaxation.
At T = 0 K the transitions from the ground-state shell to
the excited shells are fully suppressed and the ground-state
coherence reaches a stable asymptotic value at long times
[Fig. 4(a)]. Due to the oscillating character of the nonsecular
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FIG. 4. (Color online) (a),(b) The evolution of the spatial coher-
ence for uncoupled QDs in the resonant case (�(e)

I/II = 5 meV and

�
(h)
I/II = 2 meV) at different temperatures and at various interdot

distances. (c) Left panel: The long-time asymptotic values of the
spatial coherence for uncoupled QDs as a function of the interdot
distance. Right panel: The envelope of the oscillations of the
asymptotic value of ρ01 at larger distances.

spectral density Rnsec, only at certain interdot distances this
asymptotic value reaches its maximum which, for flat and not
very distant dots, is very close to 1/2 [see Fig. 4(c)]. At large
distances, the oscillating factor in Eq. (10) suppresses the result
of the summation, reducing the coherence-transfer rate and
the maximum achievable value of ρ01. At higher temperatures
the ground-state spatial coherence is further suppressed due
to thermally activated processes, which eventually lead to its
decay, as shown in Fig. 4(b), where we present the results of
numerical simulations at T = 40 K.

We have so far assumed the perfect resonance condition
which is unlikely in a real system. The actual importance of
the coherence-transfer term in Eq. (9) depends on the relation
between the frequency differences ω13 − ω02 = �

(e)
II − �

(e)
I

and ω15 − ω04 = �
(h)
II − �

(h)
I (see Fig. 1) on one side, and

the typical rates of the system evolution in the interaction
picture (coherence-transfer and relaxation rates) on the other
side. Therefore, we now proceed to the discussion of a more
general case, in which the intraband energy splittings are not
exactly equal. This is shown in Fig. 5(a), where we present
the evolution of the ground-state spatial coherence for a few
values of the energy-level difference between the dots, for
the initial state (|2〉 + |3〉) /

√
2. We start from the resonant

values (�(e)
I/II = 5 meV and �

(h)
I/II = 2 meV), and then we shift

the energy levels away from resonance in a symmetric way.
In Fig. 5(a) we choose the distance D = 4.2 nm, for which
a local maximum of the nonsecular spectral density for the
electron is located at the chosen energy values [blue dashed
line and vertical bar in Fig. 3(a)], while in Fig. 5(b), D =
9.8 nm corresponds to a much lower value of the nonsecular
spectral density at the relevant energy [gray dash-dotted line
in Fig. 3(a)] and, in consequence, to a lower asymptotic
value of the ground-state coherence. It is clear that even
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FIG. 5. (Color online) The evolution of the spatial coherence for
uncoupled QDs at a constant interdot distance for a few values
of the parameters characterizing the inhomogeneity of the DQD
(denoted �(e) = �

(e)
II − �

(e)
I and �(h) = �

(h)
II − �

(h)
I ) for the initial

state (|2〉 + |3〉) /
√

2 (electron excited) (a),(b) and for the initial state
(|6〉 + |7〉) /

√
2 (electron and hole excited) (c),(d). The values of �(e)

in (c),(d) are the same as for the corresponding lines in (a),(b).

slightly different dots result in a weak spatial coherence. This
is due to the oscillating term in Eq. (5) which suppresses
the transfer of spatial coherence as soon as the intraband
transition energy difference ωkl − ωmn becomes comparable
with the coherence-transfer rates. This oscillating factor leads
to oscillations in the ground-state spatial coherence in place
of the steady growth appearing at exact resonance. With an
increasing inhomogeneity of the QDs, the oscillations get
faster and finally the term responsible for the transfer of
coherence becomes effectively averaged to zero.

Up to now, our discussion was limited to direct coherence
transfer by a single-step relaxation (from ρ23 to ρ01). In the
same way, the coherence ρ01 can be fed by ρ45. The coherences
ρ23 and ρ45 are driven by the coherence ρ67 in a similar way.
Let us now proceed to the general situation in which the initial
state is formed by both the electron and the hole in the excited
states, that is, the fully excited initial state (|6〉 + |7〉) /

√
2

(which can be achieved by an optical excitation tuned to the
p shell of confined states). The evolution of the ground-state
coherence in this case is presented in Figs. 5(c) and 5(d). Now,
the evolution of the spatial coherence saturates on a longer
time scale. This is due to the phonon relaxation of the hole,
which is typically slower than the relaxation of the electron.
In addition, a large part of the spatial coherence is lost during
hole relaxation, and hence the attained asymptotic values are
lower.

B. Coupled QDs

1. System states

When the interaction between the dots is included, the
system evolution is most conveniently described in the basis
of eigenstates of HDQD. These single-exciton eigenstates result
from the tunnel coupling between the exciton states in different

dots and can be written as

|m̃〉 = cos
θmn

2
|m〉 + sin

θmn

2
|n〉, (12)

|̃n〉 = − sin
θmn

2
|m〉 + cos

θmn

2
|n〉. (13)

Here m and n describe the coupled even and odd states,
respectively (that is, a pair of states with a carrier in different
dots but in the same energy shell), θmn is the mixing angle,
defined by tan θmn = 2Vm/(εm − εn), where εm/n denotes the
energy levels in the two dots without the coupling. The
energies of the states |m̃〉 and |̃n〉 are denoted by Em and
En, respectively, where

En/m = εm + εn

2
± 1

2
�Enm (14)

and

�Enm =
√

(εn − εm)2 + 4V 2.

The spatial coherence in the ground state is related to the
density matrix elements in the eigenstate basis by

〈0|ρ|1〉 = 1

2
sin θ01(〈̃0|ρ |̃0〉 − 〈̃1|ρ |̃1〉)

+ cos2 θ01

2
〈̃0|ρ |̃1〉 − sin2 θ01

2
〈̃1|ρ |̃0〉. (15)

It is clear that spatial coherence can appear in the ground
state as a result of phonon-induced relaxation even in the
absence of the special degeneracy discussed above, which
is a trivial consequence of the fact that the ground state of
coupled dots is coherently delocalized by itself. At T = 0 K,
when the system relaxes to the ground state, this coherence is
(1/2) sin θ01. At finite temperatures, the equilibrium state of
the system is

ρ =
∑

n

pn|ñ〉〈ñ|, (16)

where pn = Z−1 exp (−En/kBT ) and Z = ∑
n exp[−En/

kBT ]. According to Eq. (15) this yields the degree of coherence

〈0|ρ|1〉 = 1

2
sin θ01(p0 − p1) (17)

= 1

2
sin θ01(p0 + p1) tanh

E1 − E0

2kBT
.

Hence, the coherence at equilibrium depends on the mixing
angle (reflecting the relative coupling strength), the total
occupation probability of the ground shell, and the thermal
redistribution of occupations between the two states in
the ground shell. In a certain range of temperatures, when
the occupations of the higher shells can be neglected
(hence p0 + p1 ≈ 1), the ground-state spatial coherence is
determined by the last factor in the above equation.

For the numerical simulations of the evolution of the
density matrix for coupled QDs, we use the master equation
as in Eq. (9), but now in the eigenstate basis and with the
corresponding spectral densities R̃ (related to those in the
original basis as described in detail in Appendix B).
The energy splittings �

(e)
I/II and �

(h)
I/II (see Fig. 1) are obtained by
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FIG. 6. (Color online) The evolution of the spatial coherence for
coupled QDs, with �(e) = 0.02 meV and �(e)

g = −0.05 meV, for

the initial state (|2〉 + |3〉) /
√

2 (electron excited). (a) For selected
values of the interaction V and a constant interdot distance. The gray
dotted lines represent the results obtained from the Lindblad equation
(secular approximation) for the same values of the parameters. (b) For
an interaction V that depends on the distance between the dots.

the symmetric displacement of the states with respect to �
(e)
I =

�
(e)
II = 5 meV for the electron and �

(h)
I = �

(h)
II = 2 meV for

the hole, while the energy difference between the ground states
in the dots is constant and has the value �(e)

g = −0.05 meV and
�(h)

g = −0.008 meV for the electron and the hole, respectively.

2. Simulation results and discussion

Again, for the sake of clarity and simplicity, we start our
discussion from the case of the initial state (|2〉 + |3〉)/√2
(only an electron excited). The results of these simulations are
shown in Fig. 6. To simplify the discussion, in Fig. 6(a) we
fixed the interdot distance and increase only the coupling.
For the chosen values of the parameters describing the
inhomogeneity of the QDs and for a strong coupling (Vm =
V = −0.8 meV), the simulation results obtained from the
Lindblad equation, that is, in the secular approximation (gray
dotted line), are in exact accordance with the simulation results
obtained from the more general master equation (red solid
line). This means that the evolution of spatial coherence in this
regime is dominated by simple relaxation to the coherently
delocalized ground state. For lower values of the coupling
the system reaches the equilibrium value of the coherence,
with a correction to the Lindblad dynamics that grows with
decreasing coupling and with some weak oscillations. These
corrections are due to the growing role of the phonon-induced
transfer of coherence from the upper levels. These oscillations
do not appear in simulation results obtained in the secular
approximation for the same values of the parameters [gray
dotted lines in Fig. 6(a)] even though the main trend of the
evolution of coherence as well as the asymptotic value are
reproduced correctly unless the coupling becomes very weak.

In Fig. 6(b) we present the evolution of the spatial coherence
in coupled QDs at T = 0 K, when the coupling is related to
the distance between the dots. For this dependence we choose
the simplest exponential model [28], V = −V0 exp (−D/D0),
with the amplitude V0 = 0.5 meV and the range D0 = 20 nm.
For distant dots (about hundreds of nanometers and more),
the coupling vanishes; hence the equilibrium value of the
ground-state coherence decreases and the system reaches
the limit of uncoupled dots described in Sec. III A. For
closely placed dots, one essentially deals with a relaxation
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FIG. 7. (Color online) (a) The evolution of the spatial coherence
for coupled QDs at a constant interdot distance. (b)–(d) The phonon
spectral densities describing the electron relaxation within the dots,
and the electron transfer between the states in the dots. The marks
in (b),(d) (colored circles, triangles, and stars) denote the transition
energies corresponding respectively to the cases with the red, blue,
and orange lines in (a).

process to the ground state, and hence the ground-state spatial
coherence reaches higher values. Weak oscillations visible
for intermediate distances are a fingerprint of the coherence-
transfer contribution to the process, which overall remains
dominated by relaxation between the eigenstates. Obviously,
the everlasting coherence in our simulation results is due to
the lack of exciton decay in our model and, in a real system,
will be limited at longer times by radiative recombination (see
Appendix C for a brief discussion of these effects).

In Fig. 7(a) we show the impact of the relaxation within
the ground shell on the system dynamics. Again, we choose
the initial state with the excited electron only, and we fix the
interdot distance. For better clarity, we keep also constant val-
ues of the intradot energy-level differences (�(e)

I = 3.45 meV,
�

(e)
II = 3.55 meV). We consider five scenarios with different

relaxation rates of the electron within and between the dots.
The spectral densities relevant for the discussion of the results
in Fig. 7(a) are presented in Figs. 7(b)–7(d) and the associated
occupation dynamics for the five cases to be analyzed is plotted
quantitatively and represented diagrammatically in Fig. 8.

We start our discussion with strongly coupled QDs with
the mixing angle θmn close to π/2. The spectral densities
R̃1001 and R̃3003 (see Appendix B) involved in the rate of the
ñ → m̃ transition at T = 0 K [�̃nm = 2πR̃nmmn(�Enm/�)]
for this case are presented in Fig. 7(b). The initial state in
this case is nearly identical with the eigenstate |̃2〉, which
is the lower-energy state of the excited electron shell. The
evolution of the ground-state spatial coherence in this case
will depend on the relative values of the transition rates
between this state and the two states in the ground shell
of the DQD. Many scenarios are possible, out of which we
discuss the two most characteristic ones. The red line in
Fig. 7(a) (�(e)

g = −0.05 meV, V = −0.8 meV, θ01 = 88.21◦,
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FIG. 8. (Color online) The occupation of the eigenstates at T =
0 K (left panels) and the diagram of the transition rates between the
states (right panels) for the dynamical scenarios studied in the text.
The color of arrows corresponds to the spectral densities presented
in Figs. 7(b)–7(d), while their thickness denotes the efficiency of the
relaxation process, and p is the initial probability of the occupation
of the excited states.

θ23 = 84.64◦) represents the evolution of the ground-state
spatial coherence with fast relaxation between the two states
in the ground shell [case (a) in Fig. 8]. In this case, the
occupation of the ground states changes fast and the spatial
coherence reaches its asymptotic value in a short time. During
the evolution one can observe only a small transient occupation
of the state |̃1〉 [see Fig. 8(a)].

The blue line in Fig. 7(a) (�(e)
g = −0.03 meV, V =

−0.5 meV, θ01 = 88.17◦, θ23 = 82.48◦) corresponds to the
situation where the efficiency of the carrier transfer between
the ground states is lower as compared to the relaxation to
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FIG. 9. (Color online) The asymptotic values of the spatial co-
herence between the two lowest exciton states in the system of
coupled and nonidentical QDs at T = 0 K. (a) For the initial
state (|2〉 + |3〉) /

√
2 (electron excited), �(e) = 0.02 meV. (b) For

the initial state (|6〉 + |7〉) /
√

2 (both electron and hole excited),
�(e) = 0.02 meV, �(h) = 0.008 meV.

the state |̃1〉 [see Fig. 8(b)]. Although the system still finally
relaxes to the delocalized ground state |̃0〉 with the maximum
value of the spatial coherence of 1/2, the final ground-state
spatial coherence saturates after a much longer time.

Now, we focus on weakly coupled QDs, where initially
both of the excited-shell eigenstates are occupied. In such a
situation, the efficiency of the carrier transfer between the
dots strongly affects the value of the ground-state spatial
coherence. In the limiting case of vanishing relaxation within
the ground shell, the system state at T = 0 K is asymptotically
frozen in a mixture of the states |̃0〉 and |̃1〉, with relative
probabilities determined by the relaxation rates from |̃3〉 and
|̃2〉 to these two eigenstates. Since the “antibonding” state |̃1〉
contributes negative spatial coherence, the resulting value of
this coherence may in principle achieve any value between
−1/2 and 1/2. An example is shown by the orange line
in Fig. 7(a) (�(e)

g = −0.001 meV, V = −0.05 meV, θ01 =
89.43◦, θ23 = 44.71◦) and in Fig. 8(c). At sufficiently high
temperatures, this state would become metastable and decay
to the ground state |̃0〉 due to thermally activated transitions
via the excited states.

The evolution in the case of weakly coupled QDs is shown
in Fig. 7(a) by the green line (fast carrier transfer between
the dots, �(e)

g = −1.6 meV, V = −0.8 meV, θ01 = 45◦, θ23 =
43.26◦) and gray line (slow transfer, �(e)

g = −0.1 meV, V =
−0.05 meV, θ01 = 45◦, θ23 = 26.57◦). The spectral densities
relevant to these cases are shown in Figs. 7(c) and 7(d). In
the case of fast transfer, the electron transfer between the
states in the ground shell is relatively efficient [see Fig. 8(d)]
and the final ground-state spatial coherence quickly reaches
its asymptotic value as in Eq. (17). In the other case, when
the transfer within the ground shell is extremely slow [see
Fig. 8(e)], the final degree of coherence results from the
coherence-transfer process, with the final value yielded by the
interplay of the occupation relaxation and coherence-transfer
rates, as discussed in the previous section. In the particular
case shown in Fig. 7(a) (gray line), this value is lower than that
associated with the ground state (green line).

In Fig. 9 we present the long-time asymptotic values of the
spatial coherence in coupled QDs at T = 0 K, as a function
of the interdot distance. For small distances, the effect is
dominated by the ground-state coherence. Since the mixing
angle decreases with vanishing coupling, so does the amount
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FIG. 10. (Color online) The evolution of the spatial coherence
between the two lowest exciton states in the system of nonidentical
QDs at various temperatures. (a) �(e) = 0.02 meV. (b) �(e) =
0.02 meV, �(h) = 0.008 meV.

of spatial coherence in the ground state and, as a result, the
final degree of spatial coherence decreases with the interdot
distance. For larger distances between the dots the efficiency
of the coherence transfer is most important (uncoupled dots
limit, see Sec. III A); hence the asymptotic value oscillates with
the distance, in view of the corresponding form of the spectral
density [as in Fig. 4(c), but with a smaller amplitude because of
nonidentical dots]. Furthermore, the coupling becomes smaller
than the energy mismatch and the resulting maximum value
of the coherence is reduced. The resulting dependence on the
distance is similar for the initially excited electron [Fig. 9(a)]
and for both the electron and the hole excited [Fig. 9(b)].

An important feature of phonon-related effects is their
strong temperature dependence. In Fig. 10 we show the
evolution of the spatial coherence in coupled QDs at a
few values of the temperature. In Fig. 10(a) we present the
results for the initial state (|2〉 + |3〉) /

√
2 (excited electron).

In Fig. 10(b), results for the initial state (|6〉 + |7〉) /
√

2 are
presented where, at the beginning, the electron and hole are in
their excited states. The thermal distribution of the occupations
reduces the asymptotic degree of coherence in accordance
with Eq. (17). At a low temperature (blue dashed line), mostly
the ground states are occupied. At higher temperatures the
occupations are distributed between the ground and excited
states, and hence the ground-state coherence is suppressed.
Let us note that in comparison with the electron, the hole has
a lower value of the deformation potential constant. Hence,
the phonon relaxation of the hole is slower and the resulting
evolution of the spatial coherence in the case of both carriers
initially excited saturates after a longer time.

IV. DISCUSSION AND CONCLUSIONS

We have studied theoretically the evolution of the spatial co-
herence during relaxation between delocalized exciton states
in a system consisting of two vertically stacked semiconductor
QDs coupled to the acoustic phonons. We have shown that the
coupling to phonons can lead to coherence transfer from a
delocalized excited state to the ground-state manifold of the
DQD, which accompanies phonon-induced relaxation in this
system. As we have found, the coherence transfer in a system
of decoupled dots requires that the intraband energy spacings
in the two dots should be close to each other. In the presence of
coupling between the dots, some spatial coherence is always
present in the system ground state. Hence, in the evolution, one

deals with an interplay between the coherence-transfer process
(which is related to intradot relaxation), and the relaxation to
the ground state (which involves interdot transfer, enabled by
the coupling).

As a final element of our discussion, let us see to what extent
the required degeneracy of intraband transition energies is
likely to appear in a real system. The inhomogeneous broaden-
ing of ground-state photoluminescence lines in QD ensembles
is typically on the order of 10 meV. Apart from being composed
of electron and hole contributions, this broadening is mostly
due to the fluctuation in the QD size H along the strongest
confinement axis (i.e., the growth direction). Since the energy
is proportional to inverse square of the size, the variation of the
intraband transition energies, which depend on the lateral size
L, is reduced by a factor (H/L)2, that is, by one or two orders
of magnitude. This estimate yields a typical inhomogeneity
of electron intraband transition energies of 0.1 meV and a
correspondingly smaller value for the hole. These energies
may lie even closer to each other in particular QD pairs.
On the other hand, the critical value of the inhomogeneity
that destroys the coherence transfer effect is related to the
onset of validity of the secular approximation and hence
depends on the typical relaxation rate. In smaller QDs, where
the LO-phonon-mediated relaxation is faster by an order of
magnitude than in our present model, the tolerance of this
effect against inhomogeneity will also be enhanced by an order
of magnitude.

The present study was based on a minimal model with the
aim to demonstrate that the process in question is possible in
principle and to characterize the most general conditions that
must be met for this process to appear. Obviously, it must be
supplied with much more details concerning the actual system
spectrum and the full set of phonon modes and processes
that contribute to relaxation in a typical structure (most
likely optical phonons and anharmonicity-related processes)
in order to yield quantitative conclusions on the importance of
the coherence-transfer process under particular experimental
conditions. In the detailed model, one might also include the
exact structure of wave functions. In particular, the product
form of the exciton wave functions is not strictly consistent
with the assumption that the Coulomb attraction is larger
than the differences between single-particle levels. Including
Coulomb-correlated exciton states would yield more accurate
values of transition rates, although the general structure of the
model and, therefore, the essential conclusions of our analysis
would remain unaffected. Apart from the possible quantitative
improvements of the model, already at the present stage of
a “proof of principle”, our results indicate that the interplay
of the coupling and energy degeneracy is crucial not only for
the appearance of collective emission itself [3,5] but also for
the coherence transfer during relaxation that is needed for the
appearance of the coherent Dicke-like state in the ground shell
of the DQD.
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APPENDIX A: NONSECULAR MASTER EQUATION
PRESERVES PHYSICALITY

In this Appendix we show that retaining the nonsecular
terms in Eq. (5) does not break the physicality of the model
in the sense that the density matrix remains positive definite
during the evolution generated by this master equation. We do
this by explicitly transforming Eq. (6) into the Lindblad form,
which is known to posses the required properties [26].

For the sake of clarity, let us define σmn = |m〉〈n|. We
start by rewriting Eq. (6) in terms of the density matrix in
the Schrödinger picture, ρS = e−iH0t/�ρeiH0t/�, where H0 =∑

n εn|n〉〈n|. One finds

ρ̇S = − i

�
[H0,ρS] + LS[ρS],

where

LS[ρS] = π
∑
lkmn

Rlkmn(ωmn)(σmnρSσ
†
kl − σ

†
klσmnρS) + H.c.

By appropriately renaming the summation indices and using
the symmetry relations for the spectral densities listed below
Eq. (6), the dissipator can be written in the form

LS[ρS] = − i

�
[H1,ρS] + L′[ρS],

where

L′[ρS] = 2π
∑
klmn

�(kl)(mn)(σmnρSσ
†
kl − {σ †

klσmn,ρS}),

with �(kl)(mn) = [Rlkmn(ωmn) + Rlkmn(ωkl)]/2, and

H1 = i

2

∑
klmn

[Rlkmn(ωmn) − Rlkmn(ωkl)] σ
†
klσmn.

In view of the symmetries of the spectral densities, H1 is a
Hermitian operator and the matrix of transition rates � is also
Hermitian, that is, �(kl)(mn) = �∗

(mn)(kl). The dissipator L′ can
therefore be brought to the standard Lindblad form [26]. One
diagonalizes � by a unitary matrix U ,∑

klmn

U ∗
(kl),α�(kl)(mn)U(mn),β = γαδαβ,

with
∑

kl U(kl),αU ∗
(kl),β = δαβ and

∑
α U(kl),αU ∗

(k′l′),α = δkk′δll′ .
Define σα = ∑

kl U
∗
(kl),ασkl , that is, σkl = ∑

α U(kl)ασα . In
terms of these new operators one finds

L′[ρS] =
∑

α

�̃α

[
σαρSσ

†
α − 1

2

{
σ †

ασα,ρS
}]

.

Hence, Eq. (6) in the Schrödinger picture has the form of the
Lindblad equation

ρ̇S = − i

�
[H0 + H1,ρS] + L′[ρS]

and therefore preserves the physicality of the density matrix.

APPENDIX B: SPECTRAL DENSITIES
FOR COUPLED QDS

In this Appendix, we summarize the calculation of the
spectral densities for a coupled system, which are related to
those in the original basis, defined in Sec. III A. We focus on
the secular and nonsecular spectral densities for the electron

relaxation. The same calculations can be repeated for the hole
relaxation.

Upon transformation to the eigenbasis defined by Eqs. (12)
and (13), Eq. (3) becomes

Hc–ph =
∑
(mn)

|m̃〉〈̃n|
∑

k

F̃mn(k)(bk + b
†
−k)

+
∑
(n′n)

|̃n′〉〈̃n|
∑

k

F̃n′n(k)(bk + b
†
−k). (B1)

The first term in the Hamiltonian is derived from the first
term in Eq. (3) and corresponds to intershell transitions. The
coupling between the QDs and the resulting state mixing opens
new (cross-QD) relaxation channels, compared to Eq. (3),
where only relaxation within a QD was possible. This is
accounted for by a larger set of coupling constants, e.g.,

F̃02(k) = cos
θ01

2
cos

θ23

2
F02(k) + sin

θ01

2
sin

θ23

2
F13(k).

The second term, in which [n′n] denotes summation over
pairs of states belonging to one shell, originates from the
diagonal couplings which did not contribute to the dynamics
in the uncoupled case in the Markov limit. In the presence
of the coupling between the QDs, these diagonal terms yield
transitions between the delocalized states that form a doublet
within a given shell. For instance,

F̃01(k) = 1
2 sin θ01[F11(k) − F00(k)].

The spectral densities for the coupled case are then calculated
according to Eq. (6) using the transformed coupling constants.
As a result, one obtains, e.g., for the spectral densities most
relevant to the discussion in Sec. III B,

R̃2002(ω) = R̃3113(ω) = C1R(e)
sec(ω) + C2R(e)

nsec(ω),

R̃2112(ω) = R̃3003(ω) = C3R(e)
sec(ω) − C2R(e)

nsec(ω),

R̃1001(ω) = 1
4 sin2 θ01

[
R(e)

0000(ω) + R(e)
1111(ω)

− R(e)
1100(ω) − R(e)

0011(ω)
]
,

where

C1 = sin2 θ01

2
sin2 θ23

2
+ cos2 θ01

2
cos2 θ23

2
,

C2 = 1

2
sin θ01 sin θ23,

C3 = sin2 θ01

2
cos2 θ23

2
+ cos2 θ01

2
sin2 θ23

2
.

APPENDIX C: THE EFFECT OF FINITE
EXCITON LIFETIME

Spontaneous emission (radiative recombination of exci-
tons) is modeled by the Lindblad equation, written in the basis
of exciton eigenstates |̃l〉 [Eqs. (12) and (13)],

Lrad[ρ] =
∑

l

γl

[
�lρ�

†
l − 1

2
(�†

l �lρ + ρ�
†
l �l)

]
,

where �l annihilates the exciton in the state |l〉 and γl is
the recombination rate for this state. The latter depend on the
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FIG. 11. (Color online) The evolution of the spatial coherence
for coupled QDs (including the radiative recombination of exciton),
with the same values of the parameters �(e) and �(e)

g as in Fig. 6, again

for the initial state with the excited electron only [(|2〉 + |3〉) /
√

2].
(a) For selected values of the interaction V and a constant interdot
distance. (b) For interaction V that depends on the distance between
the dots.

delocalization of the exciton state [3,5]. Assuming that the
electron and hole wave functions in a given dot are similar and
that the excited states |6〉 and |7〉 are bright, one has for the
states defined in Eqs. (12) and (13) γ0,1 = γ0(1 ± sin θ01) and
γ6,7 = γ0(1 ± sin θ67) (the upper sign corresponds to the first
of the two indices), and all the remaining decay rates equal to
0. Here γ0 is the decay rate of an exciton on a single quantum
dots; we assume γ0 = 1 ns−1.

As an example, we recalculate the results presented in
Fig. 6, now taking into account the radiative decay. The results
are shown in Fig. 11 . The effect at short times is very small. On
the long time scales, however, the coherence does not stabilize
at a constant value but decays due to radiative recombination
of the exciton. As a result of this process, the maximum value
of the spatial coherence is lower than in the idealized model
discussed in this paper.
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