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Thermal Hall effect of spins in a paramagnet
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The theory of Hall transport of spins in a correlated paramagnetic phase is developed. By identifying the
thermal Hall current operator in the spin language, which turns out to equal the spin chirality in the pure
Heisenberg model, various response functions can be derived straightforwardly. Subsequent reduction to the
Schwinger-boson representation of spins allows a convenient calculation of thermal and spin Hall coefficients
in the paramagnetic regime using self-consistent mean-field theory. A comparison is made to results from the
Holstein-Primakoff reduction of spin operators appropriate for ordered phases.
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I. INTRODUCTION

The Hall effect of electrons has evolved from a useful tool
for measuring the carrier density of a material to a powerful
diagnostic of the topological structure of the underlying
electronic band, reflecting the Berry curvature distribution
throughout the Brillouin zone [1,2]. The Hall effect of charge
current often implies the Hall effect for the energy or of thermal
transport, as the motion of electrons necessarily involves the
transport of energy as well.

An exciting recent development has been the realization
that this notion of a topology-driven Hall effect can be
extended to neutral objects of zero electrical charge. The
phonon Hall effect, in which a transverse heat transport is
mediated by phonons in response to thermal gradient, has
been observed [3]. Magnons, quantized small fluctuations of
an ordered magnet, can, in principle, exhibit similar Hall
transport driven by the thermal gradient, as first predicted
theoretically by Katsura et al. [4] and confirmed experimen-
tally in an insulating pyrochlore magnet Lu2V 2O 7 by the
Tokura group [5]. Formulation of the magnon Hall effect
was perfected by Murakami and collaborators in a series of
papers [6–8] after correcting for the missing magnetization
current term in the original derivation of Ref. [4]. A striking
parallel of the topology of the magnon band structure to that
of electronic bands responsible for the quantized Hall effect
was emphasized in several recent papers [9,10].

With a solid theoretical foundation and an experimental
demonstration to back it up, the thermal Hall effect has become
a powerful probe of the topological nature of magnon excita-
tions in an ordered magnet. While the magnon Hall effect is
easily interpreted as a natural consequence of the momentum-
space topology of the magnon band, a complementary real-
space picture suggests that it is also a probe of a particular type
of spin correlation, known as the spin chirality, of quantum
insulating magnetic systems [4,5]. Spin chirality, expressed
as the triple product of three neighboring spin operators
Si · Sj × Sk for sites i,j,k, which form the smallest triangle in
the lattice, has taken on the significance of an important new
order parameter of a quantum spin system since its invention
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in the late 1980s [11,12]. An appealing possibility entertained
ever since its inception is that of a quantum-disordered magnet
with zero average local magnetization, 〈Si〉 = 0, yet with a
finite spin chirality, 〈Si · Sj × Sk〉 �= 0. Such a state breaks
time-reversal symmetry and parity, opening the door for finite
Hall-type transport in its ground state. A question deserving
investigation in this regard is whether the magnon Hall effect
has a natural extension to the disordered phase, in which
the notion of a magnon may break down but not that of the
spin-chirality order. In other words, is the establishment of spin
chirality (without the magnetic long-range order) a sufficient
condition to give rise to the thermal Hall effect in an insulating
magnet?

We will argue in this paper that there is no physical
principle preventing the persistence of Hall-type transport
into the paramagnetic phases of spin once the time-reversal
symmetry is broken by the magnetic field. Thermal Hall
measurement was successfully carried out both below and
above the ferromagnetic transition temperature in a different
material by the Ong group [13]. Recently, the same group
showed the presence of the thermal Hall effect in the frustrated
(i.e., disordered) quantum pyrochlore material Tb2Ti 2O 7 [14].
Stimulated by their observations, we go beyond the existing
magnon description of the thermal Hall effect [4–10] and
formulate the phenomenon using the spin language entirely.
It is then applied to discuss Hall effects of spin in both
the paramagnetic and the ferromagnetic regime. Essentially,
the idea is to develop the linear response formalisms
within the spin language as much as possible. Only in the
final stage of the computation of the response function is
the particular representation of the spin operator relevant. For
instance, the Hall effect in the ordered phase is appropriately
captured by the Holstein-Primakoff (HP) mapping of spins,
as done in the past [4], while the possible paramagnetic
Hall effect is best discussed in the Schwinger-boson (SB)
language [15,16]. Both thermal and spin Hall effects can be
consistently described in this formalism.

In Sec. II we describe the linear-response formalism for
calculating thermal Hall conductivity entirely in the spin
language, followed in Sec. III by an explicit calculation of
the thermal and (related) spin Hall conductivities using the two
well-known approximate methods: the Holstein-Primakoff and
Schwinger-boson methods. Discussions and future prospects
are given in Sec. IV.
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II. SPIN-LINEAR RESPONSE THEORY

To present the method of approach in a concrete background
we choose the Heisenberg spin model on a kagome lattice,
written as a sum of site Hamiltonians H = ∑

i Hi , where each
Hi is

Hi = 1

2

∑
j∈i

(−JSi · Sj + Di;j Si × Sj · ẑ) − BSi · b̂. (1)

The symbol j ∈ i indicates four immediate neighbors of
each site i. The orientation of the external field is fixed:
b̂ = +ẑ. Nearest-neighbor exchange interaction of strength
J is assumed, with the convention for the sign of the
Dzyaloshinskii-Moriya (DM) interaction Di;j = D = −Dj ;i

as outlined in Fig. 1. Although all formal derivations of
spin linear-response functions apply for either sign of J , for
concreteness we will assume ferromagnetic exchange J > 0.

Two continuity equations are derived,

Ṡz
i +

∑
j∈i

J S
i;j = 0, Ḣi +

∑
j∈i

J E
i;j = 0, (2)

tied to total z-spin and energy conservations, respectively. The
bond current operators are

J S
i;j = −i

J ′

2
eiφi;j S+

i S−
j + H.c.,

J E
i;j = −BJS

i;j − 1

2

∑
k∈j

(
JSz

kJ
S
i;j + JSz

i J
S
j ;k + [

J S
i;j , J

S
j ;k

])

+ 1

2

∑
k∈i

(
JSz

kJ
S
j ;i + JSz

jJ
S
i;k + [

J S
j ;i , J

S
i;k

])
. (3)

The spin current J S
i;j for the z component is expressed in terms

of S±
i = Sx

i ± iS
y

i , J ′ = √
J 2 + D2, and tan φi;j = Di;j /J .

While the spin current operator above is well known, the

FIG. 1. (Color online) Schematic figure of the kagome lattice.
Arrows indicate the sign convention Di;j = +D for i → j . Unit
vectors are chosen as η̂1 = −(1,

√
3)/2, η̂2 = (1,0), η̂3 = (−1,

√
3)/2

with lattice constant a = 1. Each upward triangle i has three sublattice
sites, αi,βi,γi.

energy current JE
i;j is new. In the Heisenberg limit (D = 0)

the energy current is directly related to the spin chirality,

JE
i;j = J 2

∑
k∈j

Si · (Sj × Sk) (D = 0). (4)

Linear-response theory for the average of spin and energy
current operators can be developed now.

Coupling of the energy density Hi to the pseudogravita-
tional potential ψi is an effective way to derive the thermal
response function [6–8,17]. In brief, the total Hamiltonian
including the gravitational coupling H = ∑

i[1 + ψie
st ]Hi

leads to the modification of the density matrix ρ(t) = ρ0 +
δρ est [17],

δρ = −ρ0

�

∫ ∞

0
dt ′e−st ′

∫ β

0
dβ ′ ∑

〈i,j〉
(ψj − ψi)J

E
i;j (−t ′ − iβ ′)


 −ρ0

�

∫ ∞

0
dt ′e−st ′

∫ β

0
dβ ′ ∑

�i

(∇ψ) · jE0 (i; −t ′ − iβ ′).

(5)

The first line involves the sum over all nearest neighbors 〈i,j 〉
of the kagome lattice, which in the second line is reorganized
as a sum over each upward-pointing triangle �i. Assuming
smoothly varying field allows one to replace ψj − ψi by its
gradient. The ensuing current vector jE0 (i) per triangle i is a
sum,

jE
0x(i) = JE

βi;γi
+ JE

γi−2η̂2 ;βi

+ 1

2

(
JE

βi;αi
+ JE

αi;βi−2η̂1
+ JE

αi;γi
+ JE

γi;αi−2η̂3

)
,

jE
0y(i) =

√
3

2

(
JE

βi;αi
+ JE

γi;αi
+ JE

αi;γi+2η̂3
+ JE

αi;βi−2η̂1

)
, (6)

where all the subscript symbols are as defined in Fig. 1.
As noted long ago by Luttinger [17], the psuedogravita-

tional field entering in the total Hamiltonian alters more than
the density matrix, as is often the assumption in linear-response
theory. Working through the continuity equation for the
modified local Hamiltonian (1 + ψi)Hi gives the new bond
energy current operator,

(1 + ψi + ψj )JE
i;j 
 [1 + 2(ri · ∇ψ)]JE

i;j . (7)

The failure of the local Hamiltonians to commute with each
other, [Hi,Hj ] �= 0, is the source of the modification. Such
modification does not occur, for instance, in the case of
electric current since density operators (which couple to
electric potential) commute at different sites. The relation
ψi = ri · (∇ψ) for the uniform potential gradient is assumed.
The physical energy current operator is therefore the sum

jE(i) = jE0 (i) + jE1 (i),

jE1 (i) = 2jE0 (i)(ri · ∇ψ). (8)

The average of the energy current operator in response
to the pseudogravitational field accordingly contains two
contributions,〈

jE
a

〉 = Tr
[
δρ jE

0a

] + Tr
[
ρ0 jE

1a

] = (
σE

0ab + σE
1ab

)
(−∇bψ).

(9)
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The spatial average (1/Nt )
∑

�i
jE0 (i) ≡ jE , where Nt is the

number of up triangles, is taken. Formal expressions of these
coefficients are well known and reproduced,

σE
0ab = i

Nt

∑
n,m

e−βεm − e−βεn

εm − εn

〈n|jE
0b|m〉〈m|jE

0a|n〉
εn − εm − is

,

(10)

σE
1ab = Tr

(
ρ0

[
∂jE

0a(q)

∂qb

]
q=0

)
,

where complete sets of many-body states are |m〉 and |n〉 and
jE0 (q) = (1/Nt )

∑
�i

jE0 (i)e−iq·ri .
This completes the derivation of thermal response functions

in the spin language. To evaluate them, however, is hard with-
out full knowledge of all many-body eigenstates for the spin
Hamiltonian. Below we propose a scheme in which evaluation
of σE

ab = σE
0ab + σE

1ab can be performed straightforwardly at
the noninteracting level.

III. HOLSTEIN-PRIMAKOFF AND SCHWINGER-BOSON
LINEAR-RESPONSE THEORY

Evaluation of the response coefficients can be done in
the Schwinger-boson mean-field theory (SBMFT) in which
spin is expressed by a pair of bosons (bi↑,bi↓) as Si =
1
2

∑
α,β=↑,↓ b

†
iασ αβbiβ . Decoupling in terms of the bond op-

erator χ̂ σ
i;j = b

†
iσ bjσ gives the mean-field Hamiltonian,

H SB =
∑
i,σ

(λ − σB)b†iσ biσ −
∑

〈i,j〉,σ

(
tσi;j b

†
iσ bjσ + H.c.

)
,

tσi;j = J
〈
χ̂ σ

j ;i

〉 + J ′e−iσφi;j
〈
χ̂−σ

j ;i

〉
. (11)

The Lagrange multiplier λ is introduced to keep the average
boson number constant at 2S = 1. The Zeeman field and the
effective flux from DM interaction act oppositely for the two
bosons. The energy current operator in Eq. (3) allows a lengthy
rewriting in terms of bond operators,

JE
i;j = −1

2
B(J + iDi;j )

∑
σ

χ̂−σ
i;j χ̂σ

j ;i + 1

16i

∑
k∈j

{
J 2(χ̂i;j χ̂j ;kχ̂k;i − H.c.) + Di;jDj ;k

∑
σ

(
χ̂−σ

i;j χ̂−σ
j ;k χ̂σ

k;i − H.c.
)

+ iJ
∑

σ

σ
(
Di;j χ̂

−σ
i;j χ̂j ;kχ̂

σ
k;i + Dj ;kχ̂

−σ
k;j χ̂j ;i χ̂

σ
i;k + H.c.

)} − (i ↔ j ), (12)

where χ̂i;j = ∑
σ χ̂σ

i;j and (i ↔ j ) denotes the exchange for
all the terms shown in Eq. (12).

Due to the enormous complexity of the current operator in
the Schwinger-boson representation (or in the spin representa-
tion for that matter), calculating the correlation function for it
appears daunting if not impossible. However, one observes
that each triple product of bond operators in the above
expression contains exactly two terms that can be replaced by
the mean-field average 〈χ̂ σ

i;j 〉 (because they span the nearest
neighbors in the kagome lattice) and only one that contains
boson hopping across second neighbors (not captured by the
mean-field parametrization). After such mean-field reduction
JE

i;j becomes a bilinear in the Schwinger-boson operator (see
Appendix A). In the uniform case, 〈χ̂ σ

i;j 〉 = χσ , we have proven
that the corresponding mean-field vector current operator jE0 (i),
averaged over all triangles jE0 = (1/Nt )

∑
�i

jE0 (i), is equal to
a simple and familiar expression (see Appendix A),

jE0 = 1

2

∑
k,σ

�
†
kσ

(
H SB

kσ

∂H SB
kσ

∂k
+ ∂H SB

kσ

∂k
H SB

kσ

)
�bf kσ . (13)

We denote the three corners of the upward triangle i as
αi,βi,γi, respectively (Fig. 1), and their Fourier counterparts
as �T

kσ = (αkσβkσ γkσ ). The mean-field SB Hamiltonian in
Eq. (11) for uniform parameters becomes in momentum space
H SB = ∑

k,σ �
†
bf kσH SB

kσ �kσ ,

H SB
kσ = (λ − σB)I3 +

⎛
⎝ 0 tσ cos k1 t∗σ cos k3

t∗σ cos k1 0 tσ cos k2

tσ cos k3 t∗σ cos k2 0

⎞
⎠,

(14)

with effective hopping parameters tσ = Jχ − iσDχ−σ , χ =∑
σ χσ , kx = k · η̂x and where η̂x are the three orientation unit

vectors defined in Fig. 1. We note that for each spin σ , both
the current operator jEkσ and the Hamiltonian Hkσ have forms
identical to those already examined for the magnon thermal
Hall problem on the kagome lattice [4,8]. Thus, known thermal
Hall formulas derived previously can be applied here directly
for evaluation in the paramagnetic regime.

The thermal Hall conductivity within the SB theory reads

κSB
xy = −k2

BT

�Nt

∑
k,n,σ

[
c2

(
ESB

nkσ

) − π2

3

]
�SB

nkσ . (15)

Both the energy dispersions and Berry curvatures are
to be obtained from diagonalizing the Hamiltonian,
Eq. (14), c2(x) = (1 + x)(ln 1+x

x
)2 − (ln x)2 − 2Li2(−x) [8],

and �SB
nkσ = i〈∂kx

unkσ |∂ky
unkσ 〉 + c.c. for the nth band eigen-

state |unkσ 〉 of H SB
kσ .

By comparison, HP substitution of spin operators in the spin
Hamiltonian (1) leads to the familiar magnon Hamiltonian [4]

H HP = −SJ ′ ∑
〈i,j〉

(e−iφi;j b
†
i bj + H.c.) +

∑
i

(B + 4SJ )b†i bi,

where S is the size of the average magnetization, either by
spontaneous order or through an external field. Different from
earlier work [4], we invoke the self-consistency relation

S(B,T ) = 1

2
tanh

[
B + 4JS(B,T )

2kBT

]

to work out S at a given temperature and field strength.
Spontaneous magnetization S �= 0 occurs at T HP

c = J . The
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upper 
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midle 
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FIG. 2. (Color online) Magnon band structure from HP theory
(D/J = 0.125) at (a) zero and (b) large Zeeman fields. SB band
structure for D/J = 0.125 at (d) zero and (e) large Zeeman fields.
Berry curvatures are worked out at ky = 0 for (c) magnon bands
and (f) SB bands of up spins. Hall responses are a consequence
of population of low-lying magnon or Schwinger-boson bands,
multiplied by their respective Berry curvature densities in momentum
space. Down-spin SB bands have exactly opposite Berry curvatures
at B = 0 and a similar one throughout B > 0.

magnon thermal Hall formula κHP
xy is obtained the same way

as in Eq. (15) without the sum over the spin index σ .

Figure 2 shows representative band dispersions and Berry
curvature distributions over the first Brillouin zone for SB
and HP bosons, respectively. At B = 0 both SB bands look
nearly identical to the magnon bands except for the nonzero
band minimum (SB bosons are not Goldstone bosons). The
zero-field Berry curvatures are also quite similar for SB and
HP bosons, as shown in Fig. 2, but not identical because the
effective DM constant in the SB theory is halved, tσ = Jχ −
iσχ−σ = χ (J − σD/2) at B = 0.

Figure 3 displays thermal Hall response coefficients from
the HP and SB theories. Recall that κHP

xy is finite even at
zero field due to the spontaneous flux generated by the DM
interaction [4]. The B = 0 value, however, changes sign upon
raising the temperature, as shown in Fig. 3(a), because the
higher magnon band has Berry curvature opposite that shown
in Fig. 2(c). On further increase of T it goes down to zero at
T = T HP

c . There is also a sign reversal of the Hall response at
finite field, in qualitative agreement with the recent measure-
ment reported by the Ong group [13]. At low temperature and
low field the lowest-lying magnon band dominates transport.
For higher temperatures, the higher-energy band carrying
opposite Berry flux [see Fig. 2(c)] has a chance to contribute
significantly. A strong Zeeman field creates a large gap for
all the bands, diminishing the thermal population difference
among the bands and increasing the relative contribution of
the higher band with significant Berry flux concentration. The
Schwinger-boson Hall transport, shown in Fig. 3(c), is already
at quite high a temperature and continues the trend seen in
the high-temperature magnon calculation, i.e., a positive peak
at low field followed by a long negative tail in the high-field
region. Combining the two analyses together, we are assured
that thermal Hall transport is a sensitive probe of the Berry
flux distribution as well as the band structure of the underlying
elementary excitations in an insulating paramagnet.

The spin Hall response can be worked out in much the
same way by replacing the spin current operator in Eq. (3)
with its mean-field version (see Appendix B). The source
term for spin current, −∑

i hiS
z
i , does not modify the spin

continuity equation since [Sz
i ,S

z
j ] = 0. The mean-field spin

current operator

jS =
∑
k,σ

σ�
†
kσ

∂Hkσ

∂k
�kσ

FIG. 3. (Color online) Low-temperature thermal Hall conductivity based on self-consistent HP theory (D/J = 0.125) for (a) T < T HP
c

and (b) T > T HP
c . Zero-field ferromagnetic transition occurs at T HP

c /J = 1. The inset in (a) highlights the sensitive dependence of κHP
xy on

temperature around T = T HP
c due to small values of self-consistent magnetization S and the consequent collapse of magnon bands, leading to

a large enhancement of the Bose factor in Eq. (15) over a small temperature change. The inset in (b) emphasizes the linear rise of κHP
xy with

magnetic field for T > T HP
c . (c) High-temperature thermal Hall conductivity based on SBMFT (D/J = 0.15) for T > T SB

c (≈0.5 J).
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FIG. 4. (Color online) Spin Hall conductivity σS
xy based on HP theory (D/J = 0.125) for (a) T < T HP

c and (b) T > T HP
c . (c) High-

temperature spin Hall conductivity based on SBMFT (D/J = 0.15) for T > T SB
c .

results in the spin Hall conductivity

σS,SB
xy = μB

�Nt

∑
k,n,σ

nB(Enkσ )�SB
k,n,σ , (16)

where nB is the Bose occupation function. Spin Hall coeffi-
cients for both the HP and SB boson theories are worked out
in Fig. 4.

IV. DISCUSSION

Theories of thermal and spin Hall effects for spin systems
were developed in the general language of spin operators. Ways
to consistently obtain response functions in the correlated
disordered phase were developed, employing the Schwinger-
boson approach. The Holstein-Primakoff reduction was shown
to reproduce the existing theories. Most interestingly, Eq. (4)
unambiguously points out that the thermal Hall response is a
direct measure of the inherent spin chirality in the underlying
system, along with other spectroscopic probes of spin chirality
recently proposed [18,19]. As our derivations in Sec. II do not
assume a particular lattice geometry, the formalisms developed
in this paper will be applicable to spin models defined on any
lattice geometry in both two and three dimensions.

Regarding the actual computation of the thermal and spin
Hall response functions we have employed self-consistent
Holstein-Primakoff and Schwinger-boson methods in this
paper. Other means of computing the thermal Hall coefficients
in the spin system, such as exact diagonalization, could be
an alternative to the methods presented in this paper. There

FIG. 5. Schematic figure demonstrating the equivalence we have
provided in Appendix A. Mean-field (MF) and linear-response-theory
(LRT) procedures can be interchanged, leading to the same final
linear-response coefficients.

are shortcomings in the so-called exact methods due to the
severe size limitations in the diagonalization and the difficulty
of extrapolating the computation to large system size. The
abundance of low-energy states that are crucial to efficient
thermal transport may be difficult to capture in the exact
diagonalization on a small system size. On the other hand, the
mean-field nature in the Schwinger-boson approach calls for
improvements in regard to effects of fluctuations [15,16,20].
In particular the phase fluctuation in the mean-field order
parameter tσi;j may remain gapless and severely disrupt
the mean-field analysis unless well-known mass-generating
mechanisms (such as Anderson-Higgs or Chern-Simons) play
a role. We plan to complement the present work, which is
focused on the formulation of spin thermal transport and its
evaluation in the simplest possible manner, in several ways
with a forthcoming publication that emphasizes the importance
of gauge fluctuations in the Schwinger-boson formalism [21].
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APPENDIX A: ENERGY CURRENT OPERATOR IN THE
SCHWINGER-BOSON MEAN-FIELD THEORY

The bond energy current operator appearing in the conti-
nuity equation Ḣi + ∑

j J E
i;j = 0 was written in terms of the

Schwinger-boson operator in the following way:

JE
i;j = −1

2
B(J + iDi;j )

∑
σ

χ̂−σ
i;j χ̂σ

j ;i

+ 1

16i

∑
k∈j

{
J 2[χ̂i;j χ̂j ;kχ̂k;i − H.c.]

+Di;jDj ;k

∑
σ

[
χ̂−σ

i;j χ̂−σ
j ;k χ̂σ

k;i − H.c.
]

+ iJ
∑

σ

σ
(
Di;j χ̂

−σ
i;j χ̂j ;kχ̂

σ
k;i +Dj ;kχ̂

−σ
k;j χ̂j ;i χ̂

σ
i;k+H.c.

)}

− (i ↔ j ). (A1)
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This expression has six boson operators multiplied together. and it is impractical to carry out linear-response calculations for it.
On implementing the mean-field substitution for the nearest-neighbor bond operators 〈χ̂σ

i;j 〉 = 〈b†iσ bjσ 〉 ≡ χσ or χ∗
σ following

the same convention as that for the DM interaction depicted in Fig. 1, we obtain the mean-field energy current operator

JE
i;j

SBMF−→ −1

4
B(J + iDi;j )

∑
σ

[〈
χ̂−σ

i;j

〉
χ̂ σ

j ;i + χ̂−σ
i;j

〈
χ̂ σ

j ;i

〉]

+ 1

16i

∑
k∈j

{
J 2[〈χ̂i;j 〉〈χ̂j ;k〉χ̂k;i − H.c.] + Di;jDj ;k

∑
σ

(〈
χ̂−σ

i;j

〉〈
χ̂−σ

j ;k

〉
χ̂ σ

k;i − H.c.
)

+ iJ
∑

σ

σ
(
Di;j

〈
χ̂−σ

i;j

〉〈χ̂j ;k〉χ̂ σ
k;i + Dj ;k

〈
χ̂−σ

k;j

〉〈χ̂j ;i〉χ̂ σ
i;k + H.c.

)} − (i ↔ j ). (A2)

Only the bond operators connecting second-nearest neighbors remain as operators now. It is a boson bilinear. Here the mean-field
parameter substitution needs to be done carefully because it could be either χσ or χ∗

σ depending on i and j , as explained before.
Using the above expression and Eq. (5) of the main text (reproduced here),

jE
0x(i) = JE

βi;γi
+ JE

γi−2η̂2 ;βi
+ 1

2

(
JE

βi;αi
+ JE

αi;βi−2η̂1
+ JE

αi;γi
+ JE

γi;αi−2η̂3

)
,

(A3)

jE
0y(i) =

√
3

2

(
JE

βi;αi
+ JE

γi;αi
+ JE

αi;γi+2η̂3
+ JE

αi;βi−2η̂1

)
,

one can convert the bond current to the vector current operators jE
0x(i) and jE

0y(i). Note that each bond current operator JE
i;j itself

consists of a dozen different terms, as shown in Eq. (3) of the main text. Each vector current operator then consists of ∼102 terms.
Assignment of χσ or χ∗

σ for each average in Eq. (A2) has to be carried out term by term. Having completed such an exercise, we
finally arrive at the momentum-space expression for the current operator,

jE
0α = 1

Nt

∑
�i

jE
0α(i) =

∑
k,σ

�
†
kσ (J 2Aαk + JD Bαkσ + D2Cαkσ )�kσ , (A4)

where for the x direction

Axk =

⎛
⎜⎜⎝

|χ |2
2 [sin 2k1 + sin 2k3] − (χ∗)2

4 [3 sin(k2 − k3) + sin(k2 + k3)] χ2

4 [3 sin(k2 − k1) + sin(k2 + k1)]

− χ2

4 [3 sin(k2 − k3) + sin(k2 + k3)] |χ |2
2 [sin 2k1 − 2 sin 2k2] (χ∗)2

2 sin(k1 + k3)
(χ∗)2

4 [3 sin(k2 − k1) + sin(k2 + k1)] χ2

2 sin(k1 + k3) |χ |2
2 [sin 2k3 − 2 sin 2k2]

⎞
⎟⎟⎠,

Bxkσ = σ

⎛
⎜⎝

Im[χ χ∗
−σ ] (sin 2k1 + sin 2k3) i(χ χ−σ )∗ [sin(k3 + k2) − 3 sin(k3 − k2)] iχ χ−σ [sin(k2 + k1) − 3 sin(k2 − k1)]

−iχ χ−σ [sin(k3 + k2) − 3 sin(k3 − k2)] Im[χ χ−σ ] (sin 2k1 − 2 sin 2k2) −i(χ χ−σ )∗ sin(k1 + k3)

−i(χ χ−σ )∗ [sin(k2 + k1) − 3 sin(k2 − k1)] iχ χ−σ sin(k1 + k3) Im[χ χ−σ ] (sin 2k3 − 2 sin 2k2)

⎞
⎟⎠,

Cxkσ =

⎛
⎜⎜⎝

|χ |2
2 [sin 2k1 + sin 2k3]

(χ∗−σ )2

4 [3 sin(k2 − k3) + sin(k2 + k3)] − χ2−σ

4 [3 sin(k2 − k1) + sin(k2 + k1)]
χ2−σ

4 [3 sin(k2 − k3) + sin(k2 + k3)] |χ |2
2 [sin 2k1 − 2 sin 2k2] − (χ∗−σ )2

2 sin(k1 + k3)

− (χ∗−σ )2

4 [3 sin(k2 − k1) + sin(k2 + k1)] − χ2−σ

2 sin(k1 + k3) |χ |2
2 [sin 2k3 − 2 sin 2k2]

⎞
⎟⎟⎠,

and for the y direction,

Ayk =
√

3

⎛
⎜⎜⎝

|χ |2
2 [sin 2k1 − sin 2k3] − (χ∗)2

4 cos k2 sin k3
χ2

4 cos k2 sin k1

−χ2

2 cos k2 sin k3
|χ |2

2 sin 2k1
(χ∗)2

2 sin(k1 − k3)
(χ∗)2

4 cos k2 sin k1
χ2

2 sin(k1 − k3) −|χ |2
2 sin 2k3

⎞
⎟⎟⎠,

Bykσ = σ
√

3

⎛
⎝Im[χ χ∗

−σ ] [sin 2k1 − sin 2k3] i(χ χ−σ )∗ cos k2 sin k3 iχ χ−σ cos k2 sin k1

−iχ χ−σ cos k2 sin k3 Im[χ χ−σ ] sin 2k1 −i(χ χ−σ )∗ sin(k1 − k3)
−i(χ χ−σ )∗ cos k2 sin k1 iχ χ−σ sin(k1 − k3) Im[χ χ−σ ] cos k3 sin k3

⎞
⎠,

Cykσ =
√

3

⎛
⎜⎜⎝

|χ |2
2 [sin 2k1 − sin 2k3]

(χ∗
−σ )2

4 cos k2 sin k3 −χ2
−σ

4 cos k2 sin k1

χ2
−σ

4 cos k2 sin k3
|χ |2

2 sin 2k1 − (χ∗
−σ )2

2 sin(k1 − k3)

− (χ∗
−σ )2

4 cos k2 sin k1 − (χ−σ )2

2 sin(k1 − k3) −|χ |2
2 sin 2k3

⎞
⎟⎟⎠.
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Remarkably, the hopelessly lengthy expression found above is completely equal, term by term, to the following much simpler
and intuitive expression:

jE0 = 1

2

∑
k,σ

�
†
kσ

(
Hkσ

∂Hkσ

∂k
+ ∂Hkσ

∂k
Hkσ

)
�kσ . (A5)

Here Hkσ is the Schwinger-boson mean-field Hamiltonian mapping of the original spin Hamiltonian. Reproducing Eq. (10) of
the main text,

H SB =
∑
i,σ

(λ − σB)b†iσ biσ −
∑

〈i,j〉,σ

(
tσi;j b

†
iσ bjσ + H.c.

)
, tσi;j = J

〈
χ̂ σ

j ;i

〉 + J ′e−iσφi;j
〈
χ̂−σ

j ;i

〉
, (A6)

and making a proper uniform-state ansatz 〈χ̂σ
i;j 〉 = χσ (χ∗

σ ) give the momentum-space Schwinger-boson Hamiltonian [Eq. (13)
of the main article],

H SB
kσ = (λ − σB)I3 +

⎛
⎝ 0 tσ cos k1 t∗σ cos k3

t∗σ cos k1 0 tσ cos k2

tσ cos k3 t∗σ cos k2 0

⎞
⎠. (A7)

The meaning of the complete equivalence we just obtained is given schematically in Fig. 1. One starts with an interacting spin
model, derives the proper energy current operator from it, and then reduces it to its mean-field form (bottom path of the flow in
Fig. 5). On the other hand, one can begin by writing down the mean-field Hamiltonian for the interacting spin model first and
can then derive the current operator from the mean-field, noninteracting Hamiltonian (top path of the flow). The results, as we
demonstrate here, are identical. All the convenient machinery of linear-response theory for noninteracting models can be brought
to bear on the interacting problem now.

APPENDIX B: SPIN CURRENT OPERATOR IN SCHWINGER-BOSON MEAN-FIELD THEORY

As for the spin current operator, we can follow the same procedure developed for dealing with the energy current operator in
the previous section. First, one converts the bond spin current operator to the vector spin current according to Eq. (A3) [Eq. (5)
of main text], and then one takes the average over the whole lattice. In momentum space we get

J S
i;j = − i

2
(J + iDi;j )S+

i S−
j + H.c.

MF−→ −1

4
(J + iDi;j )

∑
σ

[〈
χ̂−σ

i;j

〉
χ̂ σ

j ;i + χ̂−σ
i;j

〈
χ̂ σ

j ;i

〉]
.

Using Eq. (5) of the main article, we can define the spin current operator on the kagome lattice, and then we obtain

jS
α = 1

Nt

∑
�i

jS
α (i) =

∑
k,σ

σ�
†
kσSαkσ �kσ , (B1)

where

Sxkσ =

⎛
⎜⎝

0 1
2 (Jχ + iσDχ−σ ) sin k1

1
2 (Jχ∗ − iσDχ∗

−σ ) sin k3
1
2 (Jχ∗ − iσDχ∗

−σ ) sin k1 0 (Jχ + iσDχ−σ ) sin k2
1
2 (Jχ + iσDχ−σ ) sin k3 (Jχ∗ − iσDχ∗

−σ ) sin k2 0

⎞
⎟⎠,

Sykσ =

⎛
⎜⎜⎝

0
√

3
2 (Jχ + iσDχ−σ ) sin k1 −

√
3

2 (Jχ∗ − iσDχ∗
−σ ) sin k3√

3
2

(
Jχ∗ − iσDχ∗

−σ

)
sin k1 0 0

−
√

3
2 (Jχ + iσDχ−σ ) sin k3 0 0

⎞
⎟⎟⎠.

Again, we find complete equivalence of this to the current operator derived from the mean-field Hamiltonian,

jS =
∑
kσ

σ�
†
kσ

∂Hkσ

∂k
�kσ . (B2)
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