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Dipolar quantum electrodynamics of the two-dimensional electron gas
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Similarly to a previous work on the homogeneous electron gas [Y. Todorov, Phys. Rev. B 89, 075115 (2014)], we
apply the Power-Zienau-Wooley (PZW) formulation of the quantum electrodynamics to the case of an electron gas
quantum confined by one-dimensional potential. We provide a microscopic description of all collective plasmon
modes of the gas, oscillating both along and perpendicular to the direction of quantum confinement. Furthermore,
we study the interaction of the collective modes with a photonic structure, planar metallic waveguide, by using
the full expansion of the electromagnetic field into normal modes. We show how the boundary conditions
for the electromagnetic field influence both the transverse light-matter coupling and the longitudinal particle-
particle interactions. The PZW descriptions appear thus as a convenient tool to study semiconductor quantum
optics in geometries where quantum-confined particles interact with strongly confined electromagnetic fields in
microresonators, such as the ones used to achieve the ultrastrong light-matter coupling regime.
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I. INTRODUCTION

The Power-Zienau-Wooley (PZW) representation of
the quantum electrodynamics [1,2] provides an alternative
description of the light-matter interaction problem, that relies
on field intensities rather than potentials. The main feature of
this approach is that the matter and field degrees of freedom are
independent dynamical variables [1,2]. In this representation,
aside from the kinetic energy of the particles, the matter is
characterized by a polarization vector field P that is a function
only on the particle positions. The polarization field P not only
describes the light-matter interaction through a linear coupling
term, but is also connected to the particle-particle interactions
inherent to a many-body system. For instance, the part of the
PZW Hamiltonain that is quadratic in P allows us to derive the
collective excitations of a dense electron gas [3,4]. The PZW
Hamiltonian thus provides a general framework that fully
captures both the many-body and quantum-optical aspects in
a solid-state system in interaction with the electromagnetic
radiation. In particular, this formalism was proven useful in
describing the ultrastrong light-matter coupling regime [5]
between the intersubband plasmons of a two-dimensional
electron gas and a single mode of planar waveguides or
microresonators [4,6–9].

In a previous work [3], we provided a formulation of
the quantum electrodynamics of a homogeneous solid-state
system, in the presence of interactions, in the general frame-
work of the PZW representation. This approach was then
applied to the three-dimensional (3D) electron gas interacting
with the free-space modes of the electromagnetic field. This
work can be considered as a sequel to Ref. [3], with the
additional constraint that both the electronic movement and the
electromagnetic field are quantized in one direction of space.
We explore the collective modes of the electron gas, driven by
the P-quadratic term of the quantum Hamiltonian as well as
the polariton modes of the system, arising from the coupling
with the spatially confined electromagnetic modes. Contrary
to previous works [4,6,8], we now consider all possible col-
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lective plasmonic modes, where electrons vibrate both along
and perpendicular to the direction of quantum confinement.
Furthermore, we use a full modal decomposition of the electro-
magnetic field. Beyond the problematic of quantum-confined
plasmon polaritons, we believe that such complete treatment
can be useful as a physical example of a matter-assisted
quantum electrodynamic theory where light propagates in a
medium with resonances. The quantization of a media with
dispersion and absorption has been recently considered form
a very general, yet formal, framework [10,11]. In the system
described here, boundary conditions together with electron-
electron interactions play an important role, and are taken into
account into the quadratic terms of the full electrodynamical
Hamiltonian. As such, this system could be also a useful
example in the context of the ongoing debate on the possibility
to realize supperradiant quantum-phase transitions [12–14].

The advantage of the PZW description in the context of
condensed matter problems is twofold. First, the electromag-
netic field is described by two purely transverse fields: the
displacement vector D and the magnetic field H. They can be
deduced solely from the boundary conditions of the problem
and are independent from the matter contained in the bulk
of the system. This simplifies considerably the quantization
of the field degrees of freedom even in the presence of
material resonances, as it was shown in the quantization
of surface plasmon modes in Ref. [3]. Such an approach
is of particular interest for solid-state systems operating in
the ultrastrong coupling regime, that are characterized by
both high-particle density and very strong electromagnetic
confinement [6,7,9,15–17].

The second advantage of our approach is that the matter
polarization density P, that is a central quantity in this descrip-
tion, can be obtained from a minimal knowledge about the
system. Indeed, we showed in previous works on the electron
gas [3,4] that the relevant dynamic part of the polarization
field can be derived solely from the one-particle kinetic energy
Hamiltonian. Then, the PZW representation provides a general
prescription for expressing the interparticle interactions in
the system, by using an hypothesis such as random phase
approximation (RPA), that are common in condensed matter
physics [18,19]. The collective many-body modes are then
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automatically deduced from the square-polarization part of
the PZW Hamiltonian.

In this work, we show that the collective plasmon modes
obtained in such way are actually more general than those
derived from the longitudinal Coulomb interactions in free
space [20,21]. Since the matter part of the PZW Hamiltonian
is canonically independent from the electromagnetic part, the
collective excitations resulting from the diagonalization of the
P2 term are actually independent from the electromagnetic
environment of the system. With this respect these modes
can be considered as “universal” and independent from the
particular geometry of the problem. The interaction of these
collective excitations with the electromagnetic field can then be
conveniently formulated in terms of the transverse longitudinal
projections their polarization vector, once the full modal
decomposition of the field is known in a particular geometry
defined by boundary conditions. The “universal” plasmon
collective modes derived here can thus be adapted to any exper-
imental geometry, where two-dimensional gas is coupled with
resonant nanostructures, for instance, metamaterial resonators
[9,16,17,22–24].

These concepts are illustrated in the trend of this work,
which is organized as follows. In Sec. II, we formulate the
general PZW Hamiltonian of the two-dimensional electron
gas. Following an approach similar to Ref. [3], we explicit the
polarization field operator P in terms of bosonized electron-
hole excitations, but now we take into account the quantum
confinement of the gas. By diagonalizing the matter part of the
PZW Hamiltonian, we obtain the corresponding intersubband
and intrasubband “universal” excitations of the gas that
appear to be dispersionless in the long-wavelength limit.
In particular, we show how the well-known

√
q dispersion

of the intrasubband plasmon [25–27] appears through the
longitudinal projections of the polarization operator.

In Sec. III, we study the transverse interaction of the
collective electronic excitations with the guided modes of a
planar metallic waveguide and we describe the corresponding
coupled polariton modes. In particular, we discuss the possi-
bility to assign a local dielectric function that describes the
propagation of polaritons, a problem that has been discussed
so far in semiclassical approaches [27–32]. In the final part
of Sec. III, we examine the image of our Hamiltonian in
the minimal-coupling representation. This is achieved by
employing an inverse unitary PZW transform that takes into
account the full set of guided modes. This will allow us to
recover, in particular, the longitudinal Coulomb potential of
the system. It turns out that this potential results not only from
the direct interaction between electrons, but also includes an
infinite number of image contributions from the cavity walls.
We thereby find another advantage of the PZW description,
which is to account automatically for the boundary conditions,
both for the transverse and longitudinal degrees of freedom of
the electromagnetic field.

II. DIPOLAR DESCRIPTION OF
THE TWO-DIMENSIONAL ELECTRON GAS

A. General Hamiltonian and bosonization

In the absence of magnetic interactions, the general form
of the electrodynamic Hamiltonian for the electron gas in the

PZW representation is written as [1–3]

H = Hph + He − 1

εε0

∫
D̂P̂ d3r + 1

2εε0

∫
P̂2d3r. (1)

Here, Hph is the photon Hamiltonian and He is the Hamilto-
nian of the noninteracting (single-particle) electron gas. The
operator P̂ is the polarization density operator of the gas. The
photonic Hamiltonian is written as

Hph =
∫

D̂2

2εε0
d3r +

∫
μ0Ĥ2

2
d3r. (2)

Here, D̂ and Ĥ are, respectively, the displacement field
operator and the magnetic field operator, and ε is the dielectric
constant of the media hosting the gas. The latter is supposed
to be homogeneous and isotropic. The expressions of D̂ and Ĥ
will be specified from the particular geometry of the problem.
At this point, it is important to note that the operators D̂ and Ĥ
describe a free photon field evolving in the medium ε. Indeed,
in the PZW representation the electromagnetic field operators
are canonical variables that are independent from the matter
degrees of freedom contained in the polarization field P̂ [1,2].
Respectively, ε does not contain the contribution of the electron
gas, as this contribution arises only after the diagonalization
of the full Hamiltonian (1).

Our aim is now to define the polarization field operator of
the gas P̂. For this we adopt the same approach as for the
three-dimensional electron as, described in Ref. [3], where
we derived P̂ from the noninteracting electronic Hamiltonian
and the bosonization of the single-particle (noninteracting)
excitations. Therefore, for completeness, in the following we
recall the bosonization of the quasi-two-dimensional gas.

The electronic Hamiltonian He now contains not only the
kinetic energy of the electrons, but also the external static one-
dimensional potential V (z) that is responsible for the quantum
confinement along the z direction:

He =
∑

α

(
−�

2∇2
α

2m∗ + V (zα)

)
. (3)

The electrons move freely in the plane (x,y). The archetype
of such system is a semiconductor heterostructure, such as
an inversion layer or a quantum well [26,33,34]; respectively,
m∗ is the effective electron mass in the heterostructure. The
corresponding one-particle wave functions of Eq. (3) are

〈r|i,k〉 = φi(z)
eikr‖
√

S
. (4)

Here, S is the in-plane quantization surface, r‖ = (x,y) is
the in-plane coordinate, and k is the electronic wave vector
for the free-electronic movement in the plane. We consider
that each k state is twice degenerate because of the spin. The
function φi(z) is a solution of the one-dimensional Schrödinger
equation [35]

− �
2

2m∗ ∂2
z φi(z) + V (z)φi(z) = �ωiφi(z) (5)

with an eigenvalue �ωi where the Latin index i refers to a
particular confined state. The total energies of the one-particle
states (4) then appear as two-dimensional parabolic subbands
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FIG. 1. (Color online) Examples of intersubband and intrasub-
band single-particle excitations in a general multisubband system,
with two filled subbands.

(we have assumed constant effective mass [34])

�ωik = �ωi + �
2k2

2m∗ . (6)

These subband states are illustrated in Fig. 1. The above
definitions allow us to write the electronic Hamiltonian in
a second-quantized form

He =
∑
ik

�ωikc
†
ikcik (7)

with c
†
ik and cik the fermionic creation and annihilation

operators for the state (4).
Following Ref. [3], our aim is now to identify the bosonized

excited states that will help us construct the polarization
field of the gas P̂(r). We shall consider a closed system at
equilibrium at T = 0 K, with a total number of Ne electrons.
The electrons fill all the subband states below the Fermi
energy EF which satisfy �ωik � EF . For each subband, the
corresponding Fermi wave vector is noted kFi and we have
kFi = 0 for the empty subbands. The ground state |F 〉 of the
noninteracting Hamiltonian (7) is

|F 〉 =
∏

�ωik�EF

c
†
ik|0〉. (8)

Respectively, all possible one-particle excitations are
c
†
ik+qcjk|F 〉, and they are characterized with an excitation

wave vector q in the plane of the confining potential. The
corresponding excitation energies �ωkqij are provided by
the commutator of the excitation operator c

†
ik+qcjk with the

electronic Hamiltonian (7):

[He,c
†
ik+qcjk] = ��ωkqij c

†
ik+qcjk, (9)

�ωkqij = ωi − ωj + �

2m∗ q(2k + q). (10)

We now construct the bosonized excitation subspace of
the two-dimensional electron gas as the subspace where
the excitation operators c

†
ik+qcjk obey bosonic commutation

relations. Their exact commutator is

[c†jkcik+q,c
†
i ′k′+q′cj ′k′]

= δii ′δk+q,k′+q′c
†
j ′k′cjk − δjj ′δk,k′c

†
ik+qci ′k′+q′ . (11)

Its mean value on the fundamental state is

〈F |[c†jkcik+q,c
†
i ′k′+q′cj ′k′]|F 〉

= δii ′δk,k′δq,q′ (fjk − fik+q). (12)

Here, fjk = 〈F |c†jkcjk|F 〉 and accordingly fik+q =
〈F |c†ik+qcik+q|F 〉 are the occupation numbers in the
ground state. Since we have fjk,fik+q � 1 from Eq. (12), we
obtain the following conditions which render the commutator
(11) bosonlike:

fjk = 1, |k| � kFj
(13)

fik+q = 0, |k + q| > kFi.

These conditions basically express the Pauli exclusion
principle, that is, an electron excited from the ground state can
only transit into the empty states outside the Fermi surface.
Such bosonlike excitations are divided into intersubband
(i > j ) or intrasubband (i = j ), depending on whether the
electron switches or not the confined state. Examples of
such intrasubband and intersubband excitations are provided
in Fig. 1. All these excitations satisfy �ωkqij > 0. Clearly,
the intrasubband subspace is very similar to the subspace of
RPA states for the three-dimensional electron gas [3]. The
intersubband excitations arise from the electronic confinement,
and they do not have any analogy with the excitations of the
three-dimensional gas. For instance, these excitations can be
realized with strictly vertical transitions q = 0.

We now introduce specific notations for the intersubband
and intrasubband excitation operators. Since for intersubband
excitations we have always i > j , the pair of Latin indexes
“i,j” will be noted as a single Greek index. With this remark,
we introduce the following definitions:

b
†
kqα = c

†
ik+qcjk, intersubband excitation (14)

with α ≡ i > j
(15)

d
†
kqi = c

†
ik+qcik, intrasubband excitation.

The action of these operators is restricted only on the
excitations described in Eq. (13). Therefore, if we consider
the subspace spanned by the states {|F 〉,b†kqα|F 〉,d†

kqi |F 〉} the
above operators satisfy bosonic commutation relations

[bkqα,b
†
k′q′β] = δkk′δqq′δα,β, (16)

[dkqi ,d
†
k′q′j ] = δkk′δqq′δi,j , (17)

and all the commutators involving one intersubband and one
intrasubband operator vanish. Using these operators, we can
replace the fermionic Hamiltonian He with an equivalent
effective bosonized form

He =
∑
kqα

��ωkqαb
†
kqαbkqα +

∑
kqi

��ωkqd
†
kqidkqi . (18)
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In the case of intrasubband excitations, since we assumed
parabolic bands, the energy difference �ωkqii = �ωkq is
independent from the subband index i, therefore we shall drop
it in the notations. The quantity �ωkq describes a momentum
exchange process that is very similar to the elementary
excitations in a homogeneous electron gas, except that now
the wave vectors k and q are restricted to evolve in the plane
(x,y).

We defined the bosonization of the two-dimensional elec-
tron gas (2DEG) rigorously in the case T = 0 K, however, it
can be also extended at a finite temperature, assuming that the
number of excitations is low as compared to the ground-state
occupancy [21,36].

In the next section, we express the polarization field
operator P̂ of the 2DEG as a function of the bosonized exci-
tation operators b

†
kqα and d

†
kqi and their Hermitian conjugates.

Furthermore, for the rest of this part we will focus only on the
matter part of the Hamiltonian (1):

He + 1

2εε0

∫
P̂2d3r. (19)

In particular, we will be concerned by the collective
excitations driven by the square-polarization part of Eq. (19).
Let us recall that in the PZW representation the square-
polarization part contains the Coulomb interaction between
electrons, as well as retarded interactions, that in the minimal-
coupling representation can be related to the square-vector
potential term of the standard Hamiltonian [2,3]. The two
contributions can be separated by splitting the polarization
field into longitudinal and transverse parts with respect to
a three-dimensional Fourier transform [2], and then the
longitudinal part of (1/2εε0)

∫
P̂2d3r is exactly the Coulomb

potential of the system. In the current work, the collective
electronic excitations of the electron gas are approached from
a more general point of view, as besides the instantaneous
Coulomb interaction between electrons we also include a
retarded interaction that is contained in the transverse part
of the Hamiltonian of Eq. (19). This fact is further discussed
in Sec. II D.

B. Polarization field operator of the two-dimensional
electron gas

Following Refs. [3,4,8] we use the following relation
between the polarization operator P̂ and the current operator ĵ
in a system of charged particles:

ĵ = dP̂
dt

= i

�
[H,P̂] = i

�
[He,P̂]. (20)

According to Eq. (20), the dynamic polarization field operator
P̂ of the two-dimensional gas is constructed in such a way
that its time derivative coincides with the current operator ĵ
of the gas [3]. A key point is that, since dynamic magnetic
interactions are absent, only the electronic Hamiltonian He

contributes to the evolution of the polarization field. The
current operator ĵ can be expressed on the basis of the
eigenstates of He using the following expression:

ĵ(r) = ie�

2m∗ [
̂†∇
̂ − ∇
̂†
̂]. (21)

Indeed, in the PZW representation the current is expressed
only from the matter degrees of freedom, as the momentum
of the particles is expressed only through their velocities and
the vector potential contribution is absent [2]. Here, the field
operator 
̂(r) is expressed through the single-particle wave
functions of He from Eq. (4):


(z,r‖) =
∑
λk

φλ(z)
eikr‖
√

S
cλk. (22)

Equations (21) and (22) lead to the following expressions
for the in-plane ĵ‖ and perpendicular ĵz components of the
current:

ĵz = i�e

2m∗S

∑
kqij

ξij (z)e−iqr‖c
†
ik+qcjk, (23)

ξij (z) = φ∗
i (z)∂zφj (z) − ∂zφ

∗
i (z)φj (z), (24)

ĵ‖ = −�e

2m∗S

∑
kqij

(2k + q)ηij (z)e−iqr‖c
†
ik+qcjk, (25)

ηij (z) = φ∗
i (z)φj (z). (26)

The contributions with i = j and q = 0 correspond to the
center-of-mass motion of the electron gas with �ωkqij = 0.
These terms must be excluded from the definition of the
dynamic polarization. Using Eq. (9) we arrive at the following
formal definitions:

P̂z = − �e

2m∗S

∑
qkij

c
†
ik+qcjk

�ωkqij

ξij (z)e−iqr‖ , (27)

P̂‖ = −i�e

2m∗S

∑
qkij

c
†
ik+qcjk(2k + q)

�ωkqij

ηij (z)e−iqr‖ . (28)

The quantities ξij (z) and ηij (z) describe, respectively, the
polarization and the density matrix elements associated to the
transition j → i. We have the following properties, which
ensure the Hermiticity of the current density and polarization
density operators defined above:

ξ ∗
ij (z) = −ξji(z), η∗

ij (z) = ηji(z). (29)

In the following, we will also make use of the relation

∂zξij (z) = 2m∗(ωi − ωj )

�
ηij (z), (30)

which is an immediate consequence of the Schrödinger
equation (5). This equation can also be related to the charge
conservation of the system. Let us introduce the charge density
operator ρ̂(r) for the electron gas:

ρ̂(r) = e
̂†
̂ = e

S

∑
qkij

ηij (z)e−iqr‖c
†
ik+qcjk. (31)

Then, the continuity equation that expresses the charge
conservation is

dρ̂

dt
= i

�
[H,ρ̂] = divĵ. (32)
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In the case where H is the single-particle electronic
Hamiltonian He it can be readily shown with the help of
Eq. (30) that this equation is satisfied term by term with
respect to the sum over all possible electronic transitions
in Eq. (31), each term oscillating at the frequency of
the transition �ωkqij . When we consider the subspace of
bosonized excitation, this equation is also valid for the total
Hamiltonian from Eq. (19), as then it can be shown that the
density operator ρ̂ commutes with the square-polarization part
of H.

In order to obtain a self-consistent bosonic model in the
PZW representation, we must restrict the definitions of the
polarization field only to the bosonized states defined in the
previous section [3]. For this, we isolate the appropriate terms
in Eqs. (27) and (28) and then replace the excitation operators
with their bosonized versions b

†
kqα and d

†
kqi . Let us consider

first the case of the z component from Eq. (27). We split the sum
over the subband indexes into intersuband and intrasubband
contributions:

∑
qkij

=
⎛⎝ ∑

qk,i>j

+
∑

qk,i<j

⎞⎠∣∣∣∣∣∣
inter

+
∑

qk,i=j

∣∣∣∣∣∣
intra

.

In the first term of the intersubband contribution, we
restrict the sum over the electronic wave vector which satisfies
Eq. (13). In the second term, we relabel the indexes (i, j ) as (j ,
i) and make the substitution k = −k′ − q. Using the property
(29) and the definition of the excitation operators, we obtain
the following expression for the intersubband polarization
along z:

P̂z|inter = − �e

2m∗S

∑
q,α,k∈Inα

e−iqr‖

�ωkqα

× [ξα(z)b†kqα + ξ ∗
α (z)b−k−qα]. (33)

This sum runs over all pairs of subband states with i > j ,
and each such pair is labeled with a single Greek index α

as indicated in the previous section. The notation “k ∈ Inα
”

means that the wave vector satisfies the restriction imposed
by Eq. (13). The intrasubband contribution is obtained in the
same way as the polarization operator of the homogeneous
electron gas [3], by splitting the sum over the wave vectors in
contributions greater and smaller than the Fermi wave vector
in each subband kFi . As a result, we obtain

P̂z|intra = − �e

2m∗S

∑
q,i

|k| � kFi

|k + q| > kFi

e−iqr‖

�ωkq
ξii(z)[d†

kqi − d−k−qi].

(34)

It is very convenient to rewrite the above expressions with
the help of the occupation numbers, which will automatically
take into account the constraints from Eq. (13). We introduce
the following notations:

�nkqα = fjk − fik+q > 0, α = [i > j ] (35)

�nkqi = fik(1 − fik+q). (36)

The polarization operator now sums over all possible wave
vectors:

P̂z|inter = − �e

2m∗S

∑
qkα

e−iqr‖

�ωkqα

�nkqα

× [ξα(z)b†kqα + ξ ∗
α (z)b−k − qα], (37)

P̂z|intra = − �e

2m∗S

∑
qki

e−iqr‖

�ωkq
�nkqiξii(z)[d†

kqi − d−k−qi]. (38)

The advantage of this representation is that it can be easily
generalized for the case of a finite temperature; however,
in this case we must bear in mind that the bosonization is
an approximation valid in the limit where the number of
excitations in the system is low as compared to the total number
of particles.

The expressions for the parallel component of the polariza-
tion field are established in a similar way:

P̂‖|inter = −i�e

2m∗S

∑
qkα

e−iqr‖ (2k + q)

�ωkqα

�nkqα

× [ηα(z)b†kqα + η∗
α(z)b−k−qα], (39)

P̂‖|intra = −ie

S

∑
qki

e−iqr‖βqk�nkqiηii(z)[d†
kqi + d−k−qi],

(40)

βqk = 2k + q
q(2k + q)

. (41)

As expected, the intrasubband contribution (40) which arises
from the free in-plane electronic movement is formally
identical to the polarization field of the 3D electron gas [3].

The expressions (37)–(40) are the most general expressions
for the polarization field of a 2DEG, in the bosonization
approach. Using these expressions, we can expand the square-
polarization part of the PZW Hamiltonian from Eq. (19):

1

2εε0

∫
P̂2d3r = Hinter

P2 + Hintra
P2 + Hinter-intra

P2 , (42)

Hinter
P2 = 1

2εε0

( ∫
P̂ 2

z |interd
3r +

∫
P̂2

‖|interd
3r

)
, (43)

Hintra
P2 = 1

2εε0

(∫
P̂ 2

z |intrad
3r +

∫
P̂2

‖|intrad
3r

)
, (44)

Hinter-intra
P2 = 1

εε0

(∫
P̂z|interP̂z|intrad

3r
)

+ 1

εε0

(∫
P̂‖|interP̂‖|intrad

3r
)

. (45)

This Hamiltonian, that is quadratic in the operators b
†
kqα , bkqα ,

d
†
kqi , and dkq,i couples the intersubband and intrasubband

excitations with different wave vectors, as well as the inter-
subband or intrasubband excitation from different subbands
among each other. In the subsequent sections, we will see
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that the apparent complexity of this Hamiltonian can be
greatly reduced by separating the excitations of the gas into
single-particle-like and collective excitations. The single-
particle-like solutions are very similar to free-electronic excita-
tions that ignore the quadratic interaction term of the Hamilto-
nian [3]. Therefore, their contribution to the polarization field
of the gas is vanishing [3,8,15]. On the contrary, the collective
excitations are obtained as a result of the self-polarization
interaction, and their energies strongly differ from the initial
electronic energies of the single-particle Hamiltonian He.
These collective excitations appear as coherent sums of
elementary excitations over the electronic wave vectors, and
can be interpreted as a set of quantum-confined plasmons. As a
result, these plasmon modes will have a dominant contribution
to the polarization field of the gas. The problem described
in Eq. (42) can be further reduced to the interaction of a
discrete set of plasmon modes with each other. In the following
sections, we will provide closed expressions for the collective
plasmonic operators and the plasmon-plasmon coupling in the
long-wavelength limit q → 0.

We can simplify considerably the expressions in Eqs. (43)–
(45) by considering a closed system with hard-wall boundary
conditions. Indeed, an arbitrary one-dimensional finite poten-
tial V (z) leads in general to two sets of eigenstates: bound
states with discrete energy eigenvalues, described by wave
functions φi(z) which are real and localized in a finite region
of space, and a high-energy continuum of unbound states,
described by propagating plane waves φkz

(z) ∼ exp (ikzz).
Clearly, if we restrict the description of the system only to
the first few bound states, according to Eq. (29) we have
ξii(z) = 0 and the intrasubband part of the polarization field
P̂z|intra [Eq. (38)] becomes identically zero for all states. As a
consequence, the first terms in Eqs. (44) and (45) vanish. This
approximation is excellent for systems where the Fermi level
EF lies within the ensemble of bound states (Fig. 2). Further, if
we model our system with hard-wall boundary conditions, that
are situated sufficiently far from the region where the potential
V (z) varies appreciably, we can describe the unbound states in
the continuum as electronic standing waves described by real
wave functions φkz

(z) ∼ cos (ikzz) (Fig. 2), which also allows
simplifying Eqs. (43)–(45). In the following, for simplicity
we shall assume that our system is well described within
that approximation. Nevertheless, it is interesting to note that
the set of equations (43)–(45) also hint at the possibility to
describe the interaction between confined plasmons that arises
from the bound states of the potential V (z) with “transport”
single-particle states within the continuum with nonvanishing
perpendicular current ξii = 2 Im[φ∗

i (z)∂zφi(z)] �= 0.
For the following, it is very useful to introduce the overlap

integrals

Iα,β =
∫

ξα(z)ξβ(z)dz, (46)

Jα,β =
∫

ηα(z)ηβ(z)dz, (47)

Ji,j =
∫

ηii(z)ηjj (z)dz, (48)

Jα,j =
∫

ηα(z)ηjj (z)dz. (49)

These integrals appear naturally while expressing the square-
polarization Hamiltonian by the use of Eqs. (37), (39), and
(40).

In the next section, we take a particular case of a two-
subband system and we identify the collective modes in the
long-wavelength approximation. These modes will be then
generalized for the case of a system with any finite number of
occupied subbands.

To conclude this section, let us note that we can reexpress
similarly the current density operator ĵ [Eqs. (23) and (25)]
and the charge density operator ρ̂ [Eq. (31)] in terms of
bosonized operators b

†
kqα , bkqα , d†

kqi , and dkqi . Using this form
of the charge density operator, it can be readily shown that
it commutes with the square-polarization interaction terms
from Eq. (42), which ensure the validity of the continuity
equation (32). This fact is an important confirmation for the
self-consistency of our approach [3].

C. Collective modes in a two-subband system

We now consider the collective excitations which arise
in a two-subband system, where the Fermi level EF lies
between the first and the second subbands, as described in
Fig. 3. Our aim is to diagonalize the electronic Hamiltonian
(19), as provided by Eqs. (18) and (43)–(45). This will allow
us to identify the intersubband and intrasubband plasmon
modes linked to the bound states of the system, which will
subsequently be generalized for the multisubband case. We
will provide the polarization operators for each collective
excitation, with the corresponding spatial dependence, which
will permit us to discuss the physical characteristics of the
collective modes.

Using the polarization operators from the previous section,
and restraining them to the case of two bound states, the

FIG. 2. (Color online) Illustration of a finite one-dimensional
binding potential V (z), inserted in a larger box with hard-wall
boundary conditions. The bound states are not affected by the hard
walls, as the corresponding wave functions φi(z) vanish on the
boundary. The unbound states in the continuum are modeled as real
standing waves φC(z) = φkz

(z).
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FIG. 3. (Color online) A two-subband system, with only the
fundamental (first) subband occupied.

electronic Hamiltonian is written explicitly as follows:

He =
∑
kq

��ωkq21b
†
kqbkq +

∑
kq

��ωkqd
†
kqdkq, (50)

Hinter
P2 = �

2e2

8m∗2Sεε0

∑
kk′q

(Vkq.Vk′q)

× (b†kq + b−k−q)(bk′q + b
†
−k′−q), (51)

Vkq = �nkq21

�ωkq21
[
√

I21,21ez + √
J21,21(2k + q)], (52)

Hintra
P2 = e2J1,1

2Sεε0

∑
kk′q

�nkq1�nk′q1(βqkβqk′)

× (d†
kq + d−k−q)(dk′q + d

†
−k′−q), (53)

Hinter-intra
P2 = 1

εε0

( ∫
P̂‖|interP̂‖|intrad

3r
)

. (54)

Since the distinction between intersubband and intrasub-
band operators is clear for this case, we drop the subband
indexes for the operators. All terms except the last coupling
term from Eq. (54) split naturally into intersubband and
intrasubband contributions. Each of these contributions is
formally equivalent to the general PZW bosonic Hamiltonian
considered in Ref. [3], which can be resolved within the
characteristic function approach recalled in Appendix A.
Once we have worked out the intrasubband and intersubband
contributions separately, we will be able to provide the coupled
modes induced by the interaction term in Eq. (54). In the end
of this section (Sec. II C 3), we will also consider numerical
examples with two different heterostructure potentials.

1. Intrasubband plasmon

The intrasubband parts of Eqs. (50) and (53) provide the
following quadratic bosonic form:∑

kq

��ωkqd
†
kqdkq + Hintra

P2 . (55)

This Hamiltonian is formally identical to the PZW Hamil-
tonian of the three-dimensional gas, considered in Ref. [3].
Following [3], and the method outlined in Appendix A
we associate to Eq. (55) the following two-dimensional

characteristic tensor:

ζ intra
‖ (ω,q) = 12 − 2e2J1,1

�Sεε0

∑
k

�nkq1
(βqk ⊗ βqk)�ωkq

ω2 − �ω2
kq

.

(56)

Here, 12 is the in-plane unit tensor. The eigenvalues of the
Hamiltonian (55) are then provided as the solutions of the
characteristic equation

‖ζ intra
‖ (ω,q)‖ = 0. (57)

According to the general properties of the characteristic
function ζ intra

‖ (ω,q), discussed in Ref. [3], this equation has
two types of solutions: (i) single-particle-like solutions, with
frequencies that remain very close to the original excitations
frequencies �ωkq, or (ii) collective modes with frequencies
that can be much larger than �ωkq. The frequencies of
the collective modes can be obtained explicitly in the long-
wavelength limit of Eq. (56) where, just like for the homo-
geneous electron gas, the characteristic function ζ intra

‖ (ω,q)
acquires the Drude-type diagonal form

ζ intra
‖ (ω,q → 0) = 12

(
1 − ω2

P ‖
ω2

)
. (58)

Here, we defined the plasma frequency of the corresponding
collective state, the intrasubband plasmon:

ω2
P ‖ = e2N1

m∗εε0SL1
, L1 = 1/J1,1. (59)

The effective length L1 introduced above depends on the elec-
tronic wave functions through the coefficient J1,1 [Eq. (48)],
and takes into account the effect of the quantum confinement of
the heterostructure potential V (z). The resulting intrasubband
modes feature no dispersion, and correspond to density waves
in the (x,y) plane where the electrons oscillate at a frequency
ωP ‖. The associated bosonic operators are expressed as sums
over all possible excitation wave vectors:

π †
qn =

√
J1,1e2

2�ωP ‖εε0S

∑
k

�nkq1(βqk · n)

×
{

(d†
kq + d−k−q) + �ωkq

ωP ‖
(d†

kq − d−k−q)

}
. (60)

Here, n is an in-plane unit vector that corresponds to the
direction of the density wave. These collective excitations
provide the dominant contribution in the polarization field
of the gas. Let nj ,j = 1,2, be an orthogonal basis in the
plane (x,y), then neglecting the vanishing contributions
from the single-particle-like excitations the expression of the
polarization operator from Eq. (40) becomes

P̂‖|intra = −iη11(z)

√
ωP ‖εε0�

2SJ1,1

×
∑
qnj

e−iqr‖nj

[
π †

qnj
+ π−qnj

]
(61)
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and the intrasubband part of the Hamiltonian in Eq. (55) is
unitary transformed into a diagonal form∑

qnj

�ωP ‖π †
qnj

πqnj
. (62)

According to Eq. (61), the polarization density of the
intrasubband plasmon is decomposed into plane waves of
the form η11(z) exp(−iqr‖). This spatial variation has a clear
physical meaning since according to the definition of the
charge density operator from Eq. (31), the quantity η11(z) =
φ2

1(z) describes the electronic density in the first subband along
the direction of quantum confinement. Then, the intrasubband
plasmon corresponds to a density wave, very similar to the bulk
plasmon of a homogeneous electron gas, with the exception
that the wave vector q is constrained to the xy plane, while
the electronic density in the z direction is set by the quantum
confinement. Furthermore, just like the bulk plasma mode of
the 3D electron gas, the intrasubband excitation obtained with
our approach has a plasma frequency ωP ‖ that is independent
from the wave vector, in the long-wavelength limit. This result
might appear in conflict with the well-known

√|q| dispersion
of the intrasubband plasmon of 2DEG [26]. Actually, this
conventional excitation can be obtained as the longitudinal
part of a the intrasubband plasmon mode derived above, as
discussed in details in Sec. II D. As we pointed out in the end
of Sec. II A, the polarization field that we consider has both
longitudinal and transverse components, the latter allowing us
to describe the coupling of the collective excitations with light.
In particular, the Drude-type dielectric function in Eq. (58)
leads to free-carrier absorption in the plane of the quantum
wells owing to the intrasubband plasmon described above.

Note that the tensor ζ intra
‖ (ω,q) can be used in its more

general form in Eq. (56) to study the intrasubband excitations
beyond the long-wavelength approximation, and the related
Landau damping of collective excitations.

2. Intersubband plasmons

The intersubband part of the Hamiltonian [Eqs. (50)–(52)],
that is, the part that corresponds to electrons evolving between
two different subbands, is∑

kq

��ωkq21b
†
kqbkq + Hinter

P2 . (63)

The corresponding characteristic tensor is now three dimen-
sional:

ζ (ω,q) = 13 − �e2

2m∗2Sεε0

∑
k

(Vqk ⊗ Vqk)�ωkq21

ω2 − �ω2
kq21

. (64)

Using Eq. (52) for the vector Vqk, we can split the tensor
ζ (ω,q) into a z component and a planar component that are
not coupled to each other:

ζ (ω,q) = (ez ⊗ ez)ζzz(ω,q) + ζ inter
‖ (ω,q). (65)

Since the two components in Eq. (65) are independent from
each other, they will be treated separately. Equation (65) thus
expresses an important property of the system, which states
that, as long as we are restrained to bound states, or in other
words, a closed system, the excitation of the gas along the

direction of the quantum confinement is completely decoupled
from the in-plane excitations.

The tensor ζ (ω,q) can be used to study the intersubband
excitations for any value of the wave vector q. Similarly to the
case of the intrasubband plasmon, when the excitation wave
vector q is sufficiently small, most of the solutions remain
close to the single-particle frequencies �ωkq21 and are well
separated from the collective excitations of the gas. The two
characteristic tensors from Eq. (65) give rise, respectively, to
charge oscillations along the z axis and in the (x,y) plane.
However, unlike the intrasubband excitations of the previous
paragraph, now the in-plane oscillations can have a zero-
excitation wave vector. In this case, they correspond to a global
change in the electronic density (related to the changing shape
of the wave functions as the electrons hop from one subband
to another), rather than an acousticlike density wave, as in
the case of the intrasubband plasmon. In the long-wavelength
approximation q → 0, we can neglect the change of the kinetic
energy of the electrons with respect to the transition energy,
and we have �ωkq21 ≈ �ω21 as well as �nkq21 ≈ �nk021.
The tensor components then take simple diagonal forms

ζzz(ω,q → 0) = 1 − ω2
P 21

ω2 − �ω2
21

, (66)

ζ inter
‖ (ω,q → 0) = 12

(
1 − W 2

P 21

ω2 − �ω2
21

)
. (67)

Here, we introduced the two plasma frequencies

ω2
P 21 = 2�e2I21,21

m∗2εε0S�ω21

∑
k

�nk021, (68)

W 2
P 21 = 2�e2J21,21

m∗2εε0S�ω21

∑
k

�nk021(kn)2, (69)

and n is a fixed direction in the plane. The summation over the
wave vectors is readily performed to yield

ω2
P 21 = e2Ne

m∗εε0SL21
, L21 = 2m∗�ω21

�I21,21
, (70)

W 2
P 21 = e2(Ne/2)

m∗εε0SL
‖
21

, L
‖
21 = 1

J21,21
. (71)

Here, Ne = ∑
k �nk021 is the population difference between

the two subbands, which is equal in this case to the total
number of electrons in the system. Similarly to Eq. (59), the
effective lengths L21 and L

‖
21 take into account the quantum

confinement of the gas, as they are expressed directly from
the wave functions of the bound states. The solutions of the
characteristic equation ‖ζ (ω,q)‖ = 0 are

ω̃21 =
√

�ω2
21 + ω2

P 12, (72)

W̃21 =
√

�ω2
21 + W 2

P 12. (73)

The first solution [Eq. (72)] is the well-known inter-
subband plasmon mode oscillating in the z direction [33],
which was already described in the PZW approach [4].
The second solution describes a less conventional plasmon
mode where electrons oscillate in the plane. We will dub
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it “in-plane intersubband plasmon,” while the first solution
[Eq. (72)] will be called simply “intersubband plasmon” to
comply with existing literature [27,33]. In order to understand
the physical meaning of these excitations, we will explicit
the corresponding polarization operators. Let p

†
q21 and t

†
qn21

be the corresponding bosonic operators, respectively, for the
conventional intersubband plasmon and in-plane intersubband
plasmon, that diagonalize the quadratic Hamiltonian (55):∑

q

�ω̃21p
†
q21pq21 +

∑
qnj

�W̃21t
†
qnj 21tqnj 21. (74)

As the dominant contribution into the polarization field
arises from the collective excitations, the respective compo-
nents can be expressed as

P̂z|inter = −ξ21(z)

√
ω2

P 21

2ω̃21

�εε0

SI21,21

×
∑

q

e−iqr‖ (p†
q21 + p−q21), (75)

P̂‖|inter = −iη21(z)

√
W 2

P 21

2W̃21

�εε0

SJ21,21

×
∑
qnj

e−iqr‖nj

[
t
†
qnj 21 + t−qnj 21

]
. (76)

According to the above equations, the z dependence for the
polarization field of the conventional intersubband plasmon
[Eq. (75)] is provided by the current function ξ21(z). Further-
more, the polarization field has a single component along the z

axis. This excitation therefore corresponds to dynamical oscil-
lations of the electronic density along the z direction, induced
by the electronic transitions between the two subbands [8].

On the contrary, the polarization field of the in-plane plas-
mon (76) lies in the (x,y) plane and has a very similar form as
the one of the intrasubband plasmon from the previous section
[Eq. (61)], with the static electronic density η11(z) = φ2

1(z)
now replaced by the intersubband term η21(z) = φ1(z)φ2(z).
Once again, we have referred to the definition of the charge
density operator from Eq. (31). Such static contribution can
be interpreted as resulting from a quantum superposition of
states [φ1(z) + φ2(z)]/

√
2, where the excited electrons occupy

virtually both subbands with equal probability. Furthermore,
since both the in-plane intersubband plasmon and the intra-
subband plasmon have polarization fields that are contained
in the (x,y) plane, they are generally coupled through the
square-polarization term of the matter Hamiltonian (19). This
coupling is analyzed in the next section.

The explicit expressions for the operators p
†
21q and t

†
21qn can

be obtained following the approach described in Ref. [3]. Here,
we specify the collective operator p

†
21q which corresponds to

the intersubband plasmon:

p
†
q21 = ω2

P 21

2
√

ω̃21�ω21Ne

∑
k

�nk021

×
{

b
†
kq

ω̃21 − �ω21
+ b−k−q

ω̃21 + �ω21

}
. (77)

This operator then sums coherently over all allowed single-
particle intersubband transitions. In Eq. (77), let us consider the
case of a lightly doped quantum well such as ωP 21 � �ω21.
Then, neglecting the antiresonant contribution we obtain an
approximate expression for the plasmon operator:

p
†
q21 ≈ 1√

Ne

∑
k

�nk021b
†
kq. (78)

This expression is formally identical to the one introduced
for the first theoretical description of the ultrastrong coupling
regime with intersubband polaritons in Ref. [5].

3. Intersubband-intrasubband coupling and numerical examples

Having separated the single-particle from the collective
excitations in the long-wavelength limit, we now replace the
electronic Hamiltonian from Eqs. (50)–(45) with an effective
bosonic Hamiltonian that acts only on the collective operators:

Hcoll =
∑

q

�ω̃21p
†
q21pq21 +

∑
qnj

�W̃21t
†
qnj 21tqnj 21

+
∑
qnj

�ωP ‖π †
qnj

πqnj
+ CJ

1,21
�WP 21

2

√
ωP ‖
W̃21

×
∑
qnj

(
π †

qnj
+ π−qnj

)(
t
†
−qnj 21 + tqnj 21

)
. (79)

As indicated in the previous section, only the conventional
intersubband plasmon oscillates in the direction of quantum
confinement, and therefore it forms an independent contri-
bution [first term in the right-hand side of Eq. (79)]. The
two other collective excitations that we considered oscillate
both in the plane and are coupled by the quadratic interaction
term in Eq. (19). This interaction is contained in the last term
of Eq. (79) through the expression of the inter-intra subband
coupling term Hinter-intra

P2 [Eq. (54)] through Eqs. (61) and (76).
The overlap coefficient CJ

1,21 has been defined as

CJ
1,21 = J1,21√

J1,1J21,21
. (80)

The inter-intra subband coupling concerns only the in-plane
collective mode. For each wave vector q and each direction in
the plane n we recover a set of two coupled quantum harmonic
oscillators, described by the ladder operators t

†
qn21 and π

†
qn.

The corresponding eigenvalue equation is(
ω2 − ω2

P ‖
)(

ω2 − W̃ 2
21

) = (
CJ

1,21

)2
W 2

P 21ω
2
P ‖. (81)

Clearly, the overlap coefficient CJ
1,21 provides directly

the strength of the coupling between the two kinds of
in-plane plasmonic modes. In particular, for the case of
centrosymmetric potential, the wave functions φ1 and φ2

have different parities, we therefore have J1,21 = 0 and the
inter-intra subband coupling vanishes.

Let us at present illustrate the collective modes derived in
this section with two numerical examples. The first example
is an infinite square quantum well, as depicted in the inset
of Fig. 4(a), and the second example is a finite asymmetric
potential [Fig. 4(b), inset]. We restrict our discussion only
to the first two subbands separated by a frequency �ω21 =
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FIG. 4. (Color online) (a) The frequencies of the three collective
modes arising between the fundamental and first excited subbands
for the case of an infinite square quantum well. Circles: intrasubband
plasmon; squares: conventional intrasubband plasmon; stars: in-plane
intersubband plasmon. (b) Similar plot for a finite asymmetric
potential. The asymmetry of the potential induces a coupling between
the intrasubband plasmon and the in-plane intrasubband plasmon. The
coupled modes are plotted in continuous lines.

6.5 THz by design. Respectively, the maximum areal density of
charges Nsmax in the wells is set by the condition EF = �ω2 and
equal to Nsmax = m∗�ω21/π�. For concreteness, we consider
GaAs material for the quantum wells with m∗ = 0.067m0, with
m0 the electron mass. This provides a maximum areal density
of charges Nsmax = 7.5 × 1011 cm−2. Furthermore, we shall
ignore the phonon dispersion of the material for simplicity.

In the case of the infinite quantum well with a thickness
LQW the confined wave functions are provided by φi(z) =√

2/LQW sin(iπz/LQW) with i � 1. We can therefore com-
pute directly the three characteristic lengths introduced by
Eqs. (59), (70), and (71):

L1 = 2
3LQW, L21 = 3

5LQW, L
‖
21 = LQW. (82)

We can therefore use the definitions (59), (72), and (73) to
compute the collective mode frequencies as a function of the
areal charge density in the well Ns with Ns � Nsmax. These
frequencies have been normalized to the transition frequency
�ω21:

ωP ‖
�ω21

=
√

2

3

Ns

Nsmax

LQW

L∗ , (83)

ω̃21

�ω21
=

√
1 + 3

5

Ns

Nsmax

LQW

L∗ , (84)

W̃21

�ω21
=

√
1 + 1

2

Ns

Nsmax

LQW

L∗ . (85)

Here, we introduced a unique parameter that scales like a
characteristic thickness:

L∗ = 3πεε0h
2

8m∗e2
(86)

and h = 2π�. The characteristic thickness L∗ has an ex-
pression that is very similar to the Bohr radius [37]. This
parameter appears naturally while computing the ratio between
the plasma frequencies and the transition frequency �ω21.
It therefore corresponds to the ratio between the potential
energy associated to the particle-particle interactions over the
characteristic kinetic energy of the particles (in this case, the
transition energy ��ω21). Clearly, this parameter allows us to
evaluate rapidly the pertinence of the collective effects in the
system. Indeed, as seen from the set of equations (83)–(85),
when LQW � L∗, the collective effects have little impact on
the system, no matter the doping level, as the collective mode
frequencies remain close to the “bare” transition frequency
�ω21. On the contrary, in the case of large quantum wells
LQW � L∗, the collective effects can become important even
for moderate doping levels. For the case of a GaAs well
we estimate L∗ = 37 nm. We shall, however, bear in mind
that this value is not universal, but restricted to the first
transition of an infinite quantum well. Yet, it provides a
quick guide for the impact on the collective effects in simple
potentials.

The corresponding collective mode frequencies provided
by Eqs. (83)–(85) have been plotted in Fig. 4(a), for the case
LQW = 25 nm. In this case, as the potential is centrosymmetric
the coupling between the in-plane plasmons is null.

The effective lengths introduced by Eqs. (59), (70), and (71)
can be very sensitive to the shape of the confining potential. In
Fig. 4(b), we have plotted an asymmetric quantum well, where
the wave functions have been obtained through a numerical
solution of the Schrödinger equation. For simplicity, we do not
consider the static Hartree effects due to the charge impurities.
In this case, we obtain the effective lengths L1 = 7.8 nm,
L21 = 59 nm, and L

‖
21 = 432 nm. While the effective length

of the intrasubband plasmon remains close to the size of
confining region for the first wave function φ1(z) [≈ 8 nm,
Fig. 4(b)], the intersubband effective lengths are very large
as compared to the total size of the potential, 28 nm. Indeed,
both L21 and L

‖
21 are roughly inversely proportional to the

overlap between the wave functions φ1(z) and φ2(z), which
in that case is designed to be very small. Furthermore, now
that the potential is highly asymmetric, the overlap coefficient
in Eq. (80) becomes important: CJ

1,21 = 0.88. This results
in a sizable splitting between the intrasubband and in-plane
intersubband plasmons, as illustrated in the plot from Fig. 4(b).

D. Longitudinal (Coulomb) projections

The polarization field operator P̂ that was defined in
Sec. II B is neither purely transverse nor longitudinal, and as
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such it mediates both the retarded and instantaneous interaction
between particles in the nonrelativistic PZW Hamiltonian
from Eq. (1). Therefore, the collective modes that were
described in the previous sections encapsulate both traverse
and longitudinal degrees of freedom. The transverse part of
P̂ couples to the purely transverse displacement field D̂ to
yield new light-coupled plasmon-polariton modes. These will
be discussed in Sec. III. The remaining longitudinal part of
P̂ describes the instantaneous Coulomb interaction between
particles and can couple to quasistatic electric fields, such
as those arising in the evanescent near field of metal gratings
[25,26] or nanoresonators [9,23,38]. Actually, these quasistatic
electric fields can also be described in terms of polarization
fields that are associated to the oscillating charges on the metal
surfaces [39]. In this section, we illustrate how the longitudinal
part of the polarization field and the corresponding dispersion
can be derived from our results. To this end, we shall consider
only the case of the intrasubband and intersubband excitations
of two-level system hosted by infinite homogeneous media.
In particular, we shall illustrate how the well known

√|q|
dispersion for the intrasubband plasmon is recovered from
the almost dispersionless intrasubband mode discussed in
Sec. II C 1. A very general treatment including all possible
excitations combined with boundary-condition problem for
the electromagnetic field will be discussed in Sec. III C 1.

Let us consider an electromagnetic wave perturbation
propagating in the system, with a general three-dimensional
wave vector Q. The spatial variations of the wave are provided
by the exponential factor

eiQr = eiqr‖eiqzz. (87)

We have split the wave vector Q into components q and qz

that are, respectively, parallel and perpendicular to the 2DEG
layer. The longitudinal components of the polarization field are
those that are collinear with the propagation vector Q. In order
to isolate the longitudinal excitations, we will work directly
with the characteristic tensors from Eqs. (56) and (65). Let
us consider the intrasubband characteristic tensor ζ intra

‖ (ω,q)
[Eq. (56)]. The overlap integral J1,1 can be expanded in a
Fourier series:

J1,1 =
∫

η2
11(z)dz =

∑
qz

|̃η11(qz)|2. (88)

Here, η̃11(qz) is the Fourier component of η11(z) with
respect to the perpendicular wave vectors qz. With the above
expression, the characteristic tensor ζ intra

‖ (ω,q) appears as a
sum over both components qz,q of the three-dimensional
vector Q. To isolate the longitudinal part, we notice
that

Q(βqk ⊗ βqk)Q
Q2

= 1

q2 + q2
z

. (89)

Indeed, Qβqk = qβqk = 1. By summing only over the longi-
tudinal projection of (βqk ⊗ βqk) and using the well-known
result from the distribution theory [40]∑

qz

|̃η11(qz)|2
q2 + q2

z

= 1

q

∫∫
dz dz′η11(z)η11(z′)e−q|z−z′ |, (90)

we arrive at the following expression for the scalar longitudinal
component of ζ intra

‖ (ω,q):

ζ intra
‖ (ω,q)|ll = 1 −

∑
k

2�nkq1�ωkq

ω2 − �ω2
kq

V11,11(q)

�
, (91)

V11,11(q) = e2

εε0Sq

∫∫
dz dz′η11(z)η11(z′)e−q|z−z′ |. (92)

Here, V11,11(q) is nothing else but the intrasubband matrix
element of the Coulomb potential [18]. Clearly, Eqs. (91) and
(92) can be used to study the excitations of the system for
any excitation wave vector q at the dipole-dipole order of the
Coulomb interaction [3] (see also Sec. III C 1). In particular,
taking the long-wavelength limit of Eq. (91) we obtain

ζ intra
‖ (ω,q)|ll = 1 − �2

‖(q)

ω2
. (93)

Here, �2
‖(q) is the q-dependent plasma frequency

�2
‖(q) = qω2

P ‖

∫∫
dz dz′η11(z)η11(z′)e−q|z−z′ |

J1,1
|q→0

≈ qω2
P ‖

∫
dz dz′η11(z)η11(z′)

J1,1

= e2

m∗εε0
|q|. (94)

We therefore recover the longitudinal intrasubband mode of
the 2DEG with a square-root wavelength dispersion �‖(q) ∝√|q|.

Furthermore, let us also examine the formal limit of the
expression �2

‖(q) at very large wave vectors q → ∞. In

this case, qe−q|z−z′ | → δ(z − z′) and therefore we have the
asymptotic expression

�2
‖(q)|q→∞ → ω2

P ‖. (95)

This expression remains valid as long as the plasma frequency
ωP ‖ is far from the particle-hole continuum of uncoupled
excitations �ωkq. Indeed, for wave vectors beyond the light
cone, the intrasubband excitation considered in Sec. II C 1 is a
purely longitudinal excitation.

Similar considerations apply also for the intrasubband
plasmon mode described by Eq. (65). For the sake of
illustration, we shall consider only the z component with
characteristic function ζzz(ω,q). In this case, we compute the
Fourier components of the overlap integral

I21,21 =
∑
qz

|̃ξ21(qz)|2. (96)

Now, ξ̃21(qz) is the Fourier component of the intersubband
current density ξ21(z). Furthermore, we use the projection
identity

Q(ez ⊗ ez)Q
Q2

= q2
z

q2 + q2
z

. (97)
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We must then sum up the Fourier integral that appears in the
longitudinal projection of ζzz(ω,q):∑

qz

q2
z |̃ξ21(qz)|2
q2 + q2

z

= 1

q

∫∫
dz dz′∂zξ21(z)∂zξ21(z′)e−q|z−z′ |

= 4m∗2�ω21

�2q

∫∫
dz dz′η21(z)η21(z′)e−q|z−z′ |. (98)

The second line of Eq. (98) is obtained by noticing that
qzξ̃21(qz) is the Fourier image of ∂zξ21(z), and the third line by
using Eq. (204). We can then cast the longitudinal projection
of the z component in the form

ζzz(ω,q)|ll = 1 − V21,21(q)

2�

∑
k

�ω2
21�nkq21

�ωkq21
(
ω2 − �ω2

kq21

) .

(99)

Here, V21,21(q) has the same expression as Eq. (92) with
η21(z) instead of η11(z). The long-wavelength limit of Eq. (99)
then coincides with Eq. (66), as we have the following identity
(see Ref. [4], Appendix C):

ω2
P 21 = V21,21(q → 0)�ω21Ne

2�
. (100)

We see that the intersubband plasmon becomes a purely
longitudinal mode at very small wave vectors. Indeed, this is
the reason why the intersubband transitions can not couple to
a normally incident light [34]. Using the same method, we can
show that longitudinal projection of the in-plane intrasubband
plasmon is provided a very similar expression as (99), and the
only difference is that the square �ω2

21 is replaced with the
square of the change in the kinetic energy �q(2k + q)/m∗.
It is therefore clear that the in-plane intrasubband plasmon
has a vanishing contribution to the longitudinal part of the
characteristic tensor (65).

Note also that, as the wave vector q increases, the
Coulomb matrix element V21,21(q) tends to zero, as it becomes
proportional to the square of the overlap integral between
two orthogonal wave functions

∫
η21(z)dz and therefore we

would expect a red-shift of the plasmon mode at higher wave
vectors. This analysis must be completed also considering the
intra-inter subband coupling; however, we refer to the very
general multitransition case discussed in Sec. III C 1.

These results are graphically summarized in the digram of
Fig. 5, where we have sketched the dispersion-less plasmon
modes obtained in the previous paragraph together with their
longitudinal projections, as well as the one-particle solutions
of the characteristic tensors. Clearly, beyond the light cone
described with the equation ω = cq/

√
ε, only the longitudinal

projections should be considered. The interaction of the
collective modes with the transverse photon field inside the
light cone gives rise to mixed polariton modes, as described
in Sec. III. For instance, this coupling at the frequency of
the intrasubband plasmon is responsible for a free-carrier
absorption at the frequency ωP ‖. In a similar way, the coupling
of the intrasubband plasmon with light for finite wave vectors
q �= 0 gives rise to an absorption resonance at a frequency ω̃21.

Note that the diagram in Fig. 5 holds only for the case
of electromagnetic waves in free space, and will generally
be different depending on the boundary conditions for the
electromagnetic field. However, the dispersionless collective
modes derived in the previous paragraph, together with
the one-particle solutions of the characteristic tensors, are
universal. As shown in the previous section, these modes have
a simpler structure than, for instance, the longitudinal modes
obtained by working directly with the Coulomb potential in
the minimal coupling representation [41].

Once the full set of the electromagnetic modes are known
for a particular geometry, we can define longitudinal and
transverse projections of the “universal” collective modes, in
order to work out the corresponding polariton and quasistatic
excitations. In practice, we can work with a finite set of
electromagnetic modes to obtain reasonable approximations.
This approach is very convenient in the case of confined
geometries, where there are usually only a few electromagnetic
modes that resonate closely to the frequencies of the collective
electronic modes. In Sec. III C, we provide a systematic
method to obtain such modal development based on the inverse
PZW transformation. In the case where surface waves are
present they can be treated in a similar approach as the one
employed for the surface plasmon polariton in Ref. [3].

E. General case of multiple subbands

We now turn to a more general case where several subbands
can be occupied. In this case, the Fermi level of the gas
lies higher than at least two discrete energy levels of the
bounding potential V (z). In particular, we will be interested
in the interaction of such systems with light, which will be
considered in the next part. As the single-particle excitations
carry very low oscillator strength, we will exclude them
from our discussion, and we will consider only the collective
plasmon modes described in the previous paragraph.

In such system with several occupied subbands, each occu-
pied subband yields an intrasubband plasmon, and each pair
of subbands j > i gives rise to two intersubband plasmons.
The self-polarization term P̂2 then induces coupling between

FIG. 5. (Color online) Sketch of the excitation diagram of a two-
subband system (not at scale). The dispersionless intersubband and
intrasubband plasmons are traced, respectively, in squares and circles,
and their Coulomb projections in continuous curves.
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the plasmons issued from different subbands or subband
pairs, as well as couplings between the intrasubband and
in-plane intersubband plasmons. Our formalism then allows
us to reduce the problem into a finite number of coupled
quantum harmonic oscillators [4,8,42], which can therefore
be diagonalized numerically.

For simplicity, and as we are interested in the interaction
of the collective plasmonic modes with light, in the following
discussion we shall neglect the contribution of the in-plane
intersubband plasmon, as well as its interaction with the
intrasubband plasmons. Indeed, the in-plane intrasubband
plasmon is intrinsically a dark mode with a very low os-
cillator strength. This can be understood by considering its
contribution to the polarization field P̂‖|inter, as described by
Eq. (39) or (76). Since the coupling with light is provided by
the linear term D̂ · P̂ of the PZW Hamiltonian (1), the coupling
constant between the in-plane intersubband plasmon and the
electromagnetic field is proportional to the overlap integral∫

f (z)ηα(z)dz =
∫

f (z)φi(z)φj (z)dz, i > j. (101)

Here, f (z) is a function that describes the spatial variations
of the displacement field D̂ along the z direction. The
typical scale of variation of f (z) is the wavelength of light,
which is much larger than the scale of the typical confined
electronic wave functions. As the function f (z) varies slowly
compared to the product φi(z)φj (z) we can take it out from the
integral sign, and the remaining integral vanishes owing to the
orthogonality of the wave functions φi(z) and φj (z).

Even if the coupling of the in-plane intersubband plasmon
with light is negligible, it could still influence the optical
properties of the system through its coupling with the bright
intrasubband plasmon. We already saw that this coupling is
zero in the two-subband case, for a confining potential that has
an inversion symmetry. This argument can be extended in the
multiple subband case. Indeed, the first term in Eq. (45) can
be expressed from the overlap integrals (49):

Jαj ′ =
∫

ηα(z)ηj ′j ′ (z)dz =
∫

φi(z)φj (z)φ2
j ′(z)dz, i > j.

(102)

As the wave functions φi(z) form an orthogonal set, it is
clear that the overlap integrals Jαj ′ will take generally very
small, although finite values. Furthermore, if the confining
potential has an inversion symmetry, then the wave functions
have a well-defined parity and Eq. (102) is zero for wave
functions i > j with different parities. The term Eq. (102)
can then become influential only in the case where φi(z)
and φj (z) have the same parity, that is, for instance, for
nonconsecutive transitions. This case can be achieved for high
doping levels. We can, however, observe that, even for an
asymmetric potential, such as the one described in Fig. 4(b),
the range of doping levels where the coupling is significant is
limited. We see that there are a number of situations where the
coupling between the in-plane intersubband plasmon and the
intrasubband plasmon can be ignored, and therefore we discard
that coupling in the following discussion. Nevertheless, our
formalism allows recovering the optical response of the system
when this coupling is not zero, if needed.

Under the above assumptions, the collective behavior of the
gas is described by plasma oscillations that are well separated
as intersubband plasmons in the direction of confinement
(z axis) and intrasubband plasmons in the (x,y) plane. The
effective matter Hamiltonian is expressed from the collective
excitations only:

He + 1

2εε0

∫
P̂2d3r → Hinter

coll + Hintra
coll . (103)

The intersubband Hamiltonian Hinter
coll contains only the

P̂z|inter component of the polarization field, while the in-
trasubband Hamiltonian Hintra

coll only the P̂‖|intra component.
The Hamiltonian describing the intersubband plasmons Hinter

coll
was already considered in Refs. [4,8]. We shall reproduce
briefly the discussion in those references for completeness. The
square-polarization term P̂z|2inter now involves both contribu-
tions from the same subband pair α, together with cross terms
from different subbands pairs α �= β. The polarization self-
energies arising from the same transition α are combined with
the electronic part to define collective intersubband plasmon
operators p

†
qα as in Sec. II C. The polarization field P̂z|inter is

now expressed only from these collective contributions:

P̂z|inter = −
∑
qα

ξα(z)

√
ω2

Pα

2ω̃α

�εε0

SIα,α

e−iqr‖ (p†
qα + p−qα).

(104)

Here, all definitions are identical to the ones in Sec. II C, by
replacing the indexes “21” with “α.” The plasma frequencies
ωPα are also defined as in Sec. II C [Eq. (70)]:

ω2
Pα = e2�Nα

m∗εε0SLα

, Lα = 2m∗�ω21

�Iα,α

(105)

except that now we have the population difference between
the subbands �Nα instead of the total number of electrons
Ne. With all the self-energy polarization terms diagonalized,
the remaining contributions from the square-polarization term
in Hinter

coll arise from the interactions between distinct pairs of
subbands α �= β:

Hinter
coll =

∑
qα

�ω̃αp†
qαpqα +

∑
qα �=β

CI
αβ

�ωPαωPβ

4
√

ω̃αω̃β

× (p†
qα + p−qα)(p†

−qβ + pqβ), (106)

CI
αβ = Iα,β√

Iα,αIβ,β

. (107)

This equation describes an ensemble of coupled intersubband
plasmon modes. The advantage of this representation is
that now we can choose a finite number of subbands that
describe the problem, which renders the diagonalization of
the Hamiltonian (106) a well-defined numerical problem. A
complete analytical solution would be possible only in the
case where all coupling coefficients CI

αβ are identical [4]. This
is approximately the case for the consecutive transitions of a
square quantum well [8,15]. When the remaining plasmon-
plasmon interaction is diagonalized away, the Hamiltonian
(106) is decomposed into a sum of independent intersubband
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plasmon modes, which mix plasmons from different subbands:

Hinter
coll =

∑
qK

��KP
†
qKPqK. (108)

The new operators P
†
Kq are linear combinations of the old

ones:

P
†
qK =

∑
α

(mαKp†
qα + hαKp−qα). (109)

The Hopfield coefficients mαK , hαK and the new collective
frequencies �K are obtained from a numerical Hopfield-
Bogoliubov procedure, and it can be shown that they are
real [42]. For a particular physical problem, one always
retains a finite number of intersubband pairs α, then the
Hopfield-Bogoliubov procedure will deliver the same number
of uncoupled plasmons P

†
Kq. Equation (109) can then be

inverted to express the old operators p
†
αq as a function of new

ones P
†
Kq:

p†
qα + p−qα =

∑
K

(mαK + hαK )−1(P †
qK + P−qK )

=
∑
K

M−1
αK (P †

qK + P−qK ). (110)

We introduced here the square matrix MαK = mαK + hαK

constructed from the Hopfield coefficients. This relation allows
us to express the collective electronic polarization in Eq. (104)
as a function of the new collective operators:

P̂z|inter = −
√

�εε0

2S

∑
qK

�K (z)e−iqr‖
√

�K

(P †
qK + P−qK ), (111)

�K (z) =
∑

α

M−1
αKξα(z)ωPα

√
�K

ω̃αIα,α

. (112)

The function �K (z) is expressed as a linear combination
of the intersubband microcurrents ξα(z), and therefore can be
interpreted as the “microcurrent” of the new collective mode K

[8]. It allows us to express the light-matter coupling constant
for intersubband plasmons, as described in the next part. An
experimental example of a collective mode that arises from
the interaction of several intersubband plasmons is provided
in Ref. [15]. In particular, the bright plasmon mode that appears
in a parabolic quantum well according to the Kohn theorem
[43–45] is another example of that kind [15].

The intrasubband part of the Hamiltonian (103) is treated
in the same way. Generalizing the notations from Sec. II C
for the multisubband case, we can express Hintra

coll as a sum
of interacting intrasubband plasmons arising from different
subbands i:

Hintra
coll =

∑
qni

�ω
‖
iP π

†
qniπqni +

∑
qni �=j

CJ
ij

�

√
ω

‖
iP ω

‖
jP

4

× (π †
qni + π−qni)(π

†
−qnj + πqnj ), (113)

CJ
ij = Ji,j√

Ji,iJj,j

. (114)

Here, n = (n1,n2) is a basis in the (x,y) plane and the plasma
frequencies are defined as in Sec. II C:

(ω‖
iP )2 = e2Ni

m∗εε0SLi

, Li = 1/Ji,i . (115)

Now, Ni is the electronic population in the subband i. The
Hamiltonian Hintra can be further diagonalized into a sum of
independent plasmon modes with frequencies WL:

Hintra
coll =

∑
qnL

�WL�
†
qnL�qnL, (116)

�
†
qnL =

∑
i

(liLπ
†
qni + giLπ−qni). (117)

Let us introduce the matrix constructed from the Hopfield
coefficients

NLi = liL + giL. (118)

Then, the polarization field is expressed, respectively,

P̂‖|intra = −i

√
�εε0

2S

∑
qnK

√
WLϒL(z)e−iqr‖n(�†

qnK + �−qnL),

(119)

ϒL(z) =
∑

i

N−1
Li ηii(z)

√
ω

‖
P i

WLJi,i

. (120)

This expression will be used in the next part to study the
coupling of the collective excitations of the gas with light.

Before concluding this section, let us provide an exam-
ple of a collective intrasubband excitation that combines
intrasubband plasmons from different subbands. Consider an
infinite square quantum well, like the one in Sec. II C 3.
Using the expressions of the wave functions φi(z) provided
in that section, it is straightforward to show that all the
coefficients Ji,i are identical: Ji,i = 3/2LQW. Furthermore,
the cross-correlation coefficients Ji,j ,i �= j are also identical:
Ji,j = 1/LQW. In that case, CJ

ij = 2
3 , and the Hamiltonian

(113) falls into the one of the cases described in Appendix A
where analytical diagonalization becomes possible. Relying on
the results from Appendix A, we can write the characteristic
equation that provides the new collective frequencies:

1 =
∑

i

2

3
(ω‖

iP )2 1

W 2
L − (ω‖

iP )2/3
. (121)

Equations of such type were already encountered in Ref. [3].
As discussed in that reference, a general property of such
equation is that if the number of individual contributions i

is sufficiently high, then we can isolate a single collective
solution, which is far from the individual plasma frequencies
ω

‖
iP and sums coherently all the plasma contributions:

W 2
Lmax ≈

∑
i

2

3
(ω‖

iP )2

= e2

m∗εε0LQWS

∑
i

Ni = e2Ne

m∗εε0LQWS
. (122)
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Here, Ne is the total number of electrons in the system.
Therefore, in the limit of a large number of occupied subbands,
we obtain the classical plasma frequency, as should be
expected. Our microscopic model then correctly recovers the
case of a classical three-dimensional plasma.

III. COUPLING BETWEEN A 2DEG AND A PLANAR
METALLIC WAVEGUIDE

A. Light-matter coupling Hamiltonian

We now investigate the coupling of the collective exci-
tations of the gas, described in the previous section, with the
transverse photons in a confined geometry. For this purpose, we
choose a photonic structure that has a translational symmetry
identical to that of the heterostructure potential that confines
the electron gas. This structure is the planar metallic waveg-
uide, which consists of two perfectly conducting mirrors,
perpendicular to the z axis and separated by a distance L. This
arrangement, that shall be called in the following “double-
metal” (DM) waveguide, is well known from quantum optics
[46,47] and far-infrared optoelectronics [48]. In this geometry,
light propagates in the in-plane direction with a planar wave
vector q, whereas it vibrates in a sinusoidal standing wavelike
patterns along the z direction. We shall suppose that the
waveguide is filled with a homogeneous medium with a real
dielectric constant ε, that plays the role of a host for the
2D electron gas. The interaction of the gas with the guided
modes is described by the nonmagnetic PZW Hamiltonian
from Eq. (1), and according to the general properties of
the PZW representation, we need to express the transverse
electromagnetic field vectors D̂ and Ĥ independently from
polarization field of the gas P̂. The diagonalization of the full
Hamiltonian in Eq. (1) then will provide the coupled plasmon-
polariton modes of the system, both in the intersubband and
intrasubband cases, as well as the corresponding effective
dielectric constants. The PZW approach, illustrated here for
this particular geometry, can then be generalized to more
complex situations.

Taking of the conceptual simplicity of the DM waveguide,
our motivation is to provide the most general light-matter
coupling Hamiltonian of the problem, which takes into account
all possible waveguide modes. As these modes constitute a
complete orthonormal set, we obtain a complete treatment
of an electromagnetic problem with boundary conditions. The
importance of such multimode treatment has been already out-
lined by previous authors [30], in the context of a semiclassical
description of the electromagnetic field. In the present case, we
adopt a fully quantum-mechanical description, by discarding
dissipation effects [49]. This general formulation will allow us
to relate to previous results that were established by a single-
mode approximation [4]. More generally, the full multimode
treatment will enable us to study the correspondence between
our PZW model and the minimal-coupling representation of
the full electromagnetic Hamiltonian, as shall be outlined
in Sec. III C. In particular, we will show that this approach
leads to a longitudinal Coulomb potential, that takes into
account automatically the boundary conditions imposed by
the cavity walls. Such investigation is important in the context
of light-matter coupled systems operating in the ultrastrong

light-matter coupling regime, where the image effects of the
dipole-dipole forces can no longer be ignored owing to the
increased density of interacting particles. More generally, such
a study is pertinent in the context of quantum optics problems
with condensed matter systems, where the full electromagnetic
Hamiltonian, including both the square-vector potential term
and the Coulomb potential, must be taken into account [12,14].

The modes of a perfect mirror DM waveguide break
into “transverse magnetic” (TM) and “transverse electric”
(TE) polarized modes [50]. The TM modes have nonzero z

component of the electric field, whereas the TE have nonzero
z component of the magnetic field. The modal dispersion of
both kinds of modes depends on two quantum numbers m and
q and is described by the unique formula

ε
ω2

cmq

c2
= q2 + π2m2

L2
. (123)

Here, ωcmq is the frequency of the guided mode and m is an
integer describing the confinement in the z direction; m > 0
for TE modes and m � 0 for TM modes. We will make use of
the lateral wave vector

kzm = πm

L
, (124)

which describes the standing-wave patterns of the modes in
the z direction. These patterns are expressed through the
normalized functions

um(z) =
√

2

1 + δ0m

cos(kzmz) (125)

and their derivatives, that are nonzero for m > 0:

wm(z) = 1

kzm

dum

dz
=

√
2 sin(kzmz). (126)

The electromagnetic field components are expressed in an
orthonormal basis (eq,e⊥,ez), where ez is the unit vector of
the z axis, eq = q/q, and e⊥ = eq ∧ ez. The field operators
are expressed in terms of creation and annihilation operators
a
†
qmh,aqmh, and a

†
qme,aqme for each waveguide mode m,q. The

index h stands for the TM modes, and e stands for the TE
modes. The full expressions of the quantized electromagnetic
fields operators, that describe the displacement field D̂, the
magnetic field Ĥ, and the vector potential Â, are then

D̂hz = i
∑
qm

Aqm

qum(z)

ωcmq
eiqr‖ (aqmh − a

†
−qmh), (127)

D̂h‖ = −
∑
qm

Aqm

eqkzmwm(z)

ωcmq
eiqr‖ (aqmh − a

†
−qmh), (128)

Ĥh⊥ = i
∑
qm

Aqme⊥um(z)eiqr‖(aqmh + a
†
−qmh), (129)

Âhz =
∑
qm

Aqm

εε0

qum(z)

ω2
cmq

eiqr‖ (aqmh + a
†
−qmh), (130)

Âh‖ = i
∑
qm

Aqm

εε0

eqkzmwm(z)

ω2
cmq

eiqr‖ (aqmh + a
†
−qmh) (131)
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for the TM modes. These expressions are valid only in the
dielectric slab, as the fields are will be considered as identically
zero in the metal (see the discussion in the end of this section).
For TE modes, we have

D̂e⊥ =
∑
qm

Aqm

√
ε

c
e⊥wm(z)eiqr‖(aqme − a

†
−qme), (132)

Ĥez =
∑
qm

Aqm

cq√
εωcmq

wm(z)eiqr‖(aqme + a
†
−qme), (133)

Ĥe‖ = −i
∑
qm

Aqm

ckzm√
εωcmq

equm(z)eiqr‖(aqme + a
†
−qme),

(134)

Âe⊥ = −i
∑
qm

Aqm

εε0

√
ε

cωcmq
e⊥wm(z)eiqr‖(aqme + a

†
−qme).

(135)

We have used unique normalization constant for both types
of modes:

Aqm =
√

�ωcmq

2μ0SL
. (136)

The free-field Hamiltonians are, respectively,

Hh
ph =

∫ [
D̂2

hz + D̂2
h‖

2ε0ε
+ μ0Ĥ2

h⊥
2

]
d3r

=
∑
qm

�ωcmq

(
a
†
qmhaqmh + 1

2

)
, (137)

He
ph =

∫ [
D̂2

e⊥
2ε0ε

+ μ0
(
Ĥ 2

ez + Ĥ2
e‖

)
2

]
d3r

=
∑
qm

�ωcmq

(
a†

qmeaqme + 1

2

)
. (138)

Before providing the coupling of the waveguide modes
of the DM resonator with light, let us discuss the physical
meaning of the displacement field D̂ from the point of view
of the PZW representation. In that representation, and for
globally charge neutral system the field −D̂ plays the role of
conjugate momentum to the vector potential Â, and therefore
it is required that D̂ is a purely transverse field [2]. It is clear
from Eq. (132) that this is the case for the TE-polarized modes,
as the only nonzero component D̂e⊥ has a zero divergence.
Indeed, each contribution in Eq. (132) points along the e⊥
direction, whereas the spatial variations of the field arise from
the directions eq and ez. Furthermore, the field D̂e⊥ vanishes
identically on the metal walls.

The fact that D̂ also has a zero divergence for the TM modes
seems less evident. Let us consider the lowest-order (m = 0)
TM0 mode, for which according to Eqs. (127) and (128) the
only nonvanishing component of displacement vector is the z

component:

D̂hz|m=0 = i
∑

q

Aq0

√
2ε

c
χ[0,L](z)eiqr‖(aq0h − a

†
−q0h).

(139)

FIG. 6. (Color online) Transverse field D of the lowest-frequency
symmetric guided mode from nonperfect (a) and almost perfect (b)
metal-dielectric-metal waveguide. Here, δM indicates the penetration
depth of the mode into the metal walls, that is identically zero for a
perfect metal.

Here, the function χ[0,L](z) = 1 when z runs inside the
dielectric slab and χ[0,L](z) = 0 everywhere else. Since
the function χ[0,L](z) is discontinuous at the metal walls
it might seem that divD̂hz|m=0 = ∂D̂hz|m=0/∂z is not zero
everywhere in space, but has instead a very strong value at the
metal walls. This, however, is not true; indeed, consider the
situation where the metal is not perfect but behaves instead
as a three-dimensional electronic plasma with some finite
plasma frequency. In that case, the field penetrates into the
metal [Fig. 6(a)], furthermore, the lowest-order symmetric
guided mode can be seen as a combination of two surface
plasmon waves [51,52]. Solving the classical electromagnetic
problem with the usual boundary conditions one finds that the
classical displacement field D has zero divergence everywhere
in space, and its force lines are closed loops, like the one
sketched in Fig. 6(a). (This mode can also be described
quantum mechanically by using the microscopic model of
the 3D gas from Ref. [3].) As the field decays exponentially
into the metal with a characteristic skin depth δM the force
lines extend inside the metal over a distance δM . The classical
analysis indicates that, in the case of an almost perfect metal,
δM → 0 and the force lines are strongly compressed around
the metal-dielectric interface, as illustrated in Fig. 6(b).
Nevertheless, the force lines of D are still closed loops, and
we have divD = 0 everywhere in space. Finally, in the perfect
metal case all force lines run only on the surface of the metal
walls. This is the sense in which Eqs. (127), (128), and (139)
should be understood as describing a purely transverse field.

Furthermore, the requirement that the force lines of D are
closed loops leads to the fact that the propagation vector q
can never be zero. To show this, let us take the case of the
TM0 mode, where the force lines running in the dielectric slab
are all parallel to the z axis. Consider then a particular line
pointing upwards while in the dielectric, at a position x0, then
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necessarily it is closed by a line running downwards in some
further position, say x0 + δx. The maximum such distance δx

corresponds to the spatial wave vector q = π/δx which is then
necessarily nonzero, although it can be rendered arbitrarily
small in an infinite waveguide. We recover once again the fact
that the displacement vector D describes a purely transverse,
propagating field as required by the PZW representation.

We are now in a position to express the nonmagnetic PZW
Hamiltonian (1) for the coupling between the 2D electron gas
with the guided modes of the DM structure. We consider only
the collective excitations of the gas which, according to the
results from the previous sections, are the only ones to have a
nonvanishing contribution to the polarization field of the gas.
The PZW Hamiltonian of our system then becomes

H = Hh
ph + He

ph + Hinter
coll + Hintra

coll

+Hh
int|inter + Hh

int|intra + He
int. (140)

Here, we have split the interaction terms according to the
polarization of the guided modes:

Hh
int

∣∣
inter = − 1

εε0

∫
D̂hzP̂z|interd

3r, (141)

Hh
int

∣∣
intra = − 1

εε0

∫
D̂h‖P̂‖|intrad

3r, (142)

He
int = − 1

εε0

∫
D̂e⊥P̂‖|intrad

3r. (143)

As the displacement field is purely transverse, the above
coupling terms select automatically the transverse part of
the polarization field, whereas the longitudinal field must
be treated apart, as described for instance in Sec. II D (in the
case of the confined photonic DM geometry, we should use
the discrete wave vectors km

z instead of the continuous set qz).
The TM modes are coupled to both intersubband and intrasub-
band plasmons, as they have both z and in-plane components.
The m = 0 (TM0) mode is an important exception, as it
has only z component in the dielectric and couples only to
intersubband plasmons [4]. The TE modes couple only to
intrasubband plasmons. Using the decomposition of the matter
polarization field into independent plasmon modes [Eqs. (111)
and (119)], we can explicit the coupling terms as

Hh
int|inter = i

∑
qKm

�RKm

2

qc/
√

ε√
�Kωcmq

× (P †
qK + P−qK )(aqmh − a

†
−qmh), (144)

Hh
int|intra = −i

∑
qLm

�kmzc/
√

ε

2

√
WL

ωcmq
QLm

× (�†
q‖L + �−q‖L)(aqmh − a

†
−qmh), (145)

He
int = i

∑
qLm

�
√

WLωcmq

2
QLm

× (�†
q⊥L + �−q⊥L)(aqme − a

†
−qme). (146)

In the above expressions, the intrasubband plasmons have been
split into components parallel ‖ and perpendicular ⊥ to the
propagation wave vector q. We introduced two light-matter
overlap integrals:

RKm = 1√
L

∫
�K (z)um(z)dz, (147)

QLm = 1√
L

∫
ϒL(z)wm(z)dz. (148)

The first one, RKm, describes the coupling strength of the Kth
intersubband plasmon mode with the mth waveguide mode,
while the second QLm provides analogous coupling for the Lth
intrasubband plasmon mode. Let us seek to express Eqs. (147)
and (148) in a more familiar way. Using Eqs. (105) and (112),
we can express the overlap integral RKm as

RKm =
∑

α

M−1
αK

√
f w

α f o
αmωPα

√
�K

ω̃α

sgnα. (149)

Here, we introduced the spatial overlap coefficient f w
α and

the oscillator strength of the transition f o
αm:

f w
α = Lα

L
, (150)

f o
αm = �

2m∗�ωα

( ∫
ξα(z)um(z)dz

)2

. (151)

The coefficient sgnα in Eq. (149) is the sign of the
overlap integral in the definition of f o

αm. These definitions
can be considered as a generalization of the previous results
established for intersubband plasmons [4,8,42]. Now, the
oscillator strength f o

αm becomes mode dependent, however, in
the case where the variations of the function um(z) are slow as
compared to the function ξα(z) we can recover the well-known
definition of the oscillator strength [34].

Equation (149) shows that the coefficient RKm has a
dimension of a frequency. This quantity can be regarded
as an effective plasma frequency of the collective mode
K , that is expressed as a linear combination of the initial
plasma frequencies ωPα , each being weighted by the respective
oscillator strength and spatial overlap. The coefficients M−1

αK

provide the weight of each transition α in the collective mode
K through the dipole-dipole coupling between intersubband
plasmons.

Using Eqs. (115) and (120), we can also provide a similar
version of the overlap integral QLm:

QLm =
∑

i

N−1
Li

√
Li

L

∫
ηii(z)wm(z)dz

√
ω

‖
P i

WL

. (152)

However, this overlap integral is dimensionless, and we can
not assign a meaning of an oscillator strength to the integrals
between ηii(z) and wm(z).

B. Confined plasmon-polariton modes

According to Eq. (146), the TE-polarized waveguide modes
can couple only to the intrasubband plasmon modes �

†
q⊥L

oscillating perpendicular to the propagation wave vector q.
Respectively, the TM modes couple both to the intersubband
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plasmons P
†
qK and the intrasubband plasmons �

†
q‖L that

oscillate along the propagation wave vector. Therefore, we
can split the full light-matter Hamiltonian (140) into two
independent parts, according to the type of waveguide modes:
H = HTE + HTM. In the following, we examine the plasmon-
polariton modes that arise from each part.

1. TE intrasubband plasmon polaritons

The TE part of the light-matter Hamiltonian is

HTE =
∑
qm

�ωcmq

(
a†

qmeaqme + 1

2

)
+

∑
qL

�WL�
†
q⊥L�q⊥L

+ i
∑
qmL

�W⊥
mL(�†

q⊥L + �−q⊥L)(aqme − a
†
−qme),

(153)

W⊥
qmL = 1

2

√
WLωcmqQLm. (154)

The mode TEm thus interacts with intrasubband plasmons
L with the coupling constant W⊥

qmL. The above Hamiltonian
is solved by introducing the coupled-mode operators

Yq⊥ =
∑
m

(xqmaqme + yqma
†
−qme)

+
∑
L

(mqL�q⊥L + hqL�
†
−q⊥L). (155)

Let ωq be the frequency of the coupled polariton modes.
Then, using the relation [Yq⊥,HTE] = �ωqYq⊥ (Hopfield-
Bogoliubov procedure) it is straightforward to obtain the
following relationships between the Hopfield coefficients
introduced in the definition of Yq⊥ [Eq. (155)]:

mqL = −i

ωq − W
‖
L

∑
m

W⊥
qmL(xqm + yqm), (156)

hqL = −i

ωq + W
‖
L

∑
m

W⊥
qmL(xqm + yqm), (157)

xqm = i

ωq − ωcmq

∑
L

W⊥
qmL(mqL + hqL), (158)

yqm = −i

ωq + ωcmq

∑
L

W⊥
qmL(mqL + hqL). (159)

These equations must be supplemented by the normalization
condition∑

m

(|xqm|2 − |yqm|2) +
∑
L

(|mqL|2 − |hqL|2) = 1 (160)

which arises from the requirement that Yq⊥ is a boson
destruction operator: [Yq⊥,Y

†
q′⊥] = δqq′ . This set of equations

is sufficient to determine the Hopfield coefficients, up to an
arbitrary phase, as well as the polariton dispersion ωq = f (q).
There are two possible approaches in order to handle the
algebra in Eqs. (156)–(159). We can eliminate the matter
Hopfield coefficients mqL and hqL in favor of the photonic
coefficients xqm and yqm. Then, the polariton eigenmodes ωq

are determined by the following eigenvalue matrix equation:∥∥Me
mm′ (ωq)

∥∥ = 0, (161)

Me
mm′ (ω) = δmm′

(
ω2 − ω2

cmq

)
−

∑
L

4ωcmqWL(
ω2 − W 2

L

)W⊥
qmLW⊥

qm′L. (162)

In a similar way, by eliminating the photonic coefficients
in favor of the matter ones, we can define an alternative
matrix M̃e

LL′(ω) that sums over all cavity modes (we shall
not provide its expression explicitly here). In both approaches,
the polariton dispersion is obtained numerically by truncating
the matrix Me

mm′ (ω) or M̃e
LL′(ω); the choice of a particular

matrix depends on whether the numerical truncation is more
advantageous over the plasmon or photon indexes.

The lowest-order truncation corresponds to a single plas-
mon mode L coupled with a single waveguide mode TEm. In
this case, Eq. (161) provides the following secular equation:(

ω2 − ω2
cmq

)(
ω2 − W 2

L

) = ω2
cmqW

2
LQ2

mL. (163)

We rearrange this equation in a form of a Helmholtz-
type dispersion relation with an effective dielectric constant
ε⊥mL(ω):

q2 + k2
zm = ε

ω2
cmq

c2
= ε⊥mL(ωq)

ω2
q

c2
, (164)

1

ε⊥mL(ω)
= 1

ε

(
1 + W 2

LQ2
mL

ω2 − W 2
L

)
= 1 − Q2

mL

ε
+ Q2

mL

ε
(
1 − W 2

L

/
ω2

) . (165)

We recognize in the second denominator of Eq. (165) a
Drude-type dielectric constant ε(1 − W 2

L/ω2) of the plasmon
layer. Clearly, the coefficient Q2

LM plays the role of a spatial
filling factor of the plasmon mode in the waveguide slab. In
the following, we shall see that for TE modes resonant with
the intrasubband plasmon mode, this filling factor is typically
very small Q2

mL � 1. Furthermore, let us consider the high-
frequency limit ω � WL; under these conditions, Eq. (165)
can be rewritten as

ε⊥mL(ω) ≈ (
1 − Q2

mL

)
ε + Q2

mLε

(
1 − W 2

L

ω2

)
. (166)

This is the effective dielectric constant that would be
obtained applying the classical boundary conditions for a sub-
wavelength layer with an in-plane dielectric tensor component
ε(1 − W 2

L/ω2) and TE-polarized wave [28]. However, such
interpretation is impossible in the general case as the quantity
ε⊥mL(ω) does not play a role of a macroscopic dielectric
constant of the medium. This is already seen from the fact that
it is strongly dependent on the waveguide index m through
the overlap integral QmL. As a result, the dispersion relation
in Eq. (164) also depends on the waveguide mode, and we
can no longer define a global dielectric function in the sense of
the macroscopic Maxwell’s equations, contrary to the case of a
homogeneous system from Ref. [3]. We will see further that we
can still recover an effective dielectric function, independent
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from the waveguide mode index, only as an average on scales
much larger than the typical size of the quantum confinement.

Let us at present estimate the coupling strength for
intrasubband plasmon polaritons. To this end, we consider
the intrasubband plasmon from an infinite quantum well of a
thickness LQW and a single occupied subband, as discussed in
Sec. II C 3. First, we look for the condition where the excitation
frequency of the plasmon ωP ‖ = √

(2/3)(e2Ns)/(m∗εε0LQW)
matches the cutoff frequency ωc10 = cπ/

√
εL of the lowest-

order TEm=1 mode. We take the maximal doping level
Nsmax = m∗�ω21/π� so that only the fundamental subband
of the well remains occupied EF = ��ω21. Since for an
infinite quantum well we have ��ω21 = 3π2

�
2/2m∗LQW

[35], we obtain Nsmax = 3π/2LQW. Then, the condition
ωP‖ = ωc10 can be rewritten as a relation that involves
only the quantum well thickness LQW and the waveguide
thickness L:

L2 = L3
QW

4ac

. (167)

Here, we introduced the “classical electron radius” ac [37] of
the electron with an effective mass m∗:

ac = e2

4πε0m∗c2
= 4.2 × 10−5 nm. (168)

Clearly, this quantity sets the order of magnitude for
the geometrical overlap LQW/L = √

4ac/LQW between the
quantum well and the waveguide mode which is resonant
with the plasmon excitation. Since typically the quantum well
thickness is on the order of tens of nanometers, we obtain that
LQW/L is on the order of 10−3, which means extremely small
coupling of the intrasubband plasmons of a single well with
the transverse electromagnetic field [53].

Even if the coupling of a single quantum well with the
waveguide mode is weak, we can recover strong collective
coupling of an ensemble of quantum wells, that are ho-
mogeneously distributed inside the whole thickness of the
waveguide slab, as depicted in Fig. 7(a). Let us consider
a LQW = 23 nm quantum well, which has an intrasubband
plasmon excitation at ωP ‖/2π = 5 THz. Then, according
to Eq. (167) the corresponding waveguide thickness is L =
8.8 μm. As depicted in Fig. 7(a), we consider a quantum
well/barrier superlattice of a period LQW + Lbar = 50 nm;
such system is feasible with the actual technology of THz
quantum cascade lasers [48].

We look for a solution of the secular equation (161) by
taking into account all possible waveguide modes. We first
consider the off-diagonal terms of the matrix Me

mm′(ω). In the
present case, the index L labels the position of the quantum
well along the z axis. Since WL = ωP ‖ are identical for all
wells, the off-diagonal elements (m′ �= m) are proportional
to

∑
L

Qm′LQmL = 2LQW

3L

NQW∑
j=0

wm′(zj )wm(zj )

= 4LQW

3L

NQW∑
j=0

sin
(m′πzj

L

)
sin

(mπzj

L

)

FIG. 7. (Color online) TE intrasubband plasmon polaritons. (a)
Schematics of a DM waveguide filled with identical pairs of quantum
wells and barriers. (b) The resulting coupled-mode dispersion, for
the case where the plasma frequency ωP ‖ is resonant with the cutoff
frequency of the lowest-order TEm=1 mode. Each waveguide mode
TEm interacts with the intrasubband plasmons, giving rise to two
coupled modes indicated by continuous lines. The original uncoupled
excitations are indicated in dashed lines. The polariton modes
resulting from the resonant interaction between the intrasubband
plasmon and the TEm=1 mode are indicated by thick lines. Note the
significant red-shift for all lower polariton modes, even if the TEm

waveguide modes are strongly detuned from the plasmon as the index
m increases.

= 4

3

LQW

LQW + Lbar

1

π

∫ π

0
sin(m′x) sin(mx)dx

= 2

3

LQW

LQW + Lbar
δmm′ . (169)

Here, z = j (LQW + Lbar),j = 0 . . . NQW − 1, is the posi-
tion of the j th quantum well inside the waveguide slab, and
NQW = L/(LQW + Lbar) is the total number of quantum wells.
Since LQW + Lbar � L we can convert the above sum into
integral which vanishes for m �= m′ thanks to the orthogonality
of the waveguide modes wm(z). The matrix equation (161) then
breaks into independent equations for each waveguide mode:(

ω2 − ω2
cmq

)(
ω2 − ω2

P ‖
) = ω2

cmqω
2
P ‖

∑
L

Q2
mL. (170)

The coupling constant is now identical for all modes.
According to the general property of this biquadratic equation
that describes two coupled quantum oscillators [4] we can
associate a coupling constant 2�R‖ which evaluates the Rabi
splitting between the polariton modes in the resonant case.
By using Eq. (169) with m = m′ this coupling constant is
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evaluated to be

4�2
R‖ = ω2

P ‖
∑
L

Q2
mL

= ω2
P ‖

2

3

LQW

LQW + Lbar
= ω2

P cl, (171)

ω2
P cl = e2Ns

m∗ε0ε(LQW + Lbar)
. (172)

Here, we introduced the effective plasma frequency of the
superlattice ωP cl that corresponds to the bulk plasma frequency
that would have been obtained if the same number of charges
were homogeneously distributed in the whole volume of the
waveguide. Therefore, for intrasubband excitations considered
here, the Rabi splitting 2�R‖ is exactly the equivalent 3D
plasma frequency of the system.

In the present case, we obtain numerically a collective
coupling strength 2�R‖/2π = ωP cl/2π = 3 THz, which is
now a significant fraction of the plasmon frequency ωP ‖/2π =
5 THz. The corresponding dispersion is plotted in Fig. 7(b),
where once again, for simplicity, we have neglected the
phonon dispersion of the material. The intrasubband plasmon
is coupled with each TEm waveguide mode, which leads,
according to Eq. (170), to two polariton solutions for each
waveguide mode. These solutions have been indicated in
Fig. 7(b) in continuous lines, while original uncoupled
waveguide modes and cavity modes are indicated in dashed
lines. Note that the coupling of a single plasmon mode with an
infinity of high-order waveguide modes creates an infinity of
lower polariton branches that accumulate around the frequency
4 THz. Similar phenomena were indicated by Zaluzny and
Zietkowski in Ref. [30] for the case of intersubband plasmon
polaritons. Note, however, from Eqs. (158) and (159) that the
Hopfield coefficients for the lower polariton branch tend to
zero as the detuning between the TEm modes and the plasmon
is increased as the index m increases. This would lead to
low, yet observable, contribution of these high-order polariton
modes in the absorbtion spectra of the system [30].

An interesting feature of the dispersion relation in Fig. 7(b)
is the important red-shift of the lowest coupled modes for large
wave vectors ω−

q that becomes constant beyond the light line
of the waveguide, and that affects all modes. Indeed, even if
one would expect that the effects of the coupling would vanish
as the high-order TEm modes are significantly detuned from
the intrasubband plasmon, the lower polariton modes never
recover the original plasmon frequency ωP ‖/2π = 5 THz.
This red-shift can be recovered from Eq. (170) taking the
limit ωcmq � ω:

ω−
q (|q| → ∞) =

√
ω2

P ‖ − ω2
P cl. (173)

From a quantum-mechanical point of view, the renormal-
ization of the lowest plasmon-polariton branch can be seen
as resulting from the repulsion of all cavity modes to lower
frequencies owing to the light-matter coupling. Note that the
full dispersion of the polaritons, including the region beyond
the light line of the waveguide, can be observed in experiments
with three-dimensional microcavities with quantized wave
vector q [6,42].

Since the coupling strength between the plasmon and the
waveguide modes is now independent from the index m, we
can associate to Eq. (170) a unique dispersion relation:

ε⊥(ωq)
ω2

q

c2
= q2 + k2

zm, (174)

which now is expressed in terms of an effective nonlocal
dielectric constant, that is valid for all TEm waveguide modes:

ε⊥(ω)

ε
=

(
1 + ω2

P cl

ω2 − ω2
P ‖

)−1

= 1 − ω2
P cl

ω2 − (
ω2

P ‖ − ω2
P cl

) . (175)

We see that the effect of neglecting the off-diagonal terms
of the matrix Me

mm′ (ω) leads to a semiclassical nonlocal
dielectric function of the system. This approximation is
pertinent in the present case as the typical extension of the
waveguide modes, that is, on the order of the light wavelength
λ = 2πc/ωP ‖, is much larger than the size of the quantum
confinement, which allows averaging the off-diagonal terms
to zero.

Equation (175) also allows us to understand the physical
meaning of the asymptotic resonance from Eq. (173) from
a semiclassical point of view. To this end, let us examine
the form of the dielectric function in Eq. (175) in the limit
where Lbar → 0 and a large number of occupied subbands,
as discussed in the end of Sec. II E. We showed in that
section that in this limit, the intrasubband plasma frequency
tends to the three-dimensional plasmon resonance described
in Eq. (122), which in the present case writes ωP ‖ → ωPcl .
The dielectric constant ε⊥(ω) from Eq. (175) then becomes
exactly a Drude dielectric constant with a vanishing pole
(ω2

P ‖ − ω2
P cl) → 0. We showed in Ref. [3] that the presence

of such zero-frequency solution corresponds to a perfect
screening of the electromagnetic wave propagating in the
medium by the field created by the oscillating electrons. In the
case with quantum confinement, the electrons do not fill the
whole medium, and such screening is impossible, which leads
to the appearance of a nonvanishing low-frequency resonance
from Eq. (173). This fact can be used as en experimental probe
of the quantum confinement of the electronic system.

2. TM mixed plasmon polaritons

Let us consider, at present, the TM part of the light-matter
coupling Hamiltonian:

HTM =
∑
qm

�ωcmq

(
a
†
qmhaqmh + 1

2

)
+

∑
qK

��KP
†
qKPqK +

∑
qL

�WL�
†
q‖L�q‖L

+ i
∑
qKm

�Wz
qmK (P †

qmK + P−qK )(aqmh − a
†
−qmh)

− i
∑
qmL

�W‖
qmL(�†

q‖L + �−q‖L)(aqmh − a
†
−qmh),

(176)
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Wz
qmK = 1

2
RKm

qc/
√

ε√
�Kωcmq

, (177)

W‖
qmL = 1

2
QLm

kmzc√
ε

√
WL

ωcmq
. (178)

In this Hamiltonian, the intrasubband and intersubband
plasmons became coupled through the TM modes of the
waveguide. The most general solution of the problem there-
fore is a mixed intrasubband-intersubband plasmon-polariton
mode:

Yqz‖ =
∑
m

(xqmaqmh + yqma
†
−qmh)

+
∑
K

(mz
qKPqK + hz

qKP
†
−qK )

+
∑
L

(m‖
qL�q‖L + h

‖
qL�

†
−q‖L). (179)

Using the Hopfield-Bogoliubov diagonalization method
from the previous section, the commutator [Yqz‖,HTM] =
�ωqYqz‖ is computed in order to relate the Hopfield coefficients
to the coupled-mode frequency ωq. By eliminating the matter
coefficients in favor of the photonic ones, we obtain the
following eigenvalue equation:∥∥Mh

mm′(ωq)
∥∥ = 0, (180)

Mh
mm′ (ω) = δmm′

(
ω2 − ω2

cmq

)
−

∑
L

4ωcmqWL(
ω2 − W 2

L

)W‖
qmLW

‖
qm′L

−
∑
K

4ωcmq�K

(ω2 − �2
K )

Wz
qmKWz

qm′K. (181)

Let us consider the lowest-order truncation of the above
eigenvalue problem, that corresponds to a single waveguide
mode interacting with a single intersubband plasmon and a
single intrasubband plasmon. The dispersion relation in this
case becomes

ω2
q − ω2

cmq = k2
mc2

ε

W 2
LQ2

mL

ω2
q − W 2

L

+ q2c2

ε

R2
mK

ω2
q − �2

K

. (182)

We can easily show that this equation can be rewritten in the
form

ω2
q

c2
= k2

m

ε‖mL(ωq)
+ q2

εzmK (ωq)
. (183)

This is a Helmholtz-type dispersion relation of an electro-
magnetic wave propagating in a birefringent media with two
effective dielectric constants:

1

ε‖mL(ω)
= 1

ε⊥mL(ω)
= 1

ε

(
1 + W 2

LQ2
mL

ω2 − W 2
L

)
, (184)

1

εzmK (ω)
= 1

ε

(
1 + R2

mK

ω2 − �2
K

)
. (185)

The in-plane effective dielectric constant ε‖mK (ω) is iden-
tical to the function ε⊥mL(ω) from the previous section. In

particular, in the case where the cavity thickness is sufficiently
small, so that only the TM0 mode can be considered, the
coupling with the intrasubband plasmon can be ignored, as
in this case kz0 = 0. We therefore recover the intersubband
plasmon-polariton mode that was discussed in Ref. [4].

We now examine the results from our formalism in the
multimode case, for a waveguide filled with identical quantum
wells, as discussed in the previous section. We consider
the case of a single occupied subband. In order to evaluate
the matrix elements of Mh

mm′(ω), we need to compute the
sums ∑

L

QmLQm′L,
∑
K

RmKRm′K. (186)

The first sum was already computed from Eq. (169). To
evaluate the second sum, we use the same technique that allows
us to convert the sum over the quantum well positions zj into
integrals thanks to the long-wavelength approximation∑

K

RmKRm′K

= 1

L

∑
K

∫
ξK (z)um(z)dz

∫
ξK (z)um′(z)dz

≈ 1

L

ω2
P 21

I21,21

( ∫
ξ21(z)dz

)2 NQW∑
j=0

um′ (zj )um(zj )

= e2Ns

m∗εε0(LQW + Lbar)

�
2

2m∗�ω21

( ∫
ξ21(z)dz

)2

× 1

π

∫ π

0
cos(mx) cos(m′x)dx

2

1 + δm0

= e2Ns

m∗εε0(LQW + Lbar)
f21δmm′ = ω2

P clf21δmm′ . (187)

Like before, the index K refers to the different spatial po-
sitions of the intersubband plasmons with identical frequency.
To establish this result, we used the definitions from Eqs. (105),
(151), and (172). Since the off-diagonal terms of the matrix
average to zero, we obtain, similarly to the previous section, a
unique dispersion relation that is valid for all TMm waveguide
modes:

ω2
q

c2
= k2

m

ε‖(ωq)
+ q2

εz(ωq)
. (188)

Here, we defined two global dielectric functions

1

ε‖(ω)
= 1

ε⊥(ω)
= 1

ε

(
1 + ω2

P cl

ω2 − ω2
P ‖

)
(189)

1

εz(ω)
= 1

ε

(
1 + f21ω

2
P cl

ω2 − ω̃2
21

)
. (190)

This is the nonlocal semiclassical dielectric constant that
corresponds to the TM-polarized waves. Clearly, this result
can be combined with the results from the previous section,
in order to define an anisotropic dielectric tensor of the
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FIG. 8. (Color online) Confined plasmon-polariton modes aris-
ing from the coupling between the TM waveguide modes with
the electronic collective excitations (intrasubband and intersubband
plasmons) of the quantum wells, for the case of a L = 2.2 μm thick
waveguide. The uncoupled original modes are indicated in dashed
lines, while the coupled polariton modes are indicated in continuous
lines. Now, there are three polariton branches for each index m.
However, only the polaritons that arise from the coupling between
the TM0 with the intersubband plasmon feature visible anticrossing
behavior (thick lines). The coupling of the intersubband plasmon
with the high-order modes gives rise to lower polariton branches that
remain very close to the original frequency ω̃21/2π = 7.4 THz. The
intrasubband plasmon at ωP ‖/2π = 5 THz does not couple to the
TM0 mode, yet there is a red-shift of all lower polariton branches due
to the interaction of all higher-order TMm>0 waveguide modes, that
is identical to the interaction with the TEm described in the previous
section.

multi-quantum-well medium. Similar expressions were pro-
vided in Ref. [54]. Once again, the intensity of the light-matter
coupling is provided by the effective 3D plasma frequency of
the system, which is corrected by the oscillator strength of the
transition in the case of the intersubband plasmon.

Examples of the resulting coupled polariton modes are
provided in Figs. 8 and 9. We consider the case of the
LQW = 23 nm infinite square quantum well from the previous
section, for which we have f21 = 0.96, ω̃21/2π = 7.4 THz,
and

√
0.96ωP cl = 4.9 THz. The resulting polariton dispersion

is plotted for two different values of waveguide thickness in
Figs. 8 and 9. In Fig. 8, the waveguide thickness is chosen to be
L = 2.2 μm, so that both the intersubband and intrasubband
resonances appear well below the cutoff of the TM1 mode.
The coupling between each waveguide mode and the two
plasmons now creates three plasmon-polariton branches for
each waveguide index m. However, we observe only a splitting
between the cutoff-less TM0 mode and the intersubband
plasmon, as discussed in Ref. [4]. The corresponding polariton
branches have been highlighted with thick continuous lines
in Fig. 8. The interaction of the intersubband plasmon with
the higher-order TMm modes creates branches that remain
very close to the original intersubband plasmon frequency
ω̃21/2π = 7.4 THz, as also pointed out in Ref. [30]. As
indicated in the aforementioned work, these branches cause
a weak absorption peak around the uncoupled frequency ω̃21

in the polariton spectra, while the spectra are dominated by
the lowest-order intersubband polariton branches [6].

FIG. 9. (Color online) Confined plasmon polaritons from a L =
8.8 μm thick waveguide. The thickness of the waveguide is set so that
the TM1 becomes resonant with the intrasubband plasmon at |q| = 0.
As in Fig. 8, the TM0 is coupled only to the intersubband plasmon.
At high wave vectors, the TM1 couples to to both intrasubband and
intersubband plasmons, yielding the mixed branch indicated in the
figure. These modes that arise from the resonant interaction with the
plasmons are indicated with thick lines. The other plasmon-polariton
modes are indicated in thin lines, while the original uncoupled modes
are indicated in dashed lines.

The intrasubband plasmon at the frequency ωP ‖/2π =
5 THz is not coupled in the TM0 mode since this mode
does not have a planar component of the electric field.
Instead, its interaction with all higher-order TMm modes is
permitted, as these modes possess an in-plane component of
the electric field. This interaction, that is formally identical to
the coupling with the TEm discussed in the previous section,
induces global red-shift of all lower intrasubband polariton
branches as described by Eq. (173). However, we expect
that, for thin cavities as in the present case, these branches
will have little influence on the absorption spectra. This is
because the important detuning between the intrasubband
plasmon and the TEm gives very little weight to the Hopfield
coefficients of these branches. The physics of the system will
therefore be dominated essentially by the coupling between
the intrasubband plasmon and the TM0 mode, as described
before [6,30].

The situation becomes more complex for a thick waveguide,
as depicted in Fig. 9. In that case, the thickness is chosen at
L = 8.8 μm in order to render the TM1 resonant with the
intrasubband plasmon. Each waveguide mode, except the TM0,
is then split into three branches, that arise from the interaction
with the two kind of plasmons. In Fig. 9, we have indicated
the Rabi splittings 2�R‖ = ωP cl and 2�Rz = √

f21ωP cl that
arise, respectively, from the resonant coupling between the
TM1 mode and the intrasubband plasmon and the TM0 with
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the intersubband plasmon. Note that the Rabi splitting 2�R‖ is
not affected by the intersubband plasmon, which does not
couple with light at |q| = 0. However, the TM1 starts to
interact with the intersubband plasmon as the planar wave
vector q is increased; this coupling yields, in particular, a
mixed photon intrasubband-intersubband plasmon mode that
has been indicated in Fig. 9.

Let us note that we can still recover the homogeneous
electron plasma as a limiting case of Eqs. (189) and (190)
for the case of multiple occupied subbands. This is already
shown for intrasubband plasmons in the previous section,
as ε⊥(ω) = ε‖(ω). For intersubband plasmons of a square
quantum well the demonstration is provided in Ref. [55],
where it is shown that, as the number of occupied subbands
increases, the oscillator strength of all intersubband excitations
is concentrated in a single resonance with a frequency that
tends to the equivalent bulk plasma resonance ωP cl.

C. Inverse PZW transform

In this section, we will explore the image of our light-matter
coupling Hamiltonian [Eq. (1)], describing the 2D electron gas,
in the minimal-coupling representation. In Ref. [3], we per-
formed a similar study with homogeneous three-dimensional
systems. In the present case, we have two new constraints that
were previously absent: on one hand, the electronic movement
is quantized in the direction of quantum confinement, and
on the other hand, the electromagnetic field is also subject
to a photonic confinement within the metallic waveguide.
In particular, our approach will reveal that the Coulomb
potential of the system, that describes the particle-particle
interactions, is modified not only by the quantum confinement,
but also by the boundary conditions arising from the cavity
walls.

In order to express correctly the unitary transformation
relating the two representations, we must take into account
all possible electronic transitions together with the full set of
waveguide modes. For this purpose, we return to the general
expressions of the polarization operator P̂(r) in Eqs. (28) and
(27) from Sec. II B. In that picture, the polarization opera-
tor is expressed in the k-resolved single-particle electronic
states, before the diagonalization of the matter part and the
identification of the collective contributions. However, we
still make use of the bosonization hypothesis which ensures
the self-consistency of the polarization field operator. The
coupling Hamiltonian spanned over the TEm and TMm modes
is written as

H = Hh
ph + He

ph + He + HP2

− 1

εε0

∫
[P̂zD̂hz + P̂‖(D̂h‖ + D̂e⊥)]d3r. (191)

Here, we employed the initial expressions of the polariza-
tion field operator of the gas [Eqs. (28) and (27)]:

P̂z = − �e

2m∗S

∑
qα

�†
zαqξα(z)e−iqr‖ , (192)

P̂‖ = − i�e

2m∗S

∑
qα

�
†
‖αqηα(z)e−iqr‖ . (193)

For convenience, the following operators are introduced:

�†
zαq =

∑
k

c
†
ik+qcjk

�ωkqij

, (194)

�
†
‖αq =

∑
k

c
†
ik+qcjk

�ωkqij

(2k + q). (195)

As before, a single Greek index labels the subband index
pair ij , however, now this labeling includes both intersubband
j �= i and intrasubband j = i transitions. The functions ξα(z)
and ηα(z) are supposed to be real, implying a closed system.
We should bear in mind that these definitions only make sense
on the subspace spanned by the bosonized states defined in
Sec. II A.

The unitary transformation that we use to obtain the
minimal-coupling image of the Hamiltonian is

T = exp

(
− i

�

∫
ÂP̂ d3r

)
= exp

{
− i

�

∫
[P̂zÂhz + P̂‖(Âh‖ + Âe⊥)]d3r

}
. (196)

The explicit expression for this transformation can be
inferred from the vector potential components provided in
the previous section, and shall not be detailed here. Since we
consider a subset of bosonized electronic excitations, we will
benefit from the general properties of the inverse bosonic PZW
transformation that were established in Ref. [3]. We split the
total Hamiltonian H in two parts in order to isolate the kinetic
energy part He from the rest:

THT + = T (H − He)T + + THeT
+. (197)

Then, according to the results established in Ref. [3], the two
parts of (191) are transformed under the operator T as follows:

T (H − He)T + = Hh
ph + He

ph + HP2 − HtP2 (198)

THeT
+ = He +

∫
ĵÂ d3r + H̃A2. (199)

The transformation of the first contribution H − He in
Eq. (198) provides, apart from the free photon partHh

ph + He
ph,

the difference between the square-polarization term HP2 and
its transverse part HtP2. We recall that the transverse part HtP2

can be obtained by projecting the operator P̂ onto the vector
potential Â and using its expansion into normal modes. The
difference appearing in Eq. (199) is the longitudinal part of the
polarization self-energy, which plays the role of the Coulomb
potential for our system:

V̂Coulomb = HP2 − HtP2. (200)

The transformation of the electronic part He leads to the
“jA” linear interaction term, which mirrors the linear “PD”
interaction term of the PZW Hamiltonian. Furthermore, in
Eq. (199) there is also a residual term that is square in the
vector potential H̃A2. In the following, we discuss separately
the terms V̂Coulomb and H̃A2.
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1. Coulomb interaction

Let us analyze first the Coulomb interaction term V̂Coulomb

that is derived from our PZW Hamiltonian. We spare the
reader some lengthy, but straightforward, calculations, which
make use of the Baker-Hausdor expansion that is interrupted to
second order thanks to the bosonic commutation rules imposed
on the excitation operators [3]. At the end of the computation,
the transverse part HtP2 appears as a decomposition over all
possible waveguide modes:

HtP2 = �
2e2

8m∗Sεε0

1

L

∑
q,α,α′,m

c2

εω2
cmq

×
{
q2

∫
ξαumdz

∫
ξα′umdz �†

zαq�zα′q

+ k2
zm

∫
ηαwmdz

∫
ηα′wmdz(eq�

†
‖αq)(eq�‖α′q)

− kzm

∫
ξαumdz

∫
ηα′wmdz�†

zαq(q�‖α′q)

− kzm

∫
ηαwmdz

∫
ξα′umdz(q�

†
‖αq)�zα′q

+ εω2
cmq

c2

∫
ηαwmdz

∫
ηα′wmdz

× (e⊥�
†
‖αq)(e⊥�‖α′q)

}
. (201)

We now need to combine HP2 with HtP2 in order to obtain
explicitly the Coulomb potential. To this end, we expand HP2

into the basis of waveguide modes, taking advantage of the
fact that the functions um(z) and wm(z) form a Fourier basis
with a period 2L. Since the functions ξα(z) and ηα(z) are
defined only on the bounded interval [0,L], we may choose
a convenient 2L-periodic extension of these functions on the
entire z axis [40]. Equation (201) suggests that such extension
must be symmetric for ξα(z) and antisymmetric for ηα(z) with
respect to the origin. As shown in Appendix B, these periodic
extensions lead to the integral expansions∫

ξαξα′dz = 1

L

∑
m�0

∫
ξαumdz

∫
ξα′umdz, (202)

∫
ηαηα′dz = 1

L

∑
m>0

∫
ηαwmdz

∫
ηα′wmdz. (203)

For m > 0, we also have the following identity, which is easily
shown by the use of Eq. (30) and integrating by parts:∫

ξαumdz = 2m∗ωα

�kzm

∫
ηαwmdz. (204)

To establish Eq. (204), we used the fact that all functions wm(z)
vanish on the metal walls. The m = 0 term, which corresponds
to the TM0 mode, cancels identically in the difference HP2 −
HtP2, therefore, the remaining expansion contains only m > 0
terms.

Another useful identity is the following formula for the
excitation operators, stemming from the definitions (194) and
(195):

D†
αq ≡ ωα�†

zαq + �

2m∗ (eq�
†
‖αq) =

∑
k

c
†
ik+qcjk. (205)

Making use of these results, and after some lengthy algebra,
we obtain the following expression for the longitudinal part of
the polarization self-energy:

HlP2 = V̂Coulomb = e2

2Sεε0

∑
q,α,α′,m>0

∫
ηαwmdz

×
∫

ηα′wmdz
D

†
αqDα′q

k2
zm + q2

. (206)

The sum over the waveguide modes can be computed by
applying the Poisson summation formula [40] on the periodic
extensions of ηα(z). The details are provided in Appendix B,
and the result is∑

q,α,α′,m>0

∫
ηαwmdz

∫
ηα′wmdz

1

k2
zm + q2

= L

q

∫ L

0

∫ L

0
ηα(z)ηα′(z′)

∑
n∈Z

e−q|z−z′+2nL|dz dz′. (207)

Finally, replacing the density functions ηα with the products
φi(z)φj (z) we recognize a familiar expression for the Coulomb
potential V̂Coulomb as a two-dimensional Fourier transform:

V̂Coulomb = e2

2Sεε0

∑
q,k,k′
ij,j ′i ′

∫ L

0

∫ L

0
φi(z)φj (z)φj ′(z′)φi ′(z

′)

× e−q|z−z′ |

q
coth(qL)dz dz′c†ik+qcjkc

†
i ′k′−qcj ′k′ .

(208)

Here, the operator product can be rearranged in order to isolate
divergent electron self-interaction terms [1,3]. Our expression
of the particle-particle interaction from Eq. (208) takes into
account explicitly the boundary conditions for the Coulomb
potential, imposed by the metallic waveguide walls. These
boundary conditions give rise to an infinite set of image charge
contributions that appear explicitly through the weighting
factor coth(qL):

coth(qL) =
∑
n∈Z

e−2q|n|L. (209)

Note that in the limit of infinitely thick waveguide L → ∞
we have coth(qL) → 1. In this limit, the image charges
disappear, and we recover the well-known Fourier transform
of the Coulomb potential for a quasi-two-dimensional electron
gas [18]. Since Eq. (208) provides explicitly the longitudinal
part of the square-polarization term HlP2, the collective lon-
gitudinal excitation of the confined geometry can be obtained
by the diagonalization of He + V̂Coulomb.

The advantage of our approach lies in the decomposition
of the Coulomb potential from Eq. (200), which provides a
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very convenient way to handle the boundary conditions of
the problem. Indeed, the total polarization field P̂ and the
corresponding self-energy HP2 depend only on the confined
wave functions, and are independent from the photonic
constraints of the system. We can use a simplified version for
the polarization density, by expressing it with the bozonized
universal collective excitations described in Secs. II C and
II E and that are obtained from the diagonalization of matter
HamiltonianHe + HP2. On the other hand, once the transverse
photonic modes of the system are known, we can express the
transverse part of the self-polarizationHtP2 as a decomposition
over the photonic modes that correspond to the confined
geometry. However, we can approximate HtP2 with only a few
modes that are resonant with the collective excitations; this in
turn provides, with the help of Eq. (200), a simplified version of
the particle-particle interactions, that can be used to obtain the
longitudinal plasmon modes. For instance, in Ref. [4] we made
use of a single TMm=0 mode approximation. Such approach is
certainly simpler than relying on the Coulomb potential from

Eq. (208), which would require us to sum over an infinite set
of image contributions.

2. Square-vector potential contribution

Let us now consider the square-vector potential Hamilto-
nian H̃A2, obtained from Eq. (199). Unlike the Coulomb inter-
action for which we must consider all possible excitation wave
vectors q, we will discuss H̃A2 only in the long-wavelength
limit (LWL). The LWL implies that (i) the typical electron
wave vectors k are large compared to the typical light wave
vectors q and (ii) the extensions of the confined wave functions
are small as compared to the wavelength of light. Indeed, as
we also showed in the numerical examples from the previous
sections, the extension of the confining heterostructure poten-
tials are on the order of tens of nanometers, while the light
wavelengths are on the order of tens or hundreds of microns.
The derivation of the vector potential Hamiltonian H̃A2 is
outlined in Appendix C, and here we provide the final result

H̃A2 = �e2c3

4ε0ε2m∗SL

∑
q,m,m′

(ωcqmωcqm′ )−3/2

×
{

(q2Ĩmm′ + kzmkzm′ J̃mm′ )(aqmh + a
†
−qmh)(a−qm′h + a

†
qm′h) + εωcqmωcqm′

c2
J̃mm′ (aqme + a

†
−qme)(a−qm′e + a

†
qm′e)

}
.

(210)

The following quantities have been defined:

Ĩmm′ =
∑

α

��Nα

2m∗�ωα

∫
ξαumdz

∫
ξαum′dz, (211)

J̃mm′ =
∑

i

Ni

∫
ηiiwmdz

∫
ηiiwm′dz. (212)

This result must be compared with the square-vector potential term as derived from the standard minimal-coupling representation
of the quantum electrodynamics:

HA2 = e2

2m∗

∫

†
Â2d3r. (213)

Note that the above expression is more general than H̃A2. Indeed, H̃A2 acts only on the photonic degrees of freedom, whereas
now HA2 acts also on the electronic degrees of freedom through the density operator term 
†
. We are going to show that, just
like for the case of the 3D electron gas, H̃A2 can be obtained as the ground-state average of the full Hamiltonian HA2, in the
LWL. This is formally expressed by the following inequality:

H̃A2 � 〈F |HA2|F 〉|LWL. (214)

Here, the symbol � means that, as we are going to show, the matrix elements of H̃A2 are at best equal or smaller than those of
the right-hand side. The square-vector potential Hamiltonian HA2 is expressed from the formulas of the vector potential provided
in the previous sections and the field operator from Eq. (22) :

HA2 = �e2c3

4ε0ε2m∗SL

∑
q,q′
m,m′

(ωcqmωcq′m′ )−3/2

×
{(

qq ′Î qq′
mm′ + kzmkzm′ Ĵ

qq′
mm′

)
(aqmh + a

†
−qmh)(a−q′m′h + a

†
q′m′h) + εωcqmωcq′m′

c2
Ĵ

qq′
mm′ (aqme + a

†
−qme)(a−q′m′e + a

†
q′m′e)

}
.

(215)
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Here, we defined the operators that act on the electronic
degrees of freedom:

Î
qq′
mm′ =

∑
kij

c
†
ik+q−q′cjk

∫
ηijumum′dz, (216)

Ĵ
qq′
mm′ =

∑
kij

c
†
ik+q−q′cjk

∫
ηijwmwm′dz. (217)

The average values of these operators over the electronic
ground state |F 〉, supposed to be the free-electron Fermi
sphere, are

〈F |Î qq′
mm′ |F 〉 = δqq′

∑
i

Ni

∫
ηiiumum′dz, (218)

〈F |Ĵ qq′
mm′ |F 〉 = δqq′

∑
i

Ni

∫
ηiiwmwm′dz. (219)

Clearly, we must compare these expressions with Eqs. (211)
and (212). The comparison between Eqs. (219) and (212)
is very straightforward. Indeed, we need to compare only
the overlap integrals between the electronic wave functions
ηii(z) = φ2

i (z) and the waveguide modes wm(z). Let zi be the
barycenter of the wave function φi(z). Since the variations of
the modal functions wm(z) are very slow as compared to those
of φi(z) in the LWL, we can express the overlap integrals in
Eq. (219) as∫

ηii(z)wm(z)wm′(z)dz ≈ wm(zi)wm′(zi), (220)

we used the fact that
∫

ηii(z)dz = 1 owing to the normalization
of the wave functions. Exactly the same result is obtained
by applying the LWL in the overlap integrals in Eq. (212).
This confirms the equivalence stated in Eq. (214) for the
intrasubband part of the square-vector potential part of the
Hamiltonian.

Let us now compare Eqs. (211) and (218). Without loss of
generality, we will consider that there is only one quantum well
situated at the position z0. The indexes α and i will therefore
refer to the wave functions bound in this well. The overlap
integrals in Eqs. (211) and (218) are then written in the LWL:∑

α

��Nα

2m∗�ωα

∫
ξαumdz

∫
ξαum′dz

≈
∑

α

��Nα

2m∗�ωα

(∫
ξαdz

)2

um(z0)um′(z0), (221)

∑
i

Ni

∫
ηiiumum′dz ≈

∑
i

Nium(z0)um′(z0). (222)

From Eq. (151) we can recognize the oscillator strength of
the intersubband transition α:

fα = �

2m∗�ωα

( ∫
ξαdz

)2

. (223)

Then, Eq. (214) is satisfied because of the following inequality:∑
α

fα�Nα =
∑
i<j

fij (Ni − Nj ) �
∑

i

Ni. (224)

The sum runs over the occupied subbands. This inequality
basically states that the total oscillator strength from all elec-

tronic transitions cannot exceed the total number of particles in
the system. This inequality is always satisfied in intersubband
systems, because of the Thomas-Reich-Kuhn sum rule [34,56].
According to the general results from Ref. [13], the inequality
(214) therefore rules out the appearance of a quantum phase
transition in our system, at least in the case of hard-wall
boundary conditions for the wave functions discussed in
Sec. II B. As discussed in Ref. [55], the case of equality
in Eq. (214) is reached for a very high number of occupied
subbands, which ensures the correct asymptotic limit of our
model to the three-dimensional homogeneous plasma.

IV. CONCLUSION

In this work, we discussed a general quantum theory of the
confined plasmons in a quasi-two-dimensional electron gas,
including both intrasubband and intersubband excitations. In
our theory, these modes can be directly expressed through
the wave functions associated to the confining potential. With
the current state of technology for the epitaxial growth of
semiconductor heterostructures, a rich variety of potentials can
be designed. As the confined plasmon modes have a significant
impact of the the optical properties of semiconductors in the
infrared domain, our formalism allows for a direct engineering
of the spectral response through the confining potential [8,55].
In previous works [8], the accent was put on intersubband
plasmons, that correspond to electronic oscillations in the
direction of the quantum confinement. Furthermore, only
thin resonant structures were studied, where the physics is
dominated by the light-matter coupling with the intersubband
plasmons only [42]. This paper extends these studies by
providing a model for the in-plane plasmons and their mutual
couplings, and all possible waveguide modes are taken into
account in the light-matter interaction problem. Our results
include the previous studies as limiting cases, and, while the
validity of the previous results is preserved in this more general
treatment, we indicate several new features that can arise in
thick resonators (Sec. III B 2) or asymmetric quantum wells
(Sec. II C 3). We believe that this formalism also sets the basis
for more advanced quantum optical applications in the solid
state [36,57,58] implemented with quantum-confined electron
gas. In that case, dissipation also must be included in the model,
which can be achieved through several approaches [59,60].

Our formalism relies on the PZW representation of quantum
electrodynamics, and it can be of particular convenience for a
class of problems that involve a small number of electromag-
netic modes that interact resonantly with the condensed matter
system. Such situations arise, for instance, in the studies of the
ultrastrong light-matter regime, where the quantum-confined
plasmons are coupled with microresonators that provide very
strong electromagnetic confinement [6,7,9,15–17,22,38]. In
these systems, the boundary conditions of the electromagnetic
field play a crucial role and the particle density is extremely
high. Indeed, the Coulomb potential in a confined geometry
generally appears as an infinite sum of image contributions,
and involves a resummation over an infinite number electro-
magnetic modes and electronic transitions. This also holds
for the quadratic vector potential part of the light-matter
Hamiltonian [Eq. (215)] [61], that plays an important role for
the regime of ultrastrong light-matter coupling [5]. In that
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case, as we showed in this work, the PZW representation
allows a more convenient and compact truncation of the Hilbert
space of the system, both for the longitudinal and transverse
interactions. Furthermore, the electronic degrees of freedom
are also reduced to a few universal collective modes, that arise
from a finite number of occupied subbands and are independent
from the electromagnetic environment of the system.

Our method relies on the relation between the current den-
sity and the dynamical polarization of the system, expressed
in Eq. (20). A key point of the theory is that, if we can
neglect the effects of dynamic (time-varying) magnetic fields
on the system, only the single-particle electronic Hamiltonian
He enters the commutator of Eq. (20). Since the current
density operator ĵ can be obtained from the eigenfunctions
of He, the dynamical polarization field of the system can be
constructed by solving an essentially single-particle problem.
This approach can be applied for a number of electronic
systems where He is well known, such as the one-dimensional
electron gas [18], an electron gas subject to a constant
magnetic field [62], or the graphene [63]. In all those cases,
the resulting polarization operator will provide not only the
light-matter coupling, but also the particle-particle interactions
to the dipole-dipole order of the Coulomb potential, and the
corresponding collective states. Another generalization of the
theory is to include several components in the system, each
described with its own polarization field. Then, the square-
polarization part of the PZW Hamiltonian will provide the
interaction between these parts. For instance, the polarization
field for phonons Pphon can be obtained semiclassically [64].
By adding Pphon to the polarization field of electrons and
expanding the square-polarization term, we obtain the Fröhlich
interaction [65]. A similar approach can be applied to obtain
the coupling between a quantum-confined electron gas and the
quasistatic electric field of circuitlike resonators [39].

APPENDIX A: CHARACTERISTIC TENSOR OF BOSON
QUADRATIC FORMS

Let us consider the following bosonic quadratic form:

H =
∑

α

�ωαb†αbα +
∑
α,β

�DαDβ

2
(b†α + bα)(b†β + bβ). (A1)

Here, Dα can be, in general, n-dimensional vectors. Then,
relying on the results from Ref. [3], we can associate to
this Hamiltonian the following characteristic n-dimensional
second-order tensor:

ζ (ω) = 1n −
∑

α

2ωα

ω2 − ω2
α

(Dα ⊗ Dα). (A2)

Here, 1n is the n-dimensional unit tensor, and “⊗” denotes a
tensor product. As shown in Ref. [3], the main property of this
characteristic tensor is that the zeros of its determinant provide
the eigenvalues �i of the Hamiltonian (A1):

‖ ζ (�i) ‖= 0. (A3)

Furthermore, in the case of a three-dimensional system the
characteristic function can be identified with the dielectric
function of the medium described by the elementary bosonic
excitations bα [3].

In the case of quantum-confined plasmons, we often need
to deal with a slightly different bosonic form

H′ =
∑

α

�ωαb†αbα +
∑
α �=β

�DαDβ

2
(b†α + bα)(b†β + bβ). (A4)

The main difference with Eq. (A1) is that now the α = β

terms are excluded from the interaction term. This is the case
of interacting plasmons from different subbands. Nevertheless,
we can use a unitary transform to recover a Hamiltonian in the
form of Eq. (A1) from Eq. (A4). For this, we rewrite Eq. (A4)
to make the α = β terms explicit:

H′ =
∑

α

�ωαb†αbα −
∑

α

�D2
α

2
(b†α + bα)2

+
∑
α,β

�DαDβ

2
(b†α + bα)(b†β + bβ). (A5)

We use a unitary transform to diagonalize the first line in
Eq. (A5) with new operators fα that satisfy [4]

f †
α + fα =

√
ωα

ωα

(b†α + bα), (A6)

ωα =
√

ω2
α − 2ωαD2

α. (A7)

Here, ωα are the new eigenfrequencies of self-interacting
bosons in first line in Eq. (A5). Now, Eq. (A4) can be rewritten
as

H′ =
∑

α

�ωαf †
αfα

+
∑
α,β

�DαDβ

2

√
ωα

ωα

ωβ

ωβ

(f †
α + fα)(f †

β + fβ). (A8)

We then use the previous result to obtain the characteristic
tensor of Eq. (A4):

ζ ′(ω) = 1n −
∑

α

2ωα

ω2 − ω2
α + 2ωαD2

α

(Dα ⊗ Dα). (A9)

For the case of intrasubband plasmons considered in the
end of Sec. II E, the coefficients Dα are scalars and we have
ωα = ω

‖
iP and Dα = ω

‖
iP /

√
3 which leads to the characteristic

equation (121). However, in general the interacting term
between quantum-confined plasmons can not be written as
a scalar product, and numerical diagonalization must be
performed [42].

APPENDIX B: PERIODIC EXTENSION OF ηα

In this Appendix, we describe the trigonometric resumma-
tion in Eq. (207). We start by rearranging the overlap integrals
between the waveguide modes and the functions ηα:∫ L

0
ηα(z)wm(z)dz

= 1

i
√

2

[ ∫ L

0
e

iπmz
L ηα(z)dz +

∫ 0

−L

e
iπmz

L [−ηα(−z)]dz

]
.

(B1)

Let us define a 2L-periodic function η̄α(z) that is equal to
ηα(z) in the interval [0,L] and to −ηα(−z) in the interval
[−L,0]. Then, Eq. (B1) defines the Fourier component η̃αm of
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the function η̄α(z) in the interval [−L,L]:

1

i
√

2

∫ L

−L

e
i2πmz

2L η̄α(z)dz = 1

i
√

2
η̃αm. (B2)

We have the property η̃αm = −η̃α−m, and therefore η̃α0 = 0.
With these definitions, we can now express the left-hand side
of Eq. (207) as

1

4

+∞∑
m=−∞

|̃ηαm|2
q2 + k2

zm

= L2

4π2

∫ L

−L

∫ L

−L

η̄α(z)η̄α(z′)
∑
m

e
i2πm

2L
(z−z′)

m2 + q2L2

π2

dz dz′. (B3)

The summation has been extended to the m = 0 term which
does not contribute anyway. To compute the right-hand side of
this equation, we use the Poisson summation formula [40]∑

m

e2iπmt

m2 + b2
= π

b

∑
n

e−2πb|t−n|. (B4)

Performing the sum over m and reducing the integrals into the
interval [0,L] we obtain Eq. (207). Furthermore, since z,z′ ∈
[0,L] we have |z − z′ − 2nL| = |z − z′| + 2|n|L which, with
the help of Eq. (209), allows obtaining the final expression of
the Coulomb potential (208).

APPENDIX C: DERIVATION OF ˜HA2

To establish the result for the square-vector potential term
H̃A2 we use Eq. (199), together with the bosonized expression
of the electronic Hamiltonian (18). The unitary transform T in
Sec. III C is expressed as

T = e−iB̂ , B̂ = 1

�

∫
ÂP̂ d3r. (C1)

For the polarization field, we use the expressions (37), (39),
and (40) assuming that the wave functions are real. The unitary
transform is computed with the Baker-Hausdor expansion

eiB̂Hee
−iB̂ = He + i[B̂,He] + i2

2!
[B̂,[B̂,He]]. (C2)

This expansion becomes exact at the second order as we
imposed bosonicity of the electronic excitation operators. The
square potential term is the second order of the expansion

H̃A2 = i2

2!
[B̂,[B̂,He]]. (C3)

Since the bosonized Hamiltonian (18) is split into inter-
subband and intrasubband parts, then the transform (C2) will

respectively yield two parts from the Hamiltonian (C3):

H̃A2 = H̃A2|inter + H̃A2|intra. (C4)

Let us consider first H̃A2|intra, which derives from the intra-
suband part of He. Using Eq. (40), the expressions for the
vector potential Eqs. (129), (131), (135), and (C3), we obtain
the following result:

H̃A2|intra = e2c2

4ε0ε2SL

∑
qki

mm′

(ωcqmωcqm′)−3/2

×�ωqk

∫
ηiwmdz

∫
ηiwm′dzCqkmC−qkm′ ,

(C5)

Cqkm = kzm(eqβqk)(aqmh + a
†
−qmh)

×
√

εωcqm

c
(e⊥βqk)(aqme + a

†
−qme). (C6)

We now develop the square in Eq. (C5) and perform the
sum over the electronic wave vectors. We first notice that the
cross-polarization terms vanish in the long-wavelength limit;
indeed these terms are proportional to the factor∑

k

�ωqk(eqβqk)(e⊥βqk) ≈ �

m∗q

∑
k

2e⊥k
qk

= 0. (C7)

This equality is easily proven transforming the sum over
wave vectors into integral. The angular part of this expression
appears as an integral between 0 and 2π of an odd angular
function. The remaining square terms are proportional to∑

k

�ωqk(e⊥βqk)2 =
∑

k

�ωqk

q2

= �

2m∗
2qk + q2

q2
= �

m∗ Ni. (C8)

In these equalities, we used the isotropy of the two-dimensional
gas in the plane perpendicular to the quantum confinement,
and in the last equality we used the twofold degeneracy of the
electronic wave vectors due to the spin. The second and third
terms of Eq. (210) are thus recovered.

The intersubband part is treated in the similar way. In this
case, we use the fact that the in-plane intersubband polarization
[Eq. (39)] does not contribute because of the long-wavelength
approximation and the orthogonality of the wave functions.
The remaining part [Eq. (37)] is coupled only to TM waves
and leads to the first term of Eq. (210).
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