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Tunable quantum temperature oscillations in graphene nanostructures
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We investigate the local electron temperature distribution in graphene nanoribbon and graphene junctions
subject to an applied thermal gradient. Using a realistic model of a scanning thermal microscope, we predict
quantum temperature oscillations whose wavelength is related to that of Friedel oscillations. Experimentally this
wavelength can be tuned over several orders of magnitude by gating or doping, bringing quantum temperature
oscillations within reach of the spatial resolution of existing measurement techniques.
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I. INTRODUCTION

Nanometer resolution temperature measurements are tech-
nologically necessary, for instance, to characterize the ther-
mal performance and failure mechanisms of semiconductor
devices [1], or to investigate bioheat transfer at the molecular
level for the treatment of cancer or cardiovascular diseases [2].
Fundamentally, local temperature measurements of quantum
systems can elucidate the correspondence between phonon
[3–5], photon [6–8], and electron temperature [9–12] mea-
sures. Moreover, quantum effects may offer novel meth-
ods to circumvent long-standing technological challenges,
suggesting that the investigation of “phase sensitive” [13]
thermal effects could open the door to quantum-engineered
heat transport devices [14,15].

Quantum coherent temperature oscillations have been
predicted in one-dimensional ballistic systems [16,17] and
in small conjugated organic molecules [11], but despite
impressive advances in thermal microscopy [18–21] that have
dramatically increased the spatial resolution of temperature
measurements, these predictions are not yet within reach of
experimental verification.

In this paper, we investigate the local electron temperature
distribution of graphene nanoribbon (GNR) and graphene
junctions covalently bonded to two metallic electrodes used
to apply a thermal bias, and probed using a third scanning
electrode acting as a local thermometer. We find that the Friedel
oscillations (an equilibrium property) and temperature oscil-
lations (a nonequilibrium transport effect) in these systems
are related, in that techniques to modify the former [22] can
also be used to modify the latter. Specifically, we investigate
the response of junctions to an applied gate voltage and find
that the temperature oscillation wavelength can be varied
over several orders of magnitude, bringing these oscillations
within the spatial resolution of current techniques in thermal
microscopy [18–21].
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II. THEORY

Defining a local electronic temperature in a system out
of equilibrium requires consideration of a local probe (ther-
mometer) that couples to the system and whose temperature
is varied until the local properties of the system are minimally
perturbed [16,17,23], a floating probe. This should occur
when the thermometer reaches local equilibrium with the
system, i.e., when there is no longer any net flow of charge
or heat between the system and the probe [11]. Several
variations on the later condition have also been discussed in
the literature [9,24–26].

We consider junctions composed of a GNR or graphene
sheet, hot and cold electrodes bonded to the system, a probe
electrode, and the environment (see Fig. 1). The hot and
cold electrodes provide a thermal gradient but form an open
electrical circuit in a thermal transport experiment. Under these
conditions, and in linear response, the heat current flowing into
the scanning thermal probe is

IQ
p =

2∑
β=1

κ̃pβ(Tβ −Tp) + κp0(T0−Tp) + κph(Tph−Tp), (1)

where Tβ is the temperature of terminal β, κ̃αβ is the
thermal conductance between electrodes α and β, κp0 is
the thermal coupling of the probe to the ambient environment
at temperature T0, and κph is the thermal conductance between
the probe and a phonon bath with temperature Tph. The
environment could be, for example, the black-body radiation or
gaseous atmosphere surrounding the circuit, or the cantilever
or driver on which the temperature probe is mounted [11].

Using Eq. (1), the condition IQ
p = 0 can be solved for the

temperature of a probe in thermal and electrical equilibrium
with, and coupled locally to, the system

Tp = κ̃p1T1 + κ̃p2T2 + κp0T0 + κphTph

κ̃p1 + κ̃p2 + κp0 + κph
. (2)

Here the thermal conductance κ̃αβ between electrodes α and β

within the three-terminal thermoelectric circuit formed by the
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FIG. 1. (Color online) A schematic representation of a three
terminal GNR junction with the hot and cold electrodes covalently
bonded to the GNR and a third scanning thermal probe positioned over
the GNR. The probe is allowed to come into thermal and electrical
equilibrium with the sample and measure the temperature Tp .

probe and hot and cold electrodes is [11]

κ̃αβ = 1
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where L(ν)
αβ is an Onsager linear-response coefficient, L̃(0)

αβ =
L(0)

αβ + L(0)
αγL

(0)
γβ/(L(0)

αγ + L(0)
γβ) and 1/L(0) = 1/L(0)

12 + 1/L(0)
1p +

1/L(0)
2p .

We envision experiments performed in ultrahigh vacuum
(UHV) with the electronic temperature probe operating in
the tunneling regime and scanned across the sample at fixed
height. The temperature imaged by this probe is a linear
combination of the electron and lattice (phonon) temperatures.
We assume that these two temperatures coincide in each bulk
electrode but not in the graphene nanostructure itself. Under
linear-response conditions, electron-phonon interactions and
inelastic scattering are weak in graphene, so the indirect
phonon contributions to L(0)

αβ and L(1)
αβ can be neglected.

Thermal transport from phonons is included via κph. The
linear response coefficients needed to evaluate Eq. (2) may
thus be calculated using elastic electron transport theory
[27,28] L(ν)

αβ = 1
h

∫
dE (E − μ0)ν Tαβ(E)(− ∂f0

∂E
), where f0 is

the equilibrium Fermi-Dirac distribution with chemical poten-
tial μ0 and temperature T0. The transmission function [29,30]
Tαβ(E) = Tr

{
�α(E)G(E)�β(E)G†(E)

}
is expressed in terms

of the tunneling-width matrices �α and the retarded Green’s
function of the junction G(E) = [SE − Hmol − 	T(E)]−1,
where the overlap matrix S reduces to the identity matrix in an
orthonormal basis and 	T(E) = −i

∑
α �α(E)/2. Throughout

this work we consider transport in the wide-band limit where
�α(E) ≈ �α .

In the vicinity of the Dirac point, a simple tight-binding
Hamiltonian has been shown to accurately describe the π -
band dispersion of graphene [31]. The molecular Hamilto-
nian is Hmol = ∑

〈ij〉 tij d
†
i dj + H.c, where t = −2.7 eV is the

nearest-neighbor hopping matrix element between 2pz carbon

orbitals of the graphene lattice, and d
†
i creates an electron

on the ith 2pz orbital. To be specific, we consider here
a scanning thermal microscope (SThM) with an atomically
sharp Pt tip operating in the tunneling regime but near contact.
The tunneling-width matrix may be described in general as
[32] �

p
nm = 2πVnV

∗
m ρp, where n and m label π orbitals of the

graphene, ρp(E) is the local density of states on the apex atom
of the probe electrode, and Vm is the tunneling matrix element
between the quasiatomic apex wave function and orbital m of
the graphene. We consider all s,p,d orbitals of the Pt SThM’s
apex atom and the π system of the carbon sheet, meaning that
the transport into the probe is multichannel [32].

III. RESULTS

The calculated local temperature distribution of a zigzag
GNR bonded to hot and cold electrodes held at T1 = 325 K and
T2 = 275 K, respectively, is shown for several gate potentials
and environmental coupling strengths in Fig. 2. In these
calculations, the SThM is scanned 2.5 Å above the plane of the
carbon nuclei and the � matrices describing the lead-system
coupling are diagonal. Nonzero elements of �, drawn as small
red or blue circles in the figure, indicate contact between the
electrode and the carbon atoms of the nanoribbon and are
equal to 2.5 eV. The probe is operating in the tunneling regime
since the sum of Pt and C covalent radii is ∼2.03 Å [33].
As indicated in the figure, the wavelength of the temperature
variations changes as the quasiparticle energy is adjusted close
to the Dirac point μDirac.

In the simulations presented here, we consider both
a weak environmental coupling κp0 = 10−4 κ0 and a re-
alistic environmental coupling κp0 = 700 κ0, where κ0 =
(π2/3)(k2

BT /h) = 0.284 nW/K is the thermal conductance
quantum at 300 K [34]. The weak coupling value κp0 =
10−4 κ0 corresponds to the radiative coupling between a tip
with effective radius ∼100 nm and the blackbody environment,
a fundamental limit on κp0 [11]. At larger values of κp0,
the amplitude of the quantum temperature oscillations is
reduced due to the reduced sensitivity of the thermal measure-
ment [11,20], but the qualitative features of the interference
pattern are preserved. For comparison, the UHV SThM of
Kim et al. [20] recently achieved κp0 ≈ 700 κ0. The phonon
heat conductance κph is small since the Debye frequency of
Pt and the GNR’s phonon distribution are incommensurate
and, at 2.5 Å above the GNR, the probe is not in contact
with the GNR meaning that the thermal conduction across
the vacuum tunneling gap into the probe is dominated by
the electronic contribution. We consider a realistic value
of κph = 0.01 κ0 and let Tph vary linearly between the hot
and cold electrodes. Although phonons carry considerable
heat current in graphene [35], many different phonon wave-
lengths contribute to the heat transport at room tempera-
ture, washing out any coherent oscillations of the phonon
temperature.

The spatial temperature variations are a consequence of
quantum interference [10], where the flow of heat from the
hot and cold electrodes into the probe is determined by
position-dependent interferences and the molecular density
of states [11]. According to Eq. (2), a maximally hot spot
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FIG. 2. (Color online) The calculated spatial temperature profile for a zigzag GNR probed by a Pt SThM fixed 2.5 Å above the sheet shown
for two energies and for weak and strong environmental coupling with κp0 = 10−4κ0 and κp0 = 700 κ0, respectively. In all panels phonons are
included with κph = 0.01 κ0. By adjusting |μ − μDirac| the temperature oscillation wavelength can be tuned. Even with strong environmental
coupling and significant phonon heat conductance, the quantum temperature oscillations are visible. The phonon temperature Tph is taken to
vary linearly between each electrode, and the applied temperature gradient across the nanoribbon is 50 K.

will be observed whenever κp1 � κp2, and vice versa for
a maximally cold spot. In general, the largest variations in
temperature will be observed when the thermal conductance
from one of the two electrodes into the probe is suppressed
by destructive quantum interference [11], which occurs when
the phase between thermal transport paths differs by π , so
that 2kF �L = 2π . Such 2kF oscillations are ubiquitous in
electron systems at low temperatures, the best known example
being the Friedel oscillations in the density of states or charge
density [22].

Due to its unique dispersion relation, the Friedel oscillation
wavelength in graphene depends strongly on the energy of the
quasiparticles, which may be controlled via the application of
a gate voltage [22]

λFriedel(E) = hvF

2E
, (4)

where E is the energy away from the Dirac point. In our
tight-binding Hamiltonian �vF = 3ta/2, where t = 2.7 eV is
the tight-binding matrix element and a = 1.42 Å is the C-C
distance [36]. The power spectral density (PSD) of a slice
through the edge row of the GNR shown in the left panels of
Fig. 2 is shown for μ − μDirac = −1.20 eV, −0.258 eV, and
−0.144 eV (corresponding λFriedel ∼ 15 Å, 70 Å, and 125 Å,
respectively) in Fig. 3. As shown in the figure, a spectral peak
shifts as μ − μDirac changes, in reasonable agreement with
Eq. (4) (shown as vertical blue lines in the figure). Closer
to the Dirac point, where the Friedel oscillation wavelength
becomes comparable to the linear dimensions of the system
simulated, it is not straightforward to resolve this peak above
the background of peaks at small wave vectors arising from

finite-size effects. Nonetheless, it is clear from Fig. 2 (lower
panels) that the dominant wavelength of the temperature
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FIG. 3. (Color online) The power spectral density (PSD) of a
slice through the edge row of the GNR shown in Fig. 2 as a function
of gate potential. The temperature oscillation wavelength increases
as μ − μDirac is decreased, in reasonable agreement with Eq. (4),
whose values are indicated by vertical blue lines. The PSD spectra
are complex because of the small size of the GNR, the multimode
nature of the Pt SThM, and the phonon conductance. The temperature
data within 10 Å of each electrode have been neglected in the PSD
spectra and κp0 = 10−4 κ0.
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FIG. 4. (Color online) The simulated temperature profile of a graphene fragment without (left panel) and with (right panel) impurities
contacted by a hot (T1 = 350 K) needle electrode (the benzene-like contact pattern is indicated with red circles) and a “cold” electrode
(T2 = T0 = 300 K) bonded to the periphery of the sheet (blue circles) probed by a Pt SThM tip scanned 2.5 Å above the plane of the carbon
nuclei. In these simulations, we use κp0 = 700 κ0 (extracted from experiment) and κph = 0.01 κ0. The hot needle and periphery electrodes have
per orbital coupling strengths of 1 eV and 0.1 eV, respectively. In the right panel, 0.33% boron (black circles), 0.33% nitrogen (white circles),
and 0.33% vacancy impurities were included. Here μ − μDirac = −1 eV.

oscillations grows dramatically as μ → μDirac. It should be
emphasized that although the Friedel oscillations and the
quantum temperature oscillations both have components at
wave vector 2kF , there is no direct relationship between the
equilibrium Friedel oscillations (local density of states oscil-
lations) and the oscillations of the nonequilibrium temperature
distribution (see Ref. [37]).

The wide tunability of the temperature oscillations over
orders of magnitude in wavelength in graphene indicates
that they are within the spatial resolution of current SThM
technology, which has achieved spatial and thermal resolution
of 10 nm and 15 mK, respectively [20], provided the
phase coherence length of the carriers is sufficiently long.
In pure graphene the dominant dephasing mechanism is
deformation potential scattering by acoustic phonons [38].
Using the scattering rate derived in Ref. [38] and assuming
that the momentum relaxation time is equivalent to the
phase-relaxation time, the phase-coherence length is given
by

Lφ(E) = 4�
3ρmv3

f v2
s

D2
AkBT E

, (5)

where DA is the deformation potential, vph = 2 × 106 cm/s
is the acoustic phonon velocity, ρm ∼ 7.6 × 10−8 g/cm2 is
the graphene ion mass density, and vf ∼ 1.53 × 105 m/s is
the Fermi velocity. The experimentally observed deformation
potential ranges from 10 to 30 eV. As an example, with
DA = 30 eV and T = 300 K, Lφ(1.0 eV) = 68.4 nm and
Lφ(0.05 eV) = 1.36 μm. These estimates, which are in good
agreement with recent experimental phase-coherence length
measurements of graphene nanoribbons [39], clearly indicate
that quantum thermal oscillations in graphene can occur on

length scales well within the resolution of existing SThM
techniques. Moreover, the electron-lattice cooling length is
directly related to the inelastic mean-free path of the electrons
given by Eq. (5), supporting the argument that electronic tem-
perature oscillations can be observed in SThM measurements
even with substantial phonon heat currents. Indeed, the more
formidable experimental challenge is likely to be reducing
the environmental coupling κp0 of the probe to increase the
amplitude of the thermal oscillations above the threshold for
observation (see Fig. 2).

As a final example of an experimentally realistic system
which may be used to investigate quantum temperature oscil-
lations, we consider a graphene flake with a hot needle-like
terminal in the center, and the edge of the flake held at ambient
temperature. The temperature profile for this junction is shown
with and without impurities in the left- and right-hand panels
of Fig. 4, respectively, for κp0 = 700 κ0, corresponding to
the current experimental sensitivity [20]. In Fig. 4 we have
taken μ − μDirac = −1 eV; the predicted temperature profile
exhibits a strong dependence on gate voltage and exhibits
quantum oscillations within the resolution of current state-of-
the-art SThM techniques. The temperature distribution in the
right-hand panel includes a large total impurity concentration
of 1%, split evenly between vacancies, boron adatoms (black
circles), and nitrogen adatoms (white circles). The temperature
oscillations are not destroyed by the addition of impurities,
although the specific temperature wave pattern depends on
the microscopic realization of disorder-serving as a fingerprint
of the sample’s impurity distribution. Adatom impurities are
treated as onsite potential variations as discussed in Ref. [40].
We stress that although computational resources have limited
our discussion to small graphene structures, longer wavelength
oscillations should be observable in larger systems provided
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the transport is phase coherent and coupling to the environment
is minimized.

IV. CONCLUSION

Using a realistic model of a scanning thermal microscope
operating in the tunneling regime, we investigate the local
electron temperature in graphene nanostructures subject to
an applied thermal bias. We find that the wavelength of the
temperature oscillations in these systems can be readily tuned
via an applied gate voltage or doping, bringing quantum tem-
perature oscillations within reach of the spatial resolution of
existing measurement techniques for the first time. Graphene
nanostructures are thus ideal systems for both fundamental

and device related studies into the nature of temperature and
heat transport at the nanoscale.
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