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Zero modes on zero-angle grain boundaries in graphene
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Electronic states confined to zero-angle grain boundaries in single-layer graphene are analyzed using
topological band theoretic arguments. We identify a hidden chiral symmetry which supports symmetry-protected
zero modes in projected bulk gaps. These branches occupy a finite fraction of the interface-projected Brillouin
zone and terminate at bulk gap closures, manifesting topological transitions in the occupied manifolds of the bulk
systems that are joined at an interface. These features are studied by numerical calculations on a tight-binding
lattice and by analysis of the geometric phases of the bulk ground states.
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The development of practical methods for the synthesis of
large area single- and few-layer graphenes [1–4] is focusing
attention on the influence of grain boundaries on their
electronic behavior [3–7]. These extended defects have been
studied theoretically to understand their reconstruction of the
low-energy Dirac spectra and their signatures in transport
[7–14]. In this paper we consider the family of “zero-
angle” grain boundaries (ZGBs) and study their electronic
properties using a quantum geometric formulation. In ZGBs
the orientation of the crystalline axes is unchanged across an
interface but the lattice structure is shifted in phase (Fig. 1).
This can produce a topological mismatch between the ground
states of its bounding lattices and localize symmetry-protected
interfacial modes. It is widely appreciated that topological
confinement can occur in the simpler “one-sided” variant
of this problem at the graphene-vacuum interface [15–17].
Here we show that although the “two-sided” problem relevant
to all graphene grain boundaries breaks the symmetries that
generally protect this physics [18], the zero mode structure per-
sists motivating us to further explore its topological character.
We find that the zero mode structure of ZBGs is associated
with a nonlocal chiral symmetry of its global Hamiltonian.
Furthermore, at a grain boundary two topologically ordered
media are generally joined, a situation that is most naturally
analyzed by developing a (gauge invariant) formulation of their
relative topological states. Here we provide such a counting
rule using the geometric phase for an entangled ground
state manifold containing N coupled bands. Our approach
developed here for the prototypical case of ZGBs, can be
generalized to a broad class of twin boundaries between
crystalline materials with misoriented symmetry axes.

Figure 1 shows the lattice structures of two prototypical
zero-angle grain boundaries examined in this work. Panel
(a) is the “5-5” structure, where two honeycomb lattices are
joined on a boundary containing a line of pentagon pairs.
In panel (b) the related “5-5-8” structure doubles the period
by the insertion of eight-membered rings. Our Hamiltonian
describes nearest-neighbor hopping on the links of the two-
dimensional networks shown in Fig. 1 neglecting perturbations
due to remote hopping amplitudes and out-of-plane structural
relaxations. These networks have been used to examine the
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transmission and reflection of Bloch waves from extended
one-dimensional defects on the graphene lattice [11–13] and
are a natural starting point for studying electronic physics in
the grain boundary.

At first, the prospects for finding zero mode physics in the
lattice structures of Fig. 1 appear remote. All zero-angle grain
boundaries contain a macroscopic fraction of odd-membered
rings, explicitly breaking the global chiral symmetry of the
Hamiltonian which usually is exploited to identify candidate
E = 0 eigenstates. However, this argument is flawed. Both
structures in Fig. 1 (and its longer period variants) retain a
x → −x mirror symmetry and the global Hamiltonian can be
partitioned into invariant subspaces that are reven and odd, re-
spectively, under this reflection. Mirror-odd states have a nodal
line along the vertical bonds that define its odd membered
rings. Removal of these bonds leaves the remaining system
bipartite thereby retaining a chiral symmetry in its projected
mirror-odd subspace. Formally, one can define a chiral operator
S that anticommutes with the global Hamiltonian H. When
written in terms of the original unsymmetrized lattice degrees
of freedom, one finds that S is highly nonlocal and contains
long range off diagonal amplitudes that enforce the sign change
of its mirror-odd wave functions on the left- and right-hand
sides of the interface [19].

Indeed tight-binding lattice calculations carried out on finite
width twinned ribbons (Fig. 2) show clear evidence of zero
mode physics for these structures. One observes that half the
projected gaps host flat bands at E = 0. These solutions are
localized in the grain boundary and reside in the mirror-odd
subspace. Note also that near E = 0 we find additional low-
energy features that are finite size effects: they are the edge
modes localized at the outer zigzag edges of our model. These
can be distinguished from the true zero modes of this structure
since they occur in pairs that are slightly displaced from E = 0
by their tunnel splitting across the ribbon [16].

The lattice structures shown in Fig. 1 retain a discrete
translational symmetry along the grain boundary, and the
Hamiltonian can be written in Bloch form H(ky). Each
Bloch Hamiltonian presents a one-dimensional problem in the
perpendicular (x) coordinate with a gapped spectrum except
at isolated critical points where the bulk Dirac points project
onto the interface. It is tempting to associate the zero modes
with a ky-dependent topological mismatch of the ground states
across the interface.
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FIG. 1. (Color online) Lattice structures for the “55” and “558”
grain boundaries illustrating the Burgers vector b and the period of the
Burgers vector lattice λ. The insets show primitive cells and primitive
translation vectors that define the bounding phases to the left and
right sides of the interface.

Implemented in its simplest form this interpretation is
problematic. For example, note the alternation of projected
gaps that do and do not support zero modes in Fig. 2. For
the “55” structure in the gap that is analytically connected to
ky = 0 there are no zero modes and apparently no topological
distinction between the ground states of its two bounding
phases. As ky crosses 2π/3 this changes and the system
supports a zero mode until the next gap closure. For the related

FIG. 2. Tight-binding band structures for twinned graphene
ribbons containing a “55” grain boundary (top) and a “558” grain
boundary (bottom). Half the projected band gaps support zero modes
confined at the grain boundary, and additional low-energy features
that are finite size effects associated with edge states on the outer
edges of the ribbon.

“558” structure the situation is exactly reversed. Here the
projected gaps that are analytically connected to the ky = 0
state do support a zero mode and the smaller gaps (e.g.,
for π/3 < ky < 2π/3) are inactive. This reversal presents a
dilemma to a topological interpretation which would identify
the zero mode count with a change of the ground state topology
of its bounding states far from the interface. Inspection of
Fig. 1 shows that the asymptotic structures of the “55” and
“558” ZGBs are actually identical. Furthermore, the source of
a putative topological boundary in the “active” gaps is also
subtle. The momentum-resolved Hamiltonians HL(R)(kx ; ky)
for the bulk states left and right of the interface are unitarily
equivalent in every gapped sector. Physically this reflects the
fact that their lattice structures are locally indistinguishable.
Thus one is faced with the problem of identifying precisely
“what is changing” at an interface between two otherwise
structurally indistinguishable systems in a selected subset of
their momentum-resolved band gaps [20].

We address these questions by developing a theory of the
geometric phase for a twinned bicrystal. To this end it is
useful to note that the grain boundary is a periodic array of
dislocations. For the ZGBs of Fig. 1 the Burgers vector is b =
a/

√
3 êx , inducing a sublattice exchange. The two structures of

Fig. 1 are distinguished only by the periods of their dislocation
lattices: λ = a (2a) for the “55” (“558”) ZGBs, respectively.
In the far field surrounding a single dislocation one can locally
define a Bloch Hamiltonian H(k). Parallel transport of a Bloch
state with momentum k in a counterclockwise loop encircling
this core accumulates a geometric phase θ = k · b, associated
with a k-dependent point flux. For the grain boundaries in
Fig. 1 we choose a linear gauge and represent the topological
phase as the phase accumulated in a k-dependent effective
vector potential

A = k · b
λ

�(x) êy , (1)

where �(x) is the one-sided step function [1 + sign(x)]/2.
By virtue of its k dependence A preserves time-reversal
symmetry and our choice of gauge preserves translational
symmetry parallel to the interface. Note that A is curl-free
except on the grain boundary where it represents a flux sheet
that separates the left and right regions. The periodicity of
the bulk Hamiltonian in k space is preserved by defining the
crystal momentum in Eq. (1) mod G restricting it to the first
Brillouin zone.

The dynamical momentum κ = k − A and continuity of
the wave functions on the boundary equates the (conserved)
kinematical momentum ky on the two sides. The ground
states of the bounding states can be compared by studying
the mismatch of the dynamical momentum κ induced by
A for a fixed value of ky . As shown in Fig. 3, a Brillouin
zone tour α′ → β ′ on the left (ungauged) side at a fixed
value of ky maps to the sloped trajectory α → β on the
right (gauged) side. Note that while the former path is a
“closed” trajectory in k space, i.e., kα′ = kβ ′ , the latter is
open, terminating at kα and kβ . This momentum offset is
an unavoidable consequence of the topological structure of
the boundary. The left and right regions can be compared by
studying the evolution of the ground states of a family of
Hamiltonians H(γ,kx ; ky) (holding ky constant) and using a
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FIG. 3. (Color online) Momentum space tours through the Bril-
louin zone for (left) the “55” grain boundary at ky = 2π/3 for an
ungauged trajectory α′ → β ′ and (right) for its gauged transformed
image α → β. The two are linked to form a closed reciprocal
space tour through the dashed segments. The green circles are the
projections of the K and K ′ points into the first Brillouin zone. The
ungauged segment is critical and passes through a gap closure at a
Dirac point. The lower panel illustrates the closed loop that combines
these segments to calculate the change of the ground state geometric
phase across the boundary for each value of ky .

parameter γ = 0(1) to define the ungauged (gauged) sides of
the system. We study a closed (γ,kx)-space tour which is a
parametric circuit that links the gauged segment α → β with
a return path β ′ → α′ as shown in Fig. 3 (lower panel). The
geometric phase evaluated along this circuit is gauge invariant
and it quantifies the difference between the ground states of
the two bounding systems. We note that since the bounding
Hamiltonians HL(R)(k) are gauge equivalent we can regard
this circuit as a closed momentum space tour in the space of
ground states of a single Hamiltonian.

Figure 4 shows the dispersion of the electronic bands
along a closed tour and clearly illustrates the raison d’être
for its interfacial zero modes. The top panel is for the “55”
structure which has a primitive bulk unit cell and one occupied
spin degenerate band. The critical trajectory shown has an
ungauged (flat) segment encountering a gap closure at a
Dirac point. The sloped α → β segment encounters no such
degeneracy at this value of ky . Shifting the fiducial value of ky

allows this system to undergo a band inversion on one side of
the grain boundary, i.e., the β ′ → α′ return path can develop
a band inversion with respect to its gauged α → β image.

We quantify these observations by calculating the loop
integral of the one-band Berry’s connection

θ = Im
∮

dκ · 〈uκ |∇κuκ 〉, (2)

where uκ is the lattice periodic factor of the Bloch wave
function. For the “bridge” segments α′ → α and β → β ′ we
replace the line integral in Eq. (2) by the finite difference
counterparts θ (α′ → α) = arg〈ukα

|ukα′ 〉 and θ (β → β ′) =
arg〈ukβ′ |ukβ

〉. The accumulated phase plotted in Fig. 4(a)
shows jump discontinuities in θ55 at gap closures at ky =
±2π/3 from zero in the inactive gaps (left and right states
with the same winding number) to 2π in its “topological” gaps
(different). We find that the contribution to the accumulated
phase from each side (i.e., θβ ′α′ and θα′αββ ′) are equal for
every value of ky . This is physically understandable since the

FIG. 4. (Color online) Dispersion of electronic bands along a
closed momentum space tour (a) for the “55” grain boundary at
ky = 2π/3 and (b) for the “558” grain boundary at ky = π/3 (b). In
(a) the β ′α′ segment is critical and passes through a Dirac point. In
(b) both the ungauged β ′α′ and gauged αβ segments are critical at
a common value of ky but at opposite Dirac points. The right-hand
panels show the geometrical phase θ evaluated along the related
paths as a function of ky revealing topological transitions as 2π jump
discontinuities.

left-right asymmetry of our k-space construction is a gauge
choice and the interfacial modes are ultimately a property of
the joined system.

The related “558” grain boundary structure doubles the
lattice period along the grain boundary. The essential compli-
cation in this nonprimitive situation is illustrated in Fig. 4(b).
The folding of the Brillouin zone produces two occupied
(orbital) branches which are required to degenerate at the end
points α′ and β ′. The occupied manifold therefore unavoidably
entangles these two orbital degrees of freedom though its
geometric phase must remain invariant under k-dependent
unitary rotations in the occupied subspace. This is not a
property of sums of individual band-projected Berry’s phases
but it can be understood properly using the matrix-valued
connection

χm,n(k,k + δk) = 〈um,k+δk|un,k〉, (3)

where m and n are occupied bands and δk is along the tangent
line of the tour. The geometric phase in Eq. (2) generalizes to
the accumulated phase of the loop product of 2 × 2 matrices
χ (k,k + δk) over the the relevant closed tour in k space,

θ558 = arg
∏

k

det χ(k,k + δk). (4)

Similar to the one-band case, the contributions from the
bridging links α′ → α and β → β ′ are given by finite
difference expressions: θ (α′ → α) = arg det χ (kα′ ,κα) and
θ (β → β ′) = arg det χ(κβ,kβ ′ ). Interestingly, we find that for
the “558” grain boundary the α → β and β ′ → α′ segments
each undergo simultaneous gap closures at ky = π/3 though
these occur at the opposite projected bulk Dirac points. This
also signals a relative inversion of the bulk bands as revealed
in the total accumulated phase plotted as a function of ky
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in Fig. 4(b). This identifies the larger gaps centered on the
origin (−π/3 < ky < π/3) as topologically mismatched and
the smaller gaps (π/3 < ky < 2π/3) as silent, in agreement
with the numerical results of Fig. 2.

Our construction demonstrates that although the far-field
lattices are identical for the “55” and “558” grain boundaries,
they retain information about the translational symmetry that
is present on the boundary. This is encoded in the degeneracies
and symmetries of the bulk eigenstates (a bulk property)
folded into their reconstructed reduced zones (an interface
property). This information is intrinsically nonlocal and it
is neatly quantified by consideration of the geometric phase
evaluated over a momentum space loop that bridges the two
half spaces in the appropriate composite N -band manifold.
We emphasize that this quantity is independent of an arbitrary
redefinition of the unit cell and basis on the two sides of
the interface as long as the loop integral bridges the two
asymptotic media. This can be contrasted with the situation
for the graphene-vacuum interface where the exterior medium
is presumed to be topologically trivial for every value of ky

and the appearance and disappearance of the zero modes
is assigned to possible ground state transitions of a single
topologically ordered medium.

For both grain boundaries the bulk Hamiltonians at a fixed
value of the projected momentum ky are members of the
Altland Zirnbauer chiral unitary class (AIII) [21,22]. These
Hamiltonians preserve chiral (sublattice) symmetry but they

have broken time-reversal symmetry (here explicitly broken
for a generic value of ky) and broken charge conjugation
symmetry. In d = 1 the ground states in this class are
topologically nontrivial and are distinguished by an integer-
valued topological index. The winding numbers calculated
above measure the interfacial mismatch of this index as a
function of ky , thereby counting the number of zero modes
(flat bands) in each projected gap.

Our approach admits a generalization to twin boundaries
with nonzero rotation angle and to grain boundaries that
embed dislocations where the Burgers vector is a lattice
translation rather than a fractional translation. Our preliminary
work indicates that this distinction is important and can
determine the topological character of the boundary [19].
It will also be useful to augment this topological analysis
to address the consequences of local symmetry-breaking
perturbations (presumed to be weak) that inevitably occur
in atomistic models that suggest structure-specific spectral
reconstruction near the neutrality point [7–14]. Finally the
presence of flat or weakly dispersing bands near charge
neutrality invites an investigation of its interaction-induced
instabilities.
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