
PHYSICAL REVIEW B 91, 125303 (2015)

Low-energy effective theory in the bulk for transport in a topological phase
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We construct a low-energy effective action for a two-dimensional nonrelativistic topological (i.e., gapped)
phase of matter in a continuum, which completely describes all of its bulk electrical, thermal, and stress-related
properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz
or Galilean invariance. This is done by generalizing Luttinger’s approach to thermoelectric phenomena, via the
introduction of a background vielbein (i.e., gravitational) field and spin connection a la Cartan, in addition to
the electromagnetic vector potential, in the action for the microscopic degrees of freedom (the matter fields).
Crucially, the geometry of spacetime is allowed to have timelike and spacelike torsion. These background fields
make all natural invariances—under U(1) gauge transformations, translations in both space and time, and spatial
rotations—appear locally, and corresponding conserved currents and the stress tensor can be obtained, which
obey natural continuity equations. On integrating out the matter fields, we derive the most general form of a local
bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport
properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric
transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely
edge effects. The coupling to “reduced” spacelike torsion is found to be absent in minimally coupled models,
and, using a generalized Belinfante stress tensor, the stress response to time-dependent vielbeins (i.e., strains) is
the Hall viscosity, which is robust against perturbations and related to the spin current, as in earlier work.
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I. INTRODUCTION

There has been great interest recently in the thermal Hall
conductivity of gapped topological phases at temperatures
small compared with the bulk energy gap. It has been known
for some time, using arguments based on the existence of a
gapless edge, that the thermal Hall conductivity κH of such
systems is given by [1,2]

κH = πT

6
c, (1.1)

where T is the temperature and c = cL − cR is the (topologi-
cal) central charge of the edge theory. It has been hoped that a
calculation of κH could be carried out which would illustrate
the appearance of the central charge from bulk correlation
functions. On the other hand, it has been pointed out [2] that
the central charge appears as the coefficient of the gravitational
Chern-Simons term

SGCS = c

96π

∫
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θ
λρ

)
,

(1.2)

in terms of the Christoffel symbols �λ
μν . This term, however,

is of too high an order in derivatives of the metric to describe
thermal conductivity directly [3], but is nonetheless connected
with the central charge of the edge states. It manifests itself in
the bulk rather through the response of the energy-momentum-
stress tensor to gradients in curvature.

In this paper we show that the long-wavelength bulk thermal
transport properties are completely independent of the central
charge, and that the only nonvanishing bulk thermoelectric
current is the ordinary Hall current (we neglect effects that
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vanish exponentially in the energy gap over temperature as
the temperature goes to zero). We do this by constructing the
most general low-energy effective action for the bulk at the
correct order in derivatives of external vielbein (i.e., gravi-
tational) and electromagnetic fields. We show that responses
to certain gradients of the vielbeins correspond to thermal
and thermoelectric response functions. After using general
thermodynamic arguments to identify terms in the effective
action, we show that the bulk thermal currents in response to
gradients of the vielbeins yield purely magnetization currents,
that is, currents that vanish when integrated along any cross
section of the sample. Thus, we show that the bulk contribution
to the thermal Hall conductivity is exponentially suppressed
due to the gap.

Our formalism treats arbitrary background geometries for
a nonrelativistic system that has neither Lorentz nor Galilean
invariance. This unified approach allows us also to consider
the stress response to background fields, and thus viscosity,
on the same footing as the thermoelectric effects and to
account for all bulk magnetization effects: number, energy,
and momentum magnetizations. When we use the formalism
to study Hall viscosity of a topological phase, we find that use
of the appropriate Belinfante stress tensor, while not affecting
the results for thermoelectric coefficients, has the effect of
removing the contribution of spacelike torsion to the Hall
viscosity that had been found in a relativistic setting [4,5].
We also point out that for simple nonrelativistic models in
which the background fields are minimally coupled, there is no
coupling to spacelike torsion in the limit of a trivial spacetime
without torsion. Instead, the Hall viscosity and the spin current
follow [6,7] purely from the Wen-Zee term [8] in the effective
action and are related as in previous work [9,10].

Our analysis of thermoelectric transport will make contact
with the formalism developed by Cooper, Halperin, and Ruzin
(CHR) [11], so we now recapitulate their main points. They
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consider the number current J and JE in the presence of an
applied electric field E = −∇φ and a fictitious gravitational
field ψ coupled to the energy density [12]. By considering
linear response to these fields in the bulk via the Kubo formula,
they obtain a set of zero frequency and zero wave-vector
response functions L

(n)
ij , such that the changes in number and

energy current density can be expressed as

δJ i = −L
(1)
ij ∂jφ − L

(2)
ij ∂jψ,

(1.3)
δJ i

E = −L
(3)
ij ∂jφ − L

(4)
ij ∂jψ.

(Here i, j = 1, 2 are the space coordinate indices, the
summation convention is in effect for these indices, and we
also use εij = −εji , with ε12 = 1.) They note, however, that in
the presence of a background magnetic field B (perpendicular
to the plane) there exist magnetization number and energy
currents, which if the bulk is translation invariant appear only
as edge currents. These are given (in our notation for two space
dimensions) by

J i
mag = εij ∂jm,

(1.4)
J i

E,mag = εij ∂jm
E,

where m is the ordinary magnetization density and mE is
a suitably defined “energy magnetization” density. In the
presence of the fields φ and ψ the magnetizations differ from
their unperturbed values m0 and mE

0 by

m = (1 + ψ)m0,
(1.5)

mE = (1 + 2ψ)mE
0 + φm0.

The magnetization currents induced by the external fields
must be accounted for in order to obtain the transport current
densities Jtr and Jtr,E; the transport current densities, by
definition, give the net current across a section when integrated
along it and are defined to occur solely in the bulk. They find

J i
tr = −L

(1)
ij ∂jφ − (

L
(2)
ij + m0εij

)
∂jψ, (1.6)

J i
E,tr = −(

L
(3)
ij + m0εij

)
∂jφ − (

L
(4)
ij + 2mE

0 εij

)
∂jψ. (1.7)

Then CHR used generalized Einstein relations, which say that
with chemical potential μ and nonzero temperature T (both
of which can be position dependent since the system is not in
equilibrium) the transport currents are responses only to the
combinations ∇ψ + (1/T )∇T and ∇φ + T ∇(μ/T ). Finally,
setting ψ = 0 and defining ξ = φ + μ and the transport heat
current density JQ,tr = JE − ξJtr, CHR showed that

J i
tr = −N

(1)
ij ∂j ξ − 1

T
N

(2)
ij ∂jT , (1.8)

J i
Q,tr = −N

(3)
ij ∂j ξ − 1

T
N

(4)
ij ∂jT , (1.9)

with

N
(1)
ij = L

(1)
ij , (1.10)

N
(2)
ij = L

(2)
ij − μL

(1)
ij + m0εij , (1.11)

N
(3)
ij = L

(3)
ij − μL

(1)
ij + m0εij , (1.12)

N
(4)
ij = L(4) − μ

(
N

(2)
ij + N

(3)
ij

) − μ2L
(1)
ij + 2mE

0 εij . (1.13)

Here the coefficient matrices N obey the Onsager relations,
for example, that N

(2)
ij (B) = N

(3)
ji (−B), (as do the matrices L),

whereas the local current responses to ∇μ and ∇T do not. We
see also that N (2)

ij and N
(4)
ij must vanish faster than T as T → 0,

because the corresponding conductivities must vanish in that
limit. In what follows, we show how the bulk contributions to
these coefficients appear in and can be determined from the
low-energy effective action for the bulk of a gapped system.
It will follow that for such gapped systems, among these
coefficients only N (1) (the Hall conductivity) receives a bulk
contribution. The appearance of the central charge in N (4) is
due to an edge effect.

We should explain the type of systems to which our
formalism applies. We assume that the system is gapped in
the bulk, so when we integrate out the matter fields only
integrals of local expressions can occur in this “induced”
action in the bulk. We assume this action depends only on
the background electromagnetic field and on the spacetime
geometry, and that it has symmetries under U(1) gauge trans-
formations (because particle number is conserved), coordinate
transformations (from translation invariance in both space and
time in a flat background, leading to conservation of energy and
momentum), and spatial rotations. Thus, we assume that these
symmetries are not broken either spontaneously or explicitly.
If either occurred, it would be necessary to include further
background fields in the induced action that describe the
breaking, and for spontaneously broken continuous symmetry
in a system with short-range interactions there would be
gapless degrees of freedom, so that the induced action is
not local. Hence, our approach applies to quantum Hall
systems and to insulators (including topological insulators) in
a continuum approximation with rotation invariance, but not
to fluids or (possibly topological) superconductors. In a model
for a superconductor in which particle number is conserved,
either (in the case of short-range interactions) it has a gapless
Goldstone mode, or with a long-range interaction it can be
fully gapped, but then the long range of interaction produces
additional problems for us. Without conserved particle number
we could simply drop the U(1) gauge field everywhere, but
such paired states of fermions in which the pairs have nonzero
angular momentum also break rotation symmetry and require
a different treatment that will not be given here.

In Sec. II, we explain the geometry to be used and develop
our microscopic model for the deformed system, deriving
explicit expressions and conservation laws for the currents.
After discussing in Sec. III some general facts about different
terms in an induced action, we then write in Sec. IV the
most general effective (induced) action to linear order in
derivatives of the perturbing fields and consistent with the
symmetries of the microscopic model. These results allow us to
identify number, energy, and momentum magnetizations. Then
in Sec. V we turn to linear response. In Sec. V B we calculate
the response of the number and heat currents to an electric field
and to Luttinger’s gravitational field and show explicitly that
the bulk contributions to the thermoelectric transport currents
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vanish. In Sec. V C, we address the stress response. We go
over to a generalized Belinfante definition of the energy-
momentum-stress tensor, which is described in Appendix A.
This eliminates contributions to the Hall viscosity from locally
invariant terms in the bulk (the nonrelativistic version of the
“torsional Hall viscosity”[5] is one such effect). We observe
that in simple models, there is no momentum magnetization.
Finally we show that the Wen-Zee term produces the Hall
viscosity in agreement with the spin current, in line with
previous results.

There seems to be some confusion in the literature about
whether the thermal Hall conductivity comes from the bulk.
For free fermion systems, one can use linear response theory
to derive the thermal conductivity [13–16] in a way that seem-
ingly makes no reference to the edge physics. In Appendix B
we review the calculation of the thermoelectric response
coefficients for a noninteracting integer quantum Hall system.
The key point is that such approaches calculate the response of
current densities integrated across sections of a sample. Such
integrated currents implicitly contain contributions from edge
physics. The calculation thus essentially reduces to the use of
the same edge argument to which we already referred [1,2].

II. BACKGROUND FIELDS AND MATTER ACTION

A. Spacetime geometry

Before we begin, let us establish some notational conven-
tions. We work in d + 1 spacetime dimensions throughout,
with coordinates xμ. We need to distinguish between two
different types of indices: ambient spacetime indices, denoted
by μ,ν = 0,1,2, . . . ,d, and similar indices, denoted by α,β =
0,1,2, . . . ,d in a flat internal spacetime. When we refer to
spacelike directions only, we will use roman letters, i,j =
1,2, . . . for the ambient indices, and a,b = 1,2, . . . for the
internal indices. We use the summation convention for all four
types of indices, adhering from this point on to the conventions
of placement of upper and lower indices, and ∂μ = ∂/∂xμ.
In this initial discussion, we keep d general, but later we
specialize to d = 2.

The geometry of the spacetime that we use does not possess
the metric structure of Minkowski spacetime or even of a
Galilean analog. The only structure is that at any point we
can distinguish between space and time, as if there were a
local absolute time coordinate and a local positive-definite
spatial metric. These statements do not mean that an absolute
time coordinate can be defined, even on a small region of
spacetime, so neither are there spacelike surfaces of fixed
time. (These structures are similar to those used by Wen
and Zee [8]; however, they assumed that the spacetime
has a global absolute time and that the spatial metric of
fixed-time slices was time independent.) In order to precisely
define these structures, we prefer to be able to use arbitrary
coordinate systems, and to be able to make arbitrary coordinate
transformations (diffeomorphisms). The spacetime structures
can be introduced using Cartan’s vielbein formalism [17] (also
called the vierbein or tetrad formalism in the case of d = 3 or
3 + 1 dimensions). At each point we have a set of one forms
with components eα

μ and a dual set of vector fields eμ
α that

obey the duality relations eμ
α eβ

μ = δβ
α and eμ

α eα
ν = δν

μ. Either set

defines a frame at each point in spacetime, that is a preferred
basis set of one forms (or the dual set of vectors) indexed by
α; these define the structure in a coordinate-independent way.
The frames are assumed not to degenerate at any spacetime
point; that is, the set of vectors is linearly independent at each
x. Actually, the choice of basis (in the internal space) for
the spacelike one forms ea

μ (or for the spacelike vectors e
μ
a ) is

arbitrary up to a rotation on the internal indices; we incorporate
that fact in due course. The vielbeins and their inverses can be
used (by contraction) to convert ambient to internal spacetime
indices or vice versa.

In particular, we have a one form with components e0
μ,

where the upper index is internal. If there existed a function t

of position over regions of spacetime, such that (using the
notation of differential forms) e0

μdxμ = dt , then t would be
absolute time, but we do not assume this. In order to obtain
such an absolute time t , the necessary and sufficient condition
is ∂νe

0
μ − ∂μe0

ν = 0; in general, we do not impose this. We can
use the one form to measure amounts of time using a squared
line element for the time direction (or a particular degenerate
or “partial” metric), (

e0
μdxμ

)2
. (2.1)

Likewise for the analog of time slices, we have the
components ea

μ and e
μ
a , and the internal spacelike components

of each are orthogonal to the timelike component of the
inverses, for example, e

μ
a e0

μ = 0, just as if the vectors e
μ
a were

tangent vectors to a fixed-time surface (but no such surfaces
exist in general). There is a spatial metric or squared line
element,

hμνdxμdxν ≡ ea
μea

νdxμdxν, (2.2)

where hμν = ea
μea

ν ≡ ea
μeb

νηab and ηab is the standard internal
spatial metric, given by the identity matrix or ηab = δab. (Note
the use of notation like vawa = vawbηab with summation
convention, as a way of contracting internal spacelike indices,
and a similar convention for the case of lower indices.)
“Inverse” spatial metrics hμν and ηab with upper indices can
be defined likewise, but notice that the ambient spacetime
metrics are degenerate and not truly inverses of each other;
instead, hμνh

νλ = δλ
μ − e0

μeλ
0 . We assume that both the ambient

spatial metrics are positive semidefinite. It may be tempting
to combine these timelike and spacelike partial metric tensors
into a single spacetime metric, but because of the lack of
Lorentz invariance, this is not necessary, nor would it be
uniquely defined [18,19] (line elements of time and space
have different dimensions; there is no universal scale of speed).
Therefore, such a metric will not be used, and in general we
do not raise or lower any indices (occasionally we do so for
internal spacelike indices using ηab or ηab).

One could make different choices of the one forms eα
μ

that differ by a linear transformation of the internal indices
α. Because α = 0 has been singled out, and because of the
choice of internal metric on the space components which
we may as well fix, the only possible transformations are
SO(d) rotations on the internal spacelike indices a, b only
(we neglect improper rotations of negative determinant).
These rotations act as internal gauge transformations, as in
a Yang-Mills gauge theory. To make expressions containing
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partial derivatives covariant under such transformations, we
need a gauge field or “spin connection” ω α

μ β (an example of
its use will appear in a moment). In the present case, only the
internal spacelike components ω a

μ b are nonzero. In view of
the standard Euclidean metric on internal spacelike indices,
we can raise or lower an index a or b, and it makes sense to
say that the spin connection is antisymmetric on its internal
indices [it is in the Lie algebra of SO(d)]. For d = 2, the spin
connection is effectively a pseudoscalar on the internal indices.

We also need a Christoffel connection with components
(or Christoffel symbols) �

μ
νλ in order to write covariant

derivatives in spacetime. As an example of the use of the
two connections, the covariant derivative of the one forms is

∇μeα
ν = ∂μeα

ν + ω α
μ βeβ

ν − �λ
μνe

α
λ . (2.3)

We do not impose the symmetry condition �
μ
νλ = �

μ
λν ,

which means that our spacetime generally has torsion; the
torsion tensor is T

μ
νλ = �

μ
νλ − �

μ
λν . It frequently appears

with an upper internal index α in place of μ. We call the
α = 0 components of T α

μν the timelike torsion, and the α = a

components the spacelike torsion.
The one forms, spin connection, and Christoffel connection

are not necessarily independent. We impose the requirement
that

∇μeα
ν = 0, (2.4)

so the vielbeins (and their inverses) are covariantly constant.
When we come to varying an action, we must specify which
variables are viewed as independent, and in the first part of the
paper, we choose to view the vielbein and spin connection
as the independent variables that describe the spacetime
geometry. The covariant-constancy equation can be solved for
the Christoffel symbols, and the torsion is

T α
μν = ∂μeα

ν − ∂νe
α
μ + ω α

μ βeβ
ν − ω α

ν βeβ
μ. (2.5)

The components of the timelike torsion are essentially the curl
(or exterior derivative) of the one form e0

μ; the vanishing of
these is precisely the condition above for the existence of an
absolute time coordinate. Later in the paper, we also make use
of a different point of view, in which the vielbeins eα

μ and what
we call the reduced torsion T̃ a

μν (a part of the spacelike torsion
that is independent of the vielbeins; the timelike torsion is fully
determined by the timelike vielbeins in any case) are viewed
as the independent variables; using the covariant-constancy
equation, one can express the Christoffel symbols and the spin
connection in terms of these. As these expressions are more
lengthy, they are given in Appendix A.

Our actions involve integration over spacetime, and we need
to use a volume form or measure for the integration. This is
simply constructed from the timelike and spacelike metrics
above and is written as dd+1x

√̂
g as usual, where

√̂
g (which

does not transform as a scalar) is defined (for d = 2, but other
dimensions are similar) by

√̂
g = 1

6 ε̂μνλεαβγ eα
μeβ

ν e
γ

λ , (2.6)

which clearly is simply the determinant of the matrix with
entries eα

μ; the non degeneracy condition implies that it is
nonzero at all spacetime points, and we assume it is positive.
The ambient spacetime ε symbol (not tensor) ε̂μνλ is defined

in any coordinate system (again for d = 2) by ε̂012 = 1, and
the internal one (which is an invariant tensor for the internal
transformations, essentially spatial rotations, that we use) εαβγ

likewise. The lower-index ones εαβγ and ε̌μνλ are defined
in the same way. The notation with a hat used here will
indicate throughout that the object on which it appears is a
tensor density, rather than a tensor, which transforms under
coordinate transformation with an additional determinantal
factor (as

√̂
g does) compared with a tensor with the same

ambient spacetime indices; alternatively, a tensor density
divided by

√̂
g transforms as a tensor. (The lower ambient

index ε symbol with the check symbol transforms inversely to
the upper index one.) We note the useful relation

�ν
μν = 1

√̂
g

∂μ

√̂
g. (2.7)

Without the hat, εμνλ = εαβγ eμ
α eν

βeλ
γ is a tensor, and similarly

for εμνλ, which is the volume three form written in components.
We also sometimes use the two-index ε symbol εab = ε0ab,
and likewise for lower indices, which is natural in view of the
singling out of timelike components, and can even be done for
the ambient versions as εμν = e0

λε
λμν .

We also define here the Riemann curvature tensor, although
it does not appear much in this paper. This can be obtained [17]
from the commutator of two covariant derivatives [∇μ,∇ν]
applied to a vector field with an internal index, say vα .
(By covariant constancy of the vielbein which can be used
to convert indices, this determines the Riemann tensor in
general.) We have

R α
μν β = ∂μω α

ν β − ∂νω
α

μ β + ω α
μ γ ω

γ

ν β − ω α
ν γ ω

γ

μ β, (2.8)

and so vanishes unless α = a, β = b. In the case d = 2 of
interest in this paper, the nonvanishing components reduce to

R a
μν b = ∂μω a

ν b − ∂νω
a

μ b, (2.9)

which is effectively the curl of the single one form ω 1
μ 2, similar

to the case in Ref. [8].
Finally, we note that the variation of spacetime tensors

under diffeomorphisms is given by the Lie derivative L. Under
a diffeomorphism generated by the vector field ξ , we have for
scalar functions

Lξ f = ξν∂νf, (2.10)

for vectors

LξV
μ = ξν∂νV

μ − V ν∂νξ
μ, (2.11)

and for one forms

LξWμ = ξν∂νWμ + Wν∂μξν. (2.12)

Although we do not need it here, the generalization to higher
rank tensors is obtained by demanding that L satisfies the
Liebnitz rule.

In addition to these geometric structures in spacetime, we
also use a U(1) gauge potential Aμ, with field strength Fμν =
∂μAν − ∂νAμ as usual. For covariant derivatives of fields that
carry U(1) charge, as in the following section, ∇μ denotes the
fully covariant derivative that includes the vector potential.
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B. Action for matter

We now consider actions for nonrelativistic matter fields as
an illustration of the use of the above background fields and to
check that the variations with these background fields produce
the correct conserved currents. In relation to this, the vielbeins
play the role of gauge potentials that enable us, in some sense,
to gauge translation invariance, and so variations with respect
to them produce the corresponding covariantly conserved
currents and densities, just as varying the electromagnetic
gauge potential produces the conserved electric current/density
(that is, satisfying the continuity equation). As an example, let
us consider a minimally coupled second-quantized action for
spinless bosons or fermions in flat spacetime,

S =
∫

dd+1x

[
iϕ†D0ϕ − 1

2m
(Diϕ)†Diϕ

]
− 1

2

∫
dd+1x dd+1y V (x − y)ϕ†(x)ϕ†(y)ϕ(x)ϕ(y),

(2.13)

where ϕ is a scalar field (either commuting or anticommuting,
for bosons or fermions, respectively), Dμ = ∂μ − iAμ is the
gauge-covariant derivative, and V is an interaction potential
in spacetime. For a general spacetime we obtain the covariant
action

S =
∫

dd+1x
√̂

g

[
1

2
ie

μ

0 (ϕ†←→∇ μϕ) − 1

2m
eμ
a eν

a(∇μϕ)†∇νϕ

+ 1

2

∫
dd+1y

√̂
g V (x,y)ϕ†(x)ϕ(x)ϕ†(y)ϕ(y)

]
. (2.14)

The expression for the interaction term containing V (x,y)
requires some care. For the case of contact interactions,
where the interaction potential V is given by a differential
operator acting on a δ function, there are no issues as the δ

function is already a scalar density; we need simply to replace
the derivatives acting upon it with covariant derivatives,
contracted using the spacelike metric. We note that such
contact interactions may be taken to be independent of the
spacelike torsion T a

μν .
For finite-range instantaneous interactions, we need to

generalize the notion of spacelike distance to curved spacetime
with torsion. There are two conceptual difficulties here. First,
if the timelike torsion T 0

μν is not identically zero in a region
of spacetime, there does not exist an absolute time variable
defined in that region, as we mentioned before, and so
hypersurfaces of constant absolute time do not exist. However,
that condition, which says that e0

μ is an exact differential,
is more restrictive than is necessary for this purpose, and
in general, according to a theorem of Frobenius [17,20],
hypersurfaces whose tangent vectors e

μ
a are orthogonal to e0

μ

at each point exist if and only if the weaker condition,

eμ
a eν

bT
0
μν = 0, (2.15)

holds throughout a region, that is when the tangent vector
fields e

μ
a are integrable. For d = 2, this expression can also be

written as

εμνλe0
λT

0
μν = 0. (2.16)

For general d, one can write this simply as e0
[λT

0
μν] = 0,

where the square brackets surrounding indices mean anti-
symmetrization. In this form, for all d, the (dual version of
the) Frobenius theorem says equivalently that the condition
is satisfied if and only if e0

μ obeys an equation of the form
e0
μdxμ = ψdw for some scalar functions ψ(x), w(x); then the

spacelike hypersurfaces are surfaces of constant w.
Second, in the presence of torsion we must distinguish

between spacelike geodesics—paths rμ(λ) that satisfy both
the geodesic equation [17]

0 = d2rμ

dλ2
+ �μ

νρ

drν

dλ

drρ

dλ
(2.17)

and the spacelike constraint

0 = e0
μ

drμ

dλ
(2.18)

—and spacelike paths of minimal distance. The geodesics
are those paths which parallel transport their tangent vectors,
and in the absence of torsion, these coincide with paths of
minimal distance. This can be seen by examining Eq. (A3) for
the Christoffel symbols and noting that the Euler-Lagrange
equation for minimization of spacelike distance depends only
on the contribution of the spacelike metric to the connection.
Here we work with spacelike geodesics because they are easier
to construct.

Given a point xμ on our manifold, we denote by r
μ
x (va,λ)

the parametrized geodesic satisfying the initial condition that
its tangent is along a spacelike vector va

rμ
x (va,0) = xμ, (2.19)

dr
μ
x

dλ

∣∣∣∣
λ=0

= vaeμ
a , (2.20)

Because of the possible reparametrizations of λ, va is only
defined up to a scalar factor. If our manifold is sufficiently
well behaved (i.e., geodesically complete), we may take
λ ∈ (−∞,∞). Since we do not have a notion of spacelike
hypersurfaces, we must make do with the set of all points
connected to xμ by spacelike geodesics. More formally, we
consider the open sets Ux defined by

Ux = {
rμ
x (va,λ)

}
. (2.21)

Note that the sets Ux are the images of the exponential map
acting on the set of spacelike tangent vectors at x, and hence
they are proper d-dimensional submanifolds of spacetime [21].
For each y ∈ Ux , we may then define the distance

dx(y) =
∣∣∣∣∣∣
∫ λ0

0
dλ

√
hμν

dr
μ
x

dλ

drν
x

dλ

∣∣∣∣∣∣ . (2.22)

Note that dx(y) = dy(x) by the uniqueness of solutions to
the geodesic equation. Using this distance, we may form the
covariant interaction term

Sint = 1

2

∫
dd+1x

√̂
g

∫
dd+1y

√̂
g{χUx

(y)V [dx(y)]

×ϕ†(x)ϕ(x)ϕ†(y)ϕ(y)}, (2.23)
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where χUx
is the characteristic function of the set Ux . This

expression is rather cumbersome, and we do not make explicit
use of it in the remainder of this work. However, we note
that in the absence of torsion, it reduces to a straightforward
generalization of the interaction term constructed in Ref. [22].

Returning to our expression Eq. (2.14) for the microscopic
action, it is illuminating to assign independent meaning to
certain components of eα

μ or, more precisely, to δeα
μ = eα

μ − δα
μ.

By examining the action, we see that δe0
0 enters exactly as the

artificial gravitational potential ψ introduced by Luttinger for
calculating thermal response functions [11,12]; when this is the
only nonzero component of e, it multiplies the energy density.
This is consistent with the standard Newtonian approximation
to gravity in the general relativity literature [17]. Notice that
the spatial component ea

i enters similarly as the matrix �

of Ref. [22]. This is no accident: The matrix � presented
there is very much just these components of the vielbein,
and to first order δea

i are the matrices λa
i . Because it couples

longitudinally to the heat current, δe0
i can be interpreted as the

“gravitomagnetic vector potential” mentioned recently in the
literature [23,24].

Next, we outline the general procedure for obtaining
equations of motion and the various currents from an action
and obtain the conservation laws for the currents from the
invariance properties. We use the action above (or the version
with V = 0) as an example with which to check the results.
Given an action S involving the background fields and a scalar
field ϕ, and now taking the vielbeins and spin connection as the
independent background fields, we can consider the variations

ϕ → ϕ + δϕ, (2.24)

Aμ → Aμ + δAμ, (2.25)

eα
μ → eα

μ + δeα
μ, (2.26)

ω a
μ b → ω a

μ b + δω a
μ b, (2.27)

to obtain

δS =
∫

dd+1x

[
δS

δe
μ
α

δeμ
α + δS

δϕ
δϕ

+ δS

δAμ

δAμ + δS

δω a
μ b

δω a
μ b

]
. (2.28)

For the equations of motion of the matter field, the variation of
the action with the background fields fixed is set to zero, and
so the equations of motion are

δS

δϕ
= 0. (2.29)

Now we define several currents. These are the number
current (with components μ = 0 for density and μ = i for
spatial current),

Jμ = 1
√̂

g

δS

δAμ

, (2.30)

and analogously the energy-momentum-stress current (or
tensor),

τμ
α = − 1

√̂
g

δS

δeα
μ

. (2.31)

The latter contains the energy current J
μ

E = τ
μ

0 as the α =
0 components, and the momentum current as the α = a

components, of which the μ = 0 component is momentum
density, and the μ = i components are the momentum flux or
(essentially) the stress. Finally, there is the spin current

J
μ b

S a = 1
√̂

g

δS

δω a
μ b

. (2.32)

In d = 2 dimensions, the spin current is antisymmetric in a,
b, and those indices can be dropped.

Next we obtain the conservation laws for these currents
from the local symmetries. Considering first an infinitesimal
U(1) gauge transformation,

δϕ = iϕθ, (2.33)

δAμ = ∂μθ, (2.34)

δeα
μ = 0, (2.35)

δω a
μ b = 0, (2.36)

with a scalar function θ (x), we find, after using the equations
of motion Eq. (2.29) and the fact that the variation of the
action under a symmetry transformation is by definition zero,
the number current conservation law

1
√̂

g
∂μ(

√̂
gJμ) = ∇μJμ − T ν

νμJμ = 0. (2.37)

Next we wish to examine local space and time translations.
We can do this in one fell swoop by looking at how the action
changes under arbitrary infinitesimal diffeomorphisms xμ →
xμ + ξμ, where ξμ(x) is a vector field. This has the effect of
modifying all fields by their Lie derivatives, as pointed out
above. However, because the Lie derivative is not explicitly
covariant, it is useful to modify it to also include a well-chosen
U(1) gauge transformation and an internal rotation. That is, to
the Lie derivative of charged fields we add an additional gauge
transformation by the amount ξμAμ, and to the Lie derivative
of fields with an internal index we add an additional internal
rotation by the amount ξμω a

μ b. We are free to do this since
these transformations are themselves symmetries of the action.
A short calculation shows that the field variations are then
given by the covariant Lie derivatives

δϕ = ξμ∇μϕ, (2.38)

δAμ = ξνFνμ, (2.39)

δeα
μ = eα

ν ∇μξν − T α
μνξ

ν, (2.40)

δω a
μ b = ξνR a

μν b, (2.41)

yielding, after an application of the equations of motion, the
energy-momentum conservation law

∇μτμ
α − T λ

λμτμ
α = −eν

α

(
JμFμν + J

μ b

S a R a
μν b + τ

μ
βT β

μν

)
.

(2.42)

The contribution on the right-hand side of the form spin current
times Riemann curvature is a known effect that corresponds to
a force on spinning bodies due to curvature.
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Finally, using an infinitesimal internal rotation,

δea
μ = �a

be
b
μ, (2.43)

δω a
μ b = �a

cω
c

μ b − �c
bω

a
μ c − ∂μ�a

b, (2.44)

with �a
b(x) an arbitrary antisymmetric matrix function, we

find that the antisymmetric part of the stress tensor satisfies

εa
bτ

b
a = εa

b

(∇μJ
μ b

S a − T ν
νμJ

μ b

S a

)
, (2.45)

where

τ b
a = eb

μτμ
a. (2.46)

This can also be viewed as the conservation law for the spin
current.

With this formalism established, we can now proceed to
identify these conserved currents with physical quantities.
Here we focus on the flat space e = Id,ω = 0 expressions
of the currents, deferring discussion of the more general case
(and the associated “contact” terms) until Sec. V. We also set
the interaction potential V to zero for brevity. Using the action
Eq. (2.14), we find for the number current

Jμ = 1
√̂

g

δS

δAμ

∣∣∣∣∣
e=Id,ω=0

= δ
μ

0 ϕ†ϕ − i

2m
[ϕ†Diϕ − (Diϕ)†ϕ]δμ

i , (2.47)

as expected for a charged field. For the energy-momentum-
stress tensor, things are quite a bit more complicated, but we
eventually find

τμ
α = − 1

√̂
g

δS

δeα
μ

∣∣∣∣∣
e=Id,ω=0

= i

2

(
δ

μ

0 δν
α − δμ

α δν
0

)
[ϕ†Dνϕ − (Dνϕ)†ϕ]

− 1

2m

(
δλ
αδν

aδ
μ
a + δν

αδλ
a δ

μ
a − δμ

α δν
aδ

λ
a

)
(Dλϕ)†Dνϕ.

(2.48)

Unpacking terms, we see (after using the equations of motion
to eliminate time derivatives) that the α = 0 components of τ

give the energy density and spatial energy current consistent
with Ref. [11], while the α = a components give minus the
momentum density and stress tensor consistent with Ref. [22],
plus an additional term 1

4m
D2J 0δμ

α due to operator ordering
(cf. Ref. [25]). Finally, the spin current is zero because the
action does not contain the spin connection.

Readers will have noticed that there is no chemical potential
in our action. That is because we work in the canonical
ensemble with a fixed particle number N . N is the flux of
Jμ across an arbitrary (in principle spacelike) section A; as
Jμ obeys a covariant continuity equation, N is invariant under
small changes in the section. Precisely, the flux can be written
(for d = 2; other dimensions are similar)

N =
∫
A

εμνλJ
μdxνdxλ, (2.49)

and we note that εμνλJ
μ is the set of components of a two form,

and the two form (in general, a d form) can be integrated over
a d surface without any use of the metric. N is invariant under
small changes in the section because conservation implies
∂[ρενλ]μJμ = 0. Thus, classically, the expression for N has
to be imposed as a constraint; quantum mechanically, in an
operator formalism, one uses only states that obey this as an
initial condition, which is preserved by time evolution; it can
be imposed in a functional integral treatment by introducing
an integration over an additional variable (actually a gauge
potential) to make a functional δ function. In general, the
effect of the global constraint is only felt globally, and if we
eventually consider response functions in flat spacetime with
a translation invariant system, the effect only shows up at zero
wave vector k in responses that couple to the particle number.
For quantities of interest we can take the limit as k → 0 instead
of k = 0 when it makes a difference. Thus, in practice, when
studying local behavior in a large system, we simply ignore
the number constraint. (If desired, it can be incorporated along
the lines mentioned.)

III. INDUCED ACTION: GENERALITIES

Our goal is to find the most general induced bulk action,

Seff[Aμ,eα
μ,ω a

μ b

]
,

one could obtain for a system that is gapped in the bulk
(i.e., a topological phase) after integrating out the matter
fields. As indicated, this induced action is a functional of the
electromagnetic potential Aμ, the vielbeins eα

μ, and the spin
connection ω a

μ b, which for now we continue to use as the
independent background fields. We can expand this functional
as the integral of a sum of local terms,

Seff =
∫

dd+1x
√̂

g
[
L(0)

(
Aμ,eα

μ,ω a
μ b

)
+L(1)

(
Aμ,eα

μ,ω a
μ b

) + · · · ]. (3.1)

Each such L(n) is a function of the external fields and their
derivatives, and each integral must be invariant under coordi-
nate transformations, internal rotations, and electromagnetic
gauge transformations up to boundary terms. Very generally,
these terms can be divided into two categories. The first
category, which we term “locally invariant,” consists of those
terms in which the L(n) themselves are invariant under all
the aforementioned symmetry transformations. These terms
can be written as polynomials in strictly covariant quantities
such as the vielbein eα

μ, the electromagnetic field strength Fμν ,
the torsion T α

μν , the curvature R α
μν β , and their (covariant)

derivatives, with appropriate index contractions. All such
terms can be combined into one action,

S loc
[
eα
μ,Fμν,T

0
μν,T

a
μν,R

α
μν β

]
, (3.2)

which is a functional of these covariant tensors and their
covariant derivatives. The second category consists of the
remaining integrands L(n) which cannot be made locally
invariant by integration by parts, and which for at least one
type of transformation are invariant only up to a total derivative.
The integrals of such terms are invariant only up to boundary
contributions, and, in general, invariance of the total action
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necessitates the existence of gapless edge degrees of freedom.
An example of such a term in 2 + 1 dimensions is the familiar
U(1) Chern-Simons term

L(CS) = εμνλAμ∂νAλ, (3.3)

which is not manifestly invariant under a gauge transformation,
but changes by a total derivative. A locally covariant term
can be multiplied by an arbitrary function of position, and
would still be covariant, and this could occur due to changes
of parameters with position in the microscopic action. For
a Chern-Simons-type term, on the other hand, this cannot
be done as it spoils the invariance up to a total derivative.
This implies that the coefficient in a Chern-Simons term
should usually be robust against changes in the parameters in
the underlying “microscopic” action throughout a topological
phase that respects the symmetries in question; if it were
not, varying microscopic parameters in spacetime would
lead to changes in the coefficient and so violate invariance
of the induced action. (This field-theoretic argument, often
formulated as the nonrenormalization of the coefficients in
Chern-Simons-type terms, deserves to be more familiar in
condensed-matter physics.) Further Chern-Simons-type terms
that can occur in our theories in 2 + 1 dimensions are the first
and second Wen-Zee terms [8],

L(WZ1) = εμνλωμ∂νAλ, (3.4)

L(WZ2) = εμνλωμ∂νωλ, (3.5)

as well as the gravitational Chern-Simons term

L(GCS) = εμνλ
(
�ρ

μσ ∂ν�
σ
νρ + 2

3�ρ
μσ�σ

νθ�
θ
λρ

)
(3.6)

(here we use θ as an ambient index; as usual with this sort of
thing, one very quickly runs out of greek letters). These terms
must be treated individually on a case-by-case basis.

Given such an induced action, one can effect the functional
derivatives as in the previous section to compute the expecta-
tion values of currents in the presence of a given background
configuration of the fields Aμ, eα

μ, and ω a
μ b. In particular, we

can define the number current

Jμ = 1
√̂

g

δSeff

δAμ

, (3.7)

the energy-momentum-stress tensor

τμ
α = − 1

√̂
g

δSeff

δeα
μ

, (3.8)

and the spin current

J
μ b

S a = 1
√̂

g

δSeff

δω a
μ b

, (3.9)

where we use the same notation for the currents and their
expectation values, as we expect the meaning to be clear from
context. The conservation laws obeyed by the currents are the
same as in the previous section.

In computing the currents from the induced action, we see
that the contributions from the locally invariant terms and from
the Chern-Simons-type terms have very different structure.
The contributions of the locally invariant terms to the currents

have the forms

J
μ

loc = 1
√̂

g
∂λ

(
δS loc

δFμλ

)
, (3.10)

τ
μ

α,loc = − 1
√̂

g

δS loc

δea
μ

− 1
√̂

g
∂λ

(
δS loc

δT α
μλ

)

− 1
√̂

g
ω

β

λ β

δS loc

δT
β

μλ

, (3.11)

J
μ b

S a ,loc = 1
√̂

g
eb
λ

δS loc

δT a
μλ

+ 1
√̂

g
∂λ

(
δS loc

δR a
μλ b

)

+ 1
√̂

g
ω a

λ c

δS loc

δR c
μλ b

− 1
√̂

g
ω c

λ b

δS loc

δR a
μλ c

. (3.12)

Each functional derivative here is taken with the remaining
arguments in Eq. (3.2) held fixed. There are two types of
terms that appear here. The first type occurs as the first term
on the right-hand side of the last two equations, which enter
because eα

μ and ω a
μ b can appear in S loc without derivatives.

The remaining terms make up the second type and in each
case can be combined to produce covariant derivatives of
tensor quantities, using, for example, the fact that for any
antisymmetric tensor field Aμν ,

1
√̂

g
∂ν(

√̂
gAμν) = ∇νA

μν + T λ
νλA

μν + 1

2
T

μ
λνA

λν, (3.13)

and similar extensions including the spin connection for
tensors with internal indices. The combinations of derivatives
and spin connections that appear are, in fact, a covariant form
of the curl (the covariant exterior derivative), in view of the
antisymmetry of the tensors Fμν , T α

μν , and R a
μν b in μ and

ν. We refer to such terms as bulk magnetization currents, in
analogy with Eqs. (1.4). [This is not entirely appropriate for
all the components, because, for example, the field strength
Fμν can appear in the familiar combinations E2 and B2 (for
electric and magnetic fields), with different coefficients, and
the former is related to electric polarization, not magnetization.
However, we are interested in the spacelike components and
zero frequency, and then the term magnetization is appropriate
for the terms we obtain, so for simplicity we use it for all the
terms.] We identify the covariant form of the bulk (number)
magnetization as

m
μν

b = 1
√̂

g

δS loc

δFμν

. (3.14)

The covariant bulk “energy-momentum magnetization” is

m
EM,μν

b α = − 1
√̂

g

δS loc

δT α
μν

, (3.15)

the α = 0 component of which can be identified with a
covariant version of the energy magnetization,

m
E,μν

b ≡ m
EM,μν

b 0, (3.16)

and the α = a components are a “momentum magnetization,”

m
M,μν

b a ≡ m
EM,μν

b a. (3.17)
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We refer to the resulting contribution of the first two to
the currents as number or energy magnetization currents,
respectively, while for the contribution of the last to the stress
tensor we refer to it as the “magnetization stress.” We include
for completeness the bulk “spin magnetization”

m
S,μλ b

b a = 1
√̂

g

δS loc

δR a
μλ b

, (3.18)

although we do not need it in this work.
We can point out here that the momentum magnetization

appears in both the contributions to the momentum density
and stress tensor and the spin current. We will see that this
is directly relevant to the issue of so-called torsional Hall
viscosity and its relation with the spin density.

When we consider the contribution of such magnetization
currents to the total current flowing through a section of the
system (the transport current), we must integrate them along a
hypersurface. Then we also pick up corresponding δ-function
current contributions on the boundary, which arise because
of the boundary term when one integrates by parts to obtain
the curl form of the bulk magnetization currents (all terms
in the action are assumed to vanish outside the boundary).
Consequently, as in textbook electrodynamics of media, the
magnetization currents give no net contribution to the transport
current. On the other hand, when we look at contributions of
the Chern-Simons-type terms to the currents, by construction
we cannot find contributions that can be written as covariant
derivatives of covariant tensors. Because of this, the integration
of these contributions to the currents across a section of
the sample necessarily gives nontrivial contributions to the
transport current.

IV. INDUCED ACTION: FIRST ORDER IN DERIVATIVES

For the remainder of this work, we focus on d = 2-
dimensional systems. We require the induced action to be
consistent with spacetime reparametrization invariance, in-
ternal spatial rotation symmetry, and electromagnetic gauge
invariance, up to boundary terms. To do this, we must establish
a consistent filtration scheme on the myriad of terms that
one could write. We adopt a derivative counting scheme in
which Aμ and eα

μ are counted as zero derivatives; that is, they
are assigned degree 0. The spin connection ωμ is counted as
one derivative in order to ensure that the spacetime covariant
derivative and the torsion tensor have well-defined degree 1.

The naive derivative counting scheme above is complicated
slightly by the special role played by the background magnetic
and gravitomagnetic fields. In a general curved spacetime, the
scalar magnetic field felt by the system is

B = 1
2εμνλe0

μFνλ. (4.1)

As noted above, we are also considering perturbations to the
“gravitomagnetic potential” e0

μ, and, noting the similarities to
the electromagnetic potential Aμ, we can consider correlation
functions in the presence of not only a background magnetic
field, but also in the presence of a background “gravitomag-
netic field” constructed from the timelike torsion,

BG = 1
2εμνλe0

μT 0
νλ, (4.2)

which we expect to enter thermodynamic quantities similarly
to the magnetic field B. Notice that this is the same quantity,
Eq. (2.16), that is zero in a region if and only if spacelike
hypersurfaces exist there. In applications, BG will be set to
zero at the end, but since it plays a similar thermodynamic
role to the magnetic field, we treat the two symmetrically for
consistency. The equilibrium properties of our system can be
arbitrary functions of B and BG, and to capture this, it is
necessary for us to retain terms at all orders in B and BG.

With this in mind, we adopt the following scheme for
writing terms in the induced action. Of all possible terms
consistent with spacetime reparametrization invariance, in-
ternal rotation symmetry, and U(1) gauge symmetry (up to
boundary terms), we retain terms to all orders in B and BG

and only terms quadratic and to first order in derivatives
in the other combinations of Aμ, eα

μ, and ωμ. This leaves
us with all of those terms which contribute to linear order
in derivatives of ψ = e0

0 − 1 and Aμ to the thermoelectric
response functions. Although we could dispense with higher-
order terms in the gravitomagnetic field BG and still fully
capture the thermoelectric response properties, we will see
that interpreting our results will be made easier by treating it
symmetrically with the magnetic field B.

The most general induced action, consistent with the
discussion above, is given by

Seff =
∫

d3x
√̂

g

[
f (B,BG) + γ (B,BG)εμνλea

μT a
νλ

+ γ̃ (B,BG)εμνλεabe
a
μT b

νλ + ν

4π
εμνλAμ∂νAλ

]
. (4.3)

Here f , γ , and γ̃ are scalar functions of their arguments.
We mention here that we could have treated the two scalars
constructed from the spacelike torsion, namely,

BT = 1
2εμνλea

μT a
νλ, (4.4)

B̃T = 1
2εμνλεabe

a
μT b

νλ, (4.5)

in a similar way as B and BG, keeping terms to all orders and
including them in f , instead of only to first order as we did. We
have done it this way because it is useful in the later discussion
to separate these pieces and also in order to compare with the
literature.

The coefficients in the effective action, or their Taylor ex-
pansions in their arguments, correspond to response functions,
as we will see. While we are assuming that the temperature is
zero, we emphasize that if we do allow nonzero temperature,
the coefficients will have only exponentially small corrections,
due to the gap in the energy spectrum in the bulk.

We would now like to identify the functions appearing in
the actions in Eq. (4.3) with certain thermodynamic properties
of the system. We start by computing the average currents
Eqs. (3.7) and (3.8). We find for the number current

Jμ = ν

4π
εμνλFνλ

+ 1
√̂

g
∂ν

[√̂
g

(
∂f

∂B
+ 2BT

∂γ

∂B
+ 2B̃T

∂γ̃

∂B

)
ελμνe0

λ

]
,

(4.6)
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from which we identify the bulk magnetization

m
μν

b =
(

∂f

∂B
+ 2BT

∂γ

∂B
+ 2B̃T

∂γ̃

∂B

)
ελμνe0

λ. (4.7)

For the spin current we find after a little algebra

J
μ b

S a = 4γ e
μ

0 εab. (4.8)

We note that to this order in gradients, there is no spin magnetization as the curvature does not enter into the action. Finally, for
the energy-momentum-stress tensor we have

−τμ
α = eμ

α f + γ εμνλT a
νλδ

a
α + γ̃ εμνλT b

νλεabδa
α + 1

2
ερνλ

(
∂f

∂B
Fνλ + ∂f

∂BG

T 0
νλ

) (
δμ
ρ δ0

α − eμ
α e0

ρ

)
+ ερνλ

(
∂γ

∂B
Fνλ + ∂γ

∂BG

T 0
νλ

) (
δμ
ρ δ0

α − eμ
α e0

ρ

)
BT + ερνλ

(
∂γ̃

∂B
Fνλ + ∂γ̃

∂BG

T 0
νλ

) (
δμ
ρ δ0

α − eμ
α e0

ρ

)
B̃T

+ 1
√̂

g
∂ν

[√̂
gερμν

(
∂f

∂BG

+ 2BT

∂γ

∂BG

+ 2B̃
∂γ̃

∂BG

)
e0
ρδ

0
α

]
+ 1

√̂
g

∂ν

(
ερμν√̂g2γ ea

ρδ
a
α

) + 2γω a
ν cε

ρμνec
ρδ

a
α

+ 1
√̂

g
∂ν

(
ερμν√̂g2γ̃ ea

ρεabδ
b
α

) + 2γ̃ ω a
ν bε

ρμνec
ρεacδ

b
α. (4.9)

The expression for the energy-momentum-stress tensor is
covariant, despite its appearance (compare the discussion in
the previous section). In it, we identify the energy-momentum
magnetization

m
EM,μν

b α = −ερμν

[(
∂f

∂BG

+ 2BT

∂γ

∂BG

+ 2B̃T

∂γ̃

∂BG

)
e0
ρδ

0
α

+ 2γ ea
ρδ

a
α + 2γ̃ ea

ρεabδ
b
α

]
. (4.10)

To get a feeling for the meaning of these functions,
we proceed to evaluate the currents in the absence of any
perturbations. That is, we set e = Id, ω = 0, which implies in
particular that B = B0 = F12, BG = 0. We also take B to be
uniform in space. In this case, we find for the number current
in either ensemble

Jμ(e = Id,ω = 0) = νB0

2π
δ

μ

0 , (4.11)

allowing us to identify the unperturbed expectation of the
number density

n ≡ νB0

2π
. (4.12)

Similarly, we have for the spin current

J
μ b

S a (e = Id,ω = 0) = 4γ (B0,0)δμ

0 εab, (4.13)

from which we can identify the unperturbed spin density,

ρS,0 = 4γ (B0,0). (4.14)

For the energy-momentum-stress tensor in flat spacetime we
have

τμ
α = −δμ

α

[
f (B0,0) − ∂f

∂B
(B0,0)B0

]
− δ

μ

0 δ0
α

∂f

∂B
(B0,0)B0,

(4.15)

which allows us to identify −f (B0,0) as the unperturbed
energy density (as is clear from the effective action itself, as we

are using the canonical ensemble). The unperturbed internal
pressure [11,22] is

pint,0 ≡ f (B0,0) − ∂f

∂B
(B0,0)B0. (4.16)

Last, we examine the unperturbed magnetizations for e =
Id, ω = 0, as these expressions prove useful later. We find for
the bulk number magnetization

m
μν

b,0 = ∂f

∂B
(B0,0)ε0μν, (4.17)

for the bulk energy magnetization

m
E,μν

b,0 = −ε0μν ∂f

∂BG

(B0,0), (4.18)

and for the bulk momentum magnetization

m
M,μν

b,0 a = 2εbμνγ̃ (B0,0)εab − 2εaμνγ (B0,0). (4.19)

V. LINEAR RESPONSE FROM THE INDUCED ACTION

A. General considerations

With all this formalism established, we now wish to
examine the response of the average currents to the external
fields to linear order. Before we proceed to expand the
expressions Eqs. (4.6)–(4.9) in the external fields, we must
connect our currents with those in the statistical physics
literature. To do so, we must make contact with the standard
view of the perturbing fields δe and ω as externally applied
fields [11,12].

While what we have done up to now is valid in any system of
coordinates, we must remember that a physical measurement
is performed using a fixed choice of coordinates xμ (the
laboratory coordinate system, if you will). We would like to
interpret the vielbeins ea

μ(x) as externally applied fields in this
given coordinate system. If they were held fixed, then this does
not cause any issues, but because we wish to vary them and
study the response to perturbations in them, it is necessary to
be careful about the following point. Given a conserved vector
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field Kμ (such as the conserved number current Jμ and others),
we identify the experimentally relevant current by considering
the flux of Kμ through a surface that is fixed when the perturb-
ing δeα

μ. It is of paramount importance to maintain conservation
of Kμ; so by considering integrals of the two form,

Kμεμνλdxνdxλ,

across an infinitesimal hypersurface, which, as we saw in
Sec. II, requires no additional vielbein factors under the
integral, we see that it is actually Kμεμνλ that we should
utilize. Extracting the coordinate-transformation invariant
ε̌μνλ symbol, we see that the physically meaningful quantity
is the tensor density

K̂μ = √̂
gKμ. (5.1)

The practical effect of this is that when we look at the change
in K̂μ to linear order in perturbations of the vielbeins, there is
an additional term compared with what one obtains using Kμ.
(In a microscopic linear response calculation, these show up
as “contact terms,” that is, contributions to the response that
are given by an expectation value of some operator at a single
time, rather like the familiar diamagnetic term in conductivity
response.)

As an example of how this makes contact with the literature,
let us revisit the microscopic number current computed in
Sec. II. In the presence of nontrivial eα

μ, the number current
computed from Eq. (2.14) is

Jμ = e
μ

0 ϕ†ϕ − i

2m
eμ
a eν

a[ϕ†Dνϕ − (Dνϕ)†ϕ], (5.2)

whereas the number current density is given by

Ĵ μ = √̂
g

{
e
μ

0 ϕ†ϕ − i

2m
eμ
a eν

a[ϕ†Dνϕ − (Dνϕ)†ϕ]

}
. (5.3)

Let us examine this in the case of Luttinger’s gravitational
perturbation in otherwise flat space, setting

e0
μ = δ0

μ (1 + ψ) ,
(5.4)

ea
μ = δa

μ.

We then find that

Ĵ μ = δ
μ

0 ϕ†ϕ − (1 + ψ)δμ

i

i

2m
[ϕ†Diϕ − (Diϕ)†ϕ], (5.5)

in agreement with the form of the current operator in the
presence of the background gravitational field presented in
Refs. [11,12].

Similar considerations hold for the energy-momentum-
stress energy tensor τμ

α . In that case we must also pay attention
to the second (lower) index. The physical response corresponds
to the tensor density with the second index converted to an
ambient spacetime index in the same laboratory coordinate
system. For example, in the case of Luttinger’s perturbation,
this corresponds to the Hamiltonian being the generator of
translations along the vector field ∂/∂xμ=0 rather than along
e
μ

0 ∂/∂xμ. Altogether, we must consider the response of the
energy-momentum-stress tensor density τ̂ μ

ν to perturbations.
As an illustration, if we consider the energy density τ̂ 0

ν=0
computed from the microscopic action Eq. (2.14) in the
presence of Luttinger’s gravitational perturbation Eq. (5.4),

we find

τ̂ 0
ν=0 = (1 + ψ)

1

2m
(Diϕ)† Diϕ, (5.6)

consistent with the energy density operator used in
Refs. [11,12] for calculating thermal transport coefficients.

Following this discussion, the current densities we wish to
consider are, from Eqs. (4.6)–(4.9),

Ĵ μ = ν

4π
ε̂ μνλFνλ + ∂νm̂

μν

b , (5.7)

τ̂ μ
ν = −√̂

gδμ
ν f − γ ε̂ μρλT a

ρλe
a
ν − γ̃ ε̂ μρλT b

ρλεabe
a
ν

− 1

2
ε̂ ρσλ

(
∂f

∂B
Fσλ + ∂f

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
−BT ε̂ ρσλ

(
∂γ

∂B
Fσλ + ∂γ

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
− B̃T ε̂ ρσλ

(
∂γ̃

∂B
Fσλ + ∂γ̃

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
− eα

ν ∂σ m̂
EMμσ

b α − ω a
σ cm̂

Mμσ

b ae
c
ν . (5.8)

Here we may mention that because of the use of the current
densities, the Hall conductivity (the first term in the current
density response) comes out as ν/(2π ), which is quantized,
times the coordinate-independent ε̂ ij , showing quantization
with no need to extract a factor involving the vielbeins.

B. Thermoelectric response

We first consider number and energy current density
response to Luttinger’s ψ = e0

0 − 1 and an electric potential
φ = −A0 to obtain the full set of electric, thermal, and cross
conductivities. We assume that F12 = B0 is independent of
space and time coordinates. A convenient fact about this choice
of perturbing fields is that B = B0 and BG = 0, independent
of ψ . In particular, this ensures that

∂μ

∂f

∂B
= ∂μ

∂f

∂BG

= 0 (5.9)

in the Luttinger case. Using this fact, we can expand the
number and energy current densities, Eqs. (5.7) and (5.8),
to first order in φ and ψ to find

Ĵ i = − ν

2π
ε̂ ij ∂jφ + ∂j

[
m̂

ij

b,0(1 + ψ)
]
, (5.10)

Ĵ i
E ≡ τ̂ i

ν=0 = ∂j

(
m̂

ij

b,0φ
) + ∂j

[
m̂

E,ij

b,0 (1 + 2ψ)
]
. (5.11)

Comparing with Eqs. (1.4) and (1.5), we see that, apart from
the Hall conductivity term in Ĵ μ, the terms are precisely the
magnetization contributions, though in the present case they
result from the bulk only. In particular, this allows us to identify
the kinetic coefficients L(n) (which obey Onsager reciprocity
provided m̂

ij

b,0 is an odd function of B),

L
(1)
ij = ν

2π
ε̂ ij , (5.12)

L
(2)
ij = L

(3)
ij = −m̂

ij

b,0 = ∂f

∂B
ε̂ ij , (5.13)

L
(4)
ij = −2m̂

E,ij

b,0 = 2
∂f

∂BG

ε̂ ij . (5.14)
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This is one of our main results and requires further discussion.
The bulk magnetization currents are equilibrium effects and,
because of boundary contributions to the current from the same
terms in the action, do not contribute to the net current across
any section of the system. Neither does L(4) bear any particular
relation to the central charge c.

Comparing with the work of CHR, in their case the
magnetization includes edge effects, and these are not just
the contributions that relate to the bulk magnetization (the
latter is temperature independent, up to exponentially small
corrections, while there are thermal edge currents of order T 2).
Moreover, the transport current densities, which correspond
to the net current through a section across the sample, were
declared to be due to bulk transport current density with no
contribution located on the edge, by definition. When this is
done, the effect of thermal excitation at the edge that produces
the thermal Hall conductivity (related to the central charge)
is reassigned as a bulk effect. At the same time the bulk
magnetization effects are canceled in the transport current
densities by the corresponding part of the edge currents, as we
have seen. (As they emphasize, the actual local current density
in the bulk, which is what we have studied, is not the same as the
transport current density.) In equations, their prescription for
the transport coefficients is given above in Eq. (1.13). (At this
stage, they are written for the response of the heat, not energy,
current density to perturbations that couple to number and heat,
not energy.) If we use our results along with the known O(T 2)
edge contribution to the energy magnetization, we finally
obtain

N
(1)
ij = ν

2π
ε̂ ij ,

N
(2)
ij = N

(3)
ij = 0, (5.15)

N
(4)
ij = πc

6
T 2ε̂ ij .

These results are checked explicitly for a noninteracting integer
quantum Hall system in Appendix B.

We see then that, excepting the Hall current, the thermo-
electric transport currents are due solely to edge effects and
flow along the edge, even if gravitational background fields
are included. (In the case of the Hall number current density
response, in the more general situation in which there is a
bulk electric field as well as a chemical potential gradient,
there are contributions from both the bulk and the edge, such
that the net current through a section is proportional to the
change in the electrochemical potential across the sample,
which is the statement of the quantized Hall effect. This was
well understood in the 1980s, but is the subject of frequent
misstatements at present.) The confusion that exists in the
literature concerning the thermal Hall conductivity arises from
the aforementioned fact that the total magnetization densities,
and thus the transport current densities, are typically defined
by fiat to include effects from the edge. We have shown here
that bulk thermoelectric response is independent of these edge
contributions. This result should be contrasted with the recent
claims of Ref. [26].

C. Stress response

Finally, we consider the response of the stress tensor to
time-varying spatial perturbations δea

i (t) of the vielbeins,
once again with a spatially uniform and time-independent
electromagnetic field strength F12 = B0.

Expanding Eq. (5.8) to linear order in the perturbing fields,
we find

−τ̂ i
j = δi

j

[
pint,0 +

(
pint,0 + B2

0
∂2f

∂B2

)
tr
(
δea

k

)]
+B0

∂γ

∂B
ε̂ aνλT a

νλδ
i
j + γ ε̂ iρλT a

ρλδ
a
j

+ 2δa
j ε̂

iσρ
[
∂σ

(
γ ea

ρ

) + γω a
σ be

b
ρ

]
. (5.16)

All terms proportional to γ̃ cancel. Using the structure
equation (2.5), we can combine the second, third, and fourth
terms to obtain, when ω = 0,

− τ̂ i
j = δi

j

[
pint,0 +

(
pint,0 + B2

0
∂2f

∂B2

)
tr
(
δea

k

)]
+ 2γ

(
δa
j ε

i
� − δi

�ε
a
j

)
∂0e

a
�

+
(

γ − B0
∂γ

∂B

) (
εi

j δ
�
a − δi

j ε
�a

)
∂0e

a
� . (5.17)

The first term is what is expected for the response to
dilations [22] and allows us to identify the inverse internal
compressibility,

κ−1
int = −B2 ∂2f

∂B2
. (5.18)

The second arises from the spacelike torsion term with
coefficient γ and gives what has been called “torsional Hall
viscosity” [5] and is, in fact, equal to one-half the unperturbed
spin density as in Refs. [9,10]. The final term breaks the
symmetry of the stress tensor and is necessary to ensure that
the continuity equation (2.42) is satisfied.

Even though we do not analyze all possible two-derivative
terms in this paper, we also examine the contribution of the
first Wen-Zee term,

SWZ1 = νS
4π

∫
d3x

√̂
gεμνλωμ∂νAλ, (5.19)

to the stress tensor. Here S is the shift [8]. While of degree 2
in our counting scheme, it should be kept here because we
keep the field strength B0 as if it were of degree 0. We find,
trivially, that this term contributes nothing to the stress, as
the spin connection and vector potential are independent of
the vielbeins. This is contrary to our expectation that the first
Wen-Zee term furnishes a Hall viscosity with a coefficient
containing S/4 [6,7]. It does, however, contribute to the spin
current a term νS

4π
εμνλ∂νAλ.

To make sense of these results, we now argue that
Eq. (5.8) is not the physical stress tensor corresponding
to momentum transport, as Eq. (2.45) shows that it is
not symmetric even in the absence of torsion. For various
reasons [27,28], it is preferable to use a symmetric stress
tensor. This is accomplished with the Belinfante “improved”
energy-momentum-stress tensor density. We obtain this by
changing our view of which variables are independent in the
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description of the spacetime geometry. Instead of eα
μ and ωμ,

from which the Christoffel symbols and torsion were derived
using covariant constancy of the vielbein, we now change to
using eα

μ (or the corresponding tensors with upper and lower
indices interchanged) and the reduced torsion T̃ a

μν defined
in Appendix A as the independent variables (the reduced
torsion has the same number of independent components
as the spin connection). We show in Appendix A that the
Christoffel symbols, spin connection, and spacelike torsion
can be expressed in terms of these (we already know that the
timelike torsion can be). Then we make the definition

τ
μ

B α = − 1
√̂

g

(
δSeff

δeα
μ

)
A,T̃ a

(5.20)

and call this the generalized Belinfante energy-momentum-
stress tensor because it resembles the Belinfante improvement
procedure (which we do not describe, but it involves adding
derivatives of the spin current to the energy-momentum-stress
tensor), and it is “generalized” because we include torsion.
Further details are in Appendix A; we note here only that the
space components are symmetric in the absence of reduced
torsion. In general, the change in definition has the conse-
quence that the Belinfante energy-momentum-stress tensor
differs from τμ

α by a change in the momentum magnetization
from the locally invariant terms in Seff and by the appearance of
terms coming from the Riemann tensor in the effective action,
which, however, we do not have in our first-order Seff . Clearly,
we should use this definition throughout, including for the
thermoelectric responses in the previous section. However, for
those responses, the change in definition makes no difference.
Finally, we continue to refer to the spin current with the same
definition as before for convenience; however, the formalism
leads us to introduce another field which takes the place of the
spin current in some expressions, which is

θμν
a = 1

√̂
g

(
δSeff

δT̃ a
μν

)
A,eα

, (5.21)

which, in fact, is exactly the part of the momentum magneti-
zation removed in this construction, and so appeared as a term
in the spin current (up to a vielbein factor).

Using our first-order effective action, we find for the
Belinfante energy-momentum-stress tensor density

τ̂
μ

B ν = −√̂
gδμ

ν f − γ ε̂ μρλT̃ a
ρλe

a
ν − 2γ̃ ε̂ μρλ

(
∂ρe

b
λ

)
εabe

a
ν

− 1

2
ε̂ ρσλ

(
∂f

∂B
Fσλ + ∂f

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
−BT ε̂ ρσλ

(
∂γ

∂B
Fσλ + ∂γ

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
− B̃T ε̂ ρσλ

(
∂γ̃

∂B
Fσλ + ∂γ̃

∂BG

T 0
σλ

) (
e0
νδ

μ
ρ − e0

ρδ
μ
ν

)
− eb

ν∂ν

(
ερμν√̂g2γ̃ ea

ρεab

)
− e0

ν∂σ m̂
Eμσ

b , (5.22)

which, as noted above, differs from Eq. (5.8) in that it receives
no magnetization stress contribution from the reduced torsion.

Expanding to linear order in the perturbing fields δea
i (t) and

T̃ a
μν , we find

−τ̂ i
B j = δi

j

[
pint,0 +

(
pint,0 + B2

0
∂2f

∂B2

)
tr
(
δea

k

)]
+B0

∂γ

∂B
εaνλT̃ a

νλδ
i
j + γ εiρλT̃ a

ρλδ
a
j . (5.23)

The first term here is unchanged. From the tensor structure of
the second term, we see that it gives a change in pressure
in the presence of background reduced spacelike torsion.
The last term breaks the symmetry of the stress tensor in
the presence of reduced torsion, which is necessary given the
symmetrization condition Eq. (A13) derived in Appendix A.
Some intuition for these two terms can be gleaned from the
fact that they can be reexpressed as

B0
∂γ

∂B
εaνλT̃ a

νλδ
i
j + γ εiρλT̃ a

ρλδ
a
j = 1

2
eα
j T̃ a

ρλ

δθ̂
ρλ

a

δeα
i

, (5.24)

expanded to linear order in the external fields. We thus see that
these two contributions to the Belinfante tensor correspond
to the change in momentum magnetization density due to
strain. The stress tensor does not receive a contribution of
the form of the “torsional Hall viscosity” mentioned above. A
similar effect was noted in Ref. [29] for the relativistic case.
If we define viscosity as the response to ∂0e

a
i at zero reduced

spacelike torsion, then we obtain no viscosity terms at all from
the first-order action.

In addition, we now make an important point: The min-
imally coupled microscopic matter action in Sec. II B does
not feel reduced torsion at all in the case of noninteracting
particles, or of particles with a δ-function interaction, or for
general potential interactions at least when BG = 0 (so space-
like hypersurface exist). In all these cases, the microscopic
action depends only on the vielbein and vector potential, not
on the reduced torsion. Consequently [see Eqs. (A9) and (A10)
in Appendix A], for all such cases the coefficient function γ

in the first-order effective action is zero, at least for BG = 0,

γ (B,0) = 0, (5.25)

while γ̃ does not have to vanish. Hence, in these cases the
unusual contributions to the stress response are simply absent,
and both the current θ

μν
a and the spin current J

μ b

S a resulting
from the first-order action are zero.

Finally, our construction of the Belinfante stress tensor
allows us to see how the first Wen-Zee term furnishes a
Hall viscosity even in the absence of reduced torsion (we
already saw that it produces an addition to the spin current).
Equation (A8) allows us to express the first Wen-Zee term
solely in terms of the electromagnetic field strength, the
reduced torsion, and the spacelike vielbeins. Modulo reduced
torsion terms that are locally invariant, which we drop, the first
Wen-Zee term Eq. (5.19) becomes

SWZ1 ∼ νS
16π

∫
d3x

√̂
gεμνλεabFμν

(
eρ
a eσ

b ∂σhρλ + eρ
a ∂λe

b
ρ

)
.

(5.26)

Computing the contribution of this term in the action to the
Belinfante stress tensor to linear order in the perturbations
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yields an additional contribution,

�τ̂ i
B j = 1

4nS(εi�δkj − εkj δi�)∂0e
�
k. (5.27)

As expected, this has the form of a Hall viscosity, with known
coefficient [9,10]

ηH = 1
4nS. (5.28)

Because the Wen-Zee term is not locally invariant, this con-
tribution is not a magnetization stress, and the coefficient νS
is robust against perturbations of the model that maintain the
gap and preserve all symmetries. This confirms that previous
Berry phase [9,10] and linear response [22] calculations of the
Hall viscosity yielded a true transport coefficient. The locally
invariant contributions which we have ignored in this analysis
only add to the expression for θ

μν
a appearing in Eq. (5.24).

They contribute nothing to the stress tensor when the reduced
torsion is zero and cannot arise in the minimally coupled
models when BG is zero. In the latter case, for the action we
have considered, the spin current is due solely to the Wen-Zee
term as well, and the relation of the Hall viscosity with the spin
density [9,10] ns = nS/2 is found also (we expect this relation
to be maintained when other second- or higher-order terms are
included as well). We also note that the Wen-Zee term as above
does not contribute to the thermoelectric transport.

VI. CONCLUSION

We have found a low-energy induced bulk action for trans-
port in gapped topological phases by allowing the spacetime
geometry to include timelike and spacelike torsion, as well
as curvature. From this, we derived the bulk thermoelectric
transport coefficients and showed that a gapped bulk cannot
contribute to thermal conductivity or thermopower, up to
exponentially small corrections in temperature. We examined
the stress tensor and showed that any torsional Hall viscosity
drops out in the appropriate Belinfante improved tensor,
leaving the Hall viscosity that is related to the orbital spin
density.

A similar approach can be taken for other terms in the action
that are higher than first order in derivatives in our counting
scheme. These do not contribute directly to transport, but we
expect the central charge to appear as a coefficient. We defer
the treatment of these terms to a future work.
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APPENDIX A: GENERALIZED BELINFANTE
CONSTRUCTION

In this appendix, we generalize the Belinfante construction
of a symmetric stress tensor to situations in which spacetime
has torsion. Our guiding principle is that we demand that the
stress tensor correspond as closely as possible with a variation

of the action with respect to the (degenerate) spatial metric

hμν = ea
μea

ν , (A1)

rather than to a variation of the action with respect to the
vielbein with the spin connection held fixed. If the spin
connection can be expressed in terms of the vielbein and
torsion, and if these are independent (if there are no relations
between torsion and vielbeins), then varying the vielbeins with
the torsion held fixed will produce such a stress tensor, very
much in analogy with the usual case (in particular, when torsion
is absent throughout). In our case, the timelike torsion and, as
it turns out, also part of the spacelike torsion are determined by
the vielbeins alone, independent of the spin connection, so that
if we desire (as we do) to have no constraints on the vielbeins,
we cannot take all components of torsion as independent,
because, for example, they cannot all be set to zero without
introducing unwanted constraints on the vielbeins.

First we solve Eq. (2.4) for the Christoffel symbols and the
spin connection. To this end, we note first that an immediate
consequence of the covariant constancy of the vielbein is the
covariant constancy of the degenerate metric hμν , that is,

∇μhνλ = 0 = ∂μhνλ − �ρ
μνhρλ − �

ρ
μλhνρ. (A2)

We can solve this equation for the symmetric part of the
Christoffel symbols, while the antisymmetric part is deter-
mined solely by the torsion tensor (timelike and spacelike).
The result can be expressed most simply as

�α
λν ≡ eα

μ�
μ
λν = δα

0 ∂λe
0
ν + δα

a

[
1
2ηabe

μ

b (∂νhλμ

+ ∂λhμν − ∂μhνλ) + Ka
λν

]
, (A3)

where we have introduced the contorsion tensor

Ka
λν = 1

2

[
T a

λν + ηab
(
e
μ

b ec
λT

c
μν + e

μ

b ec
νT

c
μλ

)]
. (A4)

Next, with explicit expressions for the Christoffel symbols
in hand, we wish to solve Eq. (2.4) for the spin connection.
Examination of Eq. (2.5) shows that (similar to the case of the
timelike torsion) because the spin connection vanishes when
either of its internal indices are timelike, there is a part of the
spacelike torsion that is independent of the spin connection.
This part can be expressed as

Cab ≡ e
μ

0 eν
c

(
ηacT b

μν + ηbcT a
μν

)
(A5)

= (
e
μ

0 eν
c − eν

0e
μ
c

)(
ηac∂μeb

ν + ηbc∂μea
ν

)
. (A6)

This allows us to define what we call the reduced torsion,
which is purely spacelike:

T̃ a
μν ≡ T a

μν − 1
2ηbcC

ab
(
e0
μec

ν − e0
νe

c
μ

)
. (A7)

The components of the reduced torsion are not all independent;
it is defined so that it yields zero when substituted into the
definition of Cab [Eq. (A5)]. This is natural: We are seeking a
linear relation between the torsion and spin connection, but the
latter has d(d − 1)(d + 1)/2 independent components, while
spacelike torsion has d2(d + 1)/2 independent components.
Taking into account the d(d + 1)/2 constraints from setting
Eq. (A5) to zero, we are left with d(d − 1)(d + 1)/2 indepen-
dent components of reduced spacelike torsion, the same as in
the spin connection, as required.
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Specializing to 2 + 1 dimensions, we can now solve
Eq. (2.4) for the spin connection in terms of the reduced torsion
and the vielbeins to find

ωλ ≡ 1
2ε b

a ω a
λ b = 1

2εabeμ
a eν

b

(
∂νhμλ + 1

2ec
λT̃

c
μν

)
+ 1

2εabeμ
a

(
∂λe

b
μ + T̃ b

μλ

)
. (A8)

There are similar expressions in higher dimensions. We thus
see that we are free to consider the reduced torsion, instead of
the spin connection, as an independent variable along with the
vielbeins and the U(1) vector potential Aμ. We also note that
the scalars constructed from the torsion that were defined in
Sec. IV can be written as

BT = 1
2εμνλea

μT̃ a
νλ, (A9)

B̃T = 1
2ηabC

ab. (A10)

The preceding allows us to define the generalized Belinfante
energy-momentum-stress tensor τ

μ

B α resulting from an action
S as in Eq. (5.20), where the reduced torsion is held fixed
in the functional derivative. We claim that τB represents the
physical energy-momentum-stress tensor. To justify this, we
must derive the continuity equation that it satisfies. To do so,
we also need θ

μν
a as defined in Eq. (5.21); it is the analog of

the spin current (which has the same number of independent
components). Examining the variation of a general action
under spacetime diffeomorphism as in Sec. II, we find that
the generalized Belinfante energy-momentum-stress tensor
satisfies the continuity equation (after use of the equations
of motion, if any)

∇μτ
μ

B λ − T ρ
ρμτ

μ

B λ = 2T̃ a
μλ

(∇νθ
μν

a − T ρ
νρθ

μν
a

) + θμν
aT

ρ
μνT̃

a
ρλ

+ θμν
a

(∇λT̃
a
μν + ∇ν T̃

a
λμ + ∇μT̃ a

νλ

)
+ τ

μ

B νT
ν
μλ − JμFμλ. (A11)

While this expression is quite unwieldy to say the least, it sat-
isfies an important property: It reduces to ∇μτ

μ

B λ = −JμFμλ

when the full torsion T λ
μν = 0 throughout the spacetime region

in question. (To see this, note that the projection of torsion
to reduced torsion is linear and that the coefficients involve
the vielbeins, which are covariantly constant.) Compared with
the continuity equation (2.42), the spin current times curvature
tensor term in that equation has disappeared, though the
terms θ∇T̃ are related to it, in view of the second Bianchi
identity [17],

∂[μT a
νλ] + ω a

[μ |b|T
b
νλ] = R a

[μν |b|e
b
λ] (A12)

(recall that the indices surrounded by vertical bars | · · · | are
not antisymmetrized with the others, namely μ, ν, and λ).

Additionally, by considering invariance of a general action
under internal spatial rotations, we find that the Belinfante
stress tensor satisfies the symmetry condition

εa
bτ

b
B a = εa

bθ
μν

aT̃
b
μν, (A13)

so that it is symmetric in the absence of reduced torsion, even
when the full torsion tensor is nonvanishing. We thus see
that our definition of τB reduces to the standard Belinfante
energy-momentum-stress tensor in the absence of torsion, and
is symmetric in the presence of torsion provided the reduced

torsion vanishes. Therefore, we claim that it represents the
physical stress tensor of a general system.

An important special case that illustrates the significance
of reduced torsion and the Belinfante construction is a 2 + 1-
dimensional manifold with vielbeins that differ from the trivial
ones eα

μ = δα
μ only in the space-space components ea

i and are
independent of the space coordinates. If we try to directly
solve the Cartan equations (2.5) for the spin connection with
the torsion set to zero, we find that they are inconsistent. In
fact, for this geometry,

Cab = ηcbei
c∂0e

a
i + ηacei

c∂0e
b
i , (A14)

and hence the spacelike torsion does not vanish for any choice
of spin connection. The reduced torsion, however, may be set
to any arbitrary value, and the Cartan equations can be solved
to find a spin connection that is gauge equivalent to Eq. (A8).
Note that this geometry is precisely what is usually considered
for computations of the viscosity tensor [9,10,22,30], although
the nonvanishing of the spacelike torsion has not previously
been noted to our knowledge. Our generalized Belinfante
construction ensures the existence of a symmetric stress tensor
provided one takes the reduced torsion to be zero. This is
done implicitly in the condensed-matter literature, since, as
noted above, the reduced torsion does not enter into any usual
microscopic actions.

There exists an explicit formula for the improvement
term needed to convert the canonical stress tensor into this
Belinfante form. It can be derived from

τ
μ

B α − τμ
α = − 1

√̂
g

∫
dd+1x

√̂
gJ λ b

S a

(
δω a

λ b

δeα
μ

)
T̃ a

,

(A15)

although the general expressions are quite cumbersome and
unilluminating. We note only that, in the absence of torsion,
the improvement term reduces to the known Belinfante
improvement term; see, for example, Refs. [27,28].

APPENDIX B: LINEAR RESPONSE CALCULATION OF
THERMOELECTRIC COEFFICIENTS FOR

NONINTERACTING ELECTRONS

In this appendix, we recapitulate the standard linear re-
sponse calculation of the response functions for noninteracting
electrons in an integer quantum Hall phase.

1. Operator formalism

We consider a model Hamiltonian for a system of electrons
in a magnetic field,

H0 =
∑

p

π
p

i π
p

i

2m
+ V (rp), (B1)

=
∑

p

hp, (B2)

where we use i,j = 1,2 for spatial indices as above and
p,q = 0,1, . . . ,N for particle indices; hp is the Hamiltonian
for the pth particle. The π

p

i are the kinetic momenta,
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and [
r

p

i ,π
q

j

] = iδpqδij , (B3)

[
π

p

i π
q

j

] = iBεij δpq, (B4)

with B the magnetic field strength. As our goal will be to
calculate thermoelectric coefficients, in particular the thermal
conductivity tensor κij , we need to identify the number
current density Ji(r), the heat current density J

Q
i (r), and the

perturbations to which they couple.
Following Luttinger and CHR, we introduce a Hamiltonian

density h(r), a perturbing electric field φ(r), and a fictitious
gravitational field ψ(r) and identify the perturbed Hamiltonian
as

HT =
∫

d2r{[1 + ψ(r)]h(r) + φ(r)ρ(r)} (B5)

=
∫

d2rhT (r), (B6)

where

ρ(r) =
∑

p

δ(r − ri) (B7)

is the density operator, and the Hamiltonian density h(r)
satisfies ∫

d2rh(r) = H0. (B8)

Note that there is an operator ordering ambiguity inherent in
any attempt to define the energy density h(r). It is essential
later that we adopt the definition

h(r) =
∑

p

[
1

2m
π

p

i δ(r − ri)π
p

i + V (ri)δ(r − ri)

]
. (B9)

This differs from the more commonly used expression hCHR(r)
by

h(r) = hCHR(r) + 1

2m
∇2ρ(r) (B10)

and instead corresponds closely with the second-quantized
energy density operator of Sec. II used more recently in the
literature [15,23]. Note that h(r) yields a positive definite
kinetic energy density, while hCHR(r) does not. This justifies
its use, contrary to established convention.

The number and energy currents are determined up to a
divergence-free part by the continuity equations

∂ρ

∂t
+ ∇ · J = 0, (B11)

∂hT

∂t
+ ∇ · JE =

(
∂φ

∂t
+ ∂ψ

∂t

)
h (B12)

[the right-hand side of Eq. (B12) accounts for the fact that
the explicit time dependence of the perturbing fields breaks
energy conservation]. In order to fix the divergence-free pieces
of the currents, we demand that the CHR scaling relations

J(r) = [1 + ψ(r)]j(r), (B13)

JE(r) = [1 + 2ψ(r)]jE(r) + φ(r)j(r), (B14)

hold to first order in φ and ψ , where j(r) and jE(r) are the
unperturbed number and energy currents, respectively. These
have exactly the form obtained from the formalism in Sec. II,
with e0

μ = δ0
μ(1 + ψ). A short calculation for the number

current reveals the standard result,

ji(r) = 1

2m

∑
p

{
π

p

i ,δ(r − ri)
}
, (B15)

and for the energy current,

jE
i (r) = 1

2m

∑
p

{
π

p

i ,
1

2m
π

p

j δ(r − ri)π
p

j + V (ri)δ(r − ri)

}

− i

8m2
εij ∂j

[
εklπ

p

k δ(r − ri)π
p

l

]
. (B16)

We are now interested in the linear response of the total (or inte-
grated) currents to the perturbations −∇φ and −∇ψ , to lowest
order in wave vector q. Denote the integrated currents by

J̄ = 1

V

∫
d2rJ(r) = 1

mV

∑
p

πp, (B17)

J̄E = 1

V

∫
d2rJE(r) = 1

2mV

∑
p

{πp,hp}, (B18)

where V is the volume of the system. Since we are interested
in vanishing q, we may take for the perturbations

φ(r) = −Ei(t)ri, (B19)

ψ(r) = −Gi(t)ri, (B20)

where we have restored the explicit time dependence of the
perturbation. Then what we want to compute are the zero
frequency response coefficients R

(n)
ij satisfying

δ〈J̄i〉 = R
(1)
ij Ej + R

(2)
ij Gj , (B21)

δ
〈
J̄ E

i

〉 = R
(3)
ij Ej + R

(4)
ij Gj . (B22)

Now the response functions R(n) are not simply given by
the naive Kubo formulas; the scaling relations Eqs. (B13)
and (B14) imply the presence of contact terms. For R

(1)
ij this

is not the case and we have simply that

R
(1)
ij = σij , (B23)

the usual zero-frequency conductivity tensor. For R
(2)
ij we

have in linear response

R
(2)
ij = L

(2)
ij − 1

V

∫
d2r〈rj ji(r)〉0, (B24)

L
(2)
ij = i

∫ ∞

0
dt eiω+t

〈[
J̄i(t),D

E
j (0)

]〉
0, (B25)

where DE
i is the operator which couples to Gi in the

Hamiltonian, henceforth referred to as the energy polarization:

DE
i =

∫
d2rrih(r) (B26)

= 1

2

∑
p

{
hp,r

p

i

}
. (B27)

125303-16



LOW-ENERGY EFFECTIVE THEORY IN THE BULK FOR . . . PHYSICAL REVIEW B 91, 125303 (2015)

Defining the magnetization density m0 to be

m0 = 1

2V

∫
d2r〈r × j(r)〉, (B28)

we see, after some elementary manipulations, that the contact
term in Eq. (B24) is simply

− 1

V

∫
d2r〈rj ji(r)〉0 = m0εij . (B29)

This term must be present due to the scaling relation (B13),
although from the form above we see that it is nonvanishing
only when time-reversal symmetry is broken. Similarly, we
have for R

(3)
ij

R
(3)
ij = L

(3)
ij − 1

V

∫
d2r〈rj ji(r)〉0, (B30)

L
(3)
ij = i

∫ ∞

0
dt eiω+t

〈[
J̄ E

i (t),Dj (0)
]〉

0, (B31)

where Di is the ordinary polarization, which couples to Ei in
the Hamiltonian, i.e.,

Di =
∑

p

r
p

i . (B32)

Note that the scaling relation (B14) ensures that it is the
ordinary magnetization that again appears as the contact term
in Eq. (B30).

Up to now, these formulas have all agreed with those of
Strěda and Smrčka. For R(4), however, we have

R
(4)
ij = L

(4)
ij − 1

V

∫
d2r

〈
rj j

E
i (r)

〉
0, (B33)

L
(4)
ij = i

∫ ∞

0
dt eiω+t

〈[
J̄ E

i (t),DE
j (0)

]〉
0; (B34)

the contact term can again be expressed in terms of a suitably
defined energy magnetization,

2mE
0 = 1

V

∫
d2r〈r × jE(r)〉0 (B35)

= 1

V

∑
p

εij

〈
hp

{
r

p

i ,π
p

j

}〉
0 − Bn̄

4m2
, (B36)

as

− 1

V

∫
d2r

〈
rj j

E
i (r)

〉
0 =

(
2mE

0 + Bn̄

4m2

)
εij . (B37)

It is important to note that in deriving these contact terms and
in relating them to the magnetizations, certain integrals and
trace identities need to be used which are only valid if the
states live in an honest-to-goodness Hilbert space; i.e., if they
are normalizable. Thus, the presence of the confining potential
V (r) is indispensable at this stage of the calculation. It is only
in the final expressions in Sec. B 3 of this appendix, that we
are able to take V → 0.

It is also worth mentioning that these Kubo formulas can be
put into a different, more suggestive form. Using the identities

for the integrated currents

J̄i = 1

V

∂Di

∂t
, (B38)

J̄ E
i = 1

V

∂DE
i

∂t
, (B39)

we can integrate Eqs. (B23), (B24), (B30), and (B33) by parts
to find

R
(1)
ij = ω+

V

∫ ∞

0
dteiω+t 〈[Di(t),Dj (0)]〉, (B40)

R
(2)
ij = ω+

V

∫ ∞

0
dteiω+t

〈[
DE

i (t),Dj (0)
]〉
, (B41)

R
(3)
ij = ω+

V

∫ ∞

0
dteiω+t

〈[
Di(t),D

E
j (0)

]〉
, (B42)

R
(4)
ij = ω+

V

∫ ∞

0
dteiω+t

〈[
DE

i (t),DE
j (0)

]〉
, (B43)

where the surface terms arising from the partial integration
exactly cancel the magnetization contact terms (in the case of
the conductivity R(1), both are identically zero). In this form,
we know from the projection theorem of Ref. [22] that in the
thermodynamic limit as ω → 0, the R

(n)
ij will be dominated

(if there were no confining potential) by matrix elements of
the polarization operators coming from states degenerate with
the ground state. In the presence of the confining potential,
however, the center-of-mass degeneracy of the Landau levels
is broken, and there is no longer an exact degeneracy. On
the other hand, in the thermodynamic limit, edge excitations
become gapless and, in fact, have a linear dispersion. The sum
over matrix elements then, schematically, produces terms like

ω+
∫

dkρ(k)
F0k

ω+ − vk
, (B44)

where ρ(k) is the density of states for the edge excitations. The
functions F0k represent the matrix elements of the polarization
operators between the ground state and the various edge-
excited states. These can be interpreted as moments of the
energy density operator on the edge (since in the bulk the states
are indistinguishable). This integral, when viewed as a function
of ω, has a branch point at the origin, and therefore the limit
ω → 0 must be evaluated carefully: It will be nonvanishing.

This demonstrates clearly the role of edge states in
determining the thermoelectric coefficients. One must keep in
mind, however, that the conductivity R(1) is fairly special in this
regard. In the absence of a confining potential, the polarization-
polarization and current-polarization response functions are
completely equivalent; the contributions to the conductivity
can be viewed alternatively as coming from the center-of-mass
degenerate single-particle states in the thermodynamic limit.
For the other response functions, the current-polarization form
must be added to the magnetization contribution in order to
recover the full response function. In the absence of a confining
potential, the magnetization term is not well defined: Particles
at larger and larger distances contribute more and more to the
magnetization. Thus, for these response function, the presence
of edge states is essential.
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2. Zero-temperature response in the integer
quantum Hall regime

We would now like to explicitly calculate the R(n)’s for
a system with j filled Landau levels at chemical potential
μ ∈ [ωc(j − 1/2),ωc(j + 1/2)] lying in the bulk gap between
levels. We are interested primarily in the low-temperature
behavior of the response coefficients. However, for single-
particle operators we have

〈O〉(μ,T ) =
∫ ∞

−∞
dη nF(η,T )Tr[δ(η − h)O] (B45)

= −
∫ ∞

−∞
dη

dnF

dη
(η,T )

∫ η

−∞
dζTr[δ(ζ − h)O]

(B46)

= −
∫ ∞

−∞
dη

dnF

dη
(η,T )〈O〉(μ = η,T = 0),

(B47)

where the trace is over all single-particle states, h is the
single-particle Hamiltonian, and nF (η,T ) = 1/(e(η−μ)/T + 1)
is the Fermi function. Thus, we can determine the behavior
of the response coefficients at nonzero temperature once their
zero-temperature behavior is known. Hence, in this section we
aim to evaluate the R

(n)
ij at zero temperature. This was done

in Ref. [13] using a resolvent formalism; however, here we
proceed directly using the Kubo formulas in the time domain.
This allows us to illuminate some subtleties in the derivation.
For notational simplicity, it should be understood that the limit
ω → 0 is implied in all expressions in this section.

Let us begin by noting that the conductivity σij is given by

σij (μ) = i

mV

∫ μ

−∞
dη

∫ ∞

0
dteiω+tTr{δ(η − h)[πi(t),rj (0)]}

(B48)

≡
∫ μ

−∞
dηAij (η), (B49)

where we have used the freedom afforded us by this
noninteracting problem to evaluate the averages using only
single-particle states. As its name would suggest, this Aij is
a generalization of the function introduced by Smrčka and
Strěda [13].

Next we examine R
(3)
ij (R(3) = R(2) via Onsager reci-

procity [11,13]). We can write the Kubo part of the response
function, L

(3)
ij , as

L
(3)
ij =

∫ μ

−∞
dη

[
ηAij (η) + 1

2
Bij (η)

]
, (B50)

where we have defined

Bij (η) = 1

m2V

∫ ∞

0
dteiω+tTr[δ(η − h){πi(t),πj (0)}].

(B51)

After a partial integration, we find that

L
(3)
ij = μσij (μ) +

∫ μ

0
dη (η − μ)

(
Aij − 1

2

dBij

dη

)
. (B52)

We can perform a similar analysis for L
(4)
ij to find

L
(4)
ij = Bn̄

4m2
εij + μ2σij (μ)

+
∫ μ

−∞
dη(η2 − μ2)

[
Aij (η) − 1

2

dBij

dη

]
. (B53)

Now it can be shown [13] that

Aij − 1

2

dBij

dη
= εij

dm0

dη
. (B54)

Plugging this into Eqs. (B52) and (B53), we find

L
(3)
ij = μσij (μ) − m0εij , (B55)

L
(4)
ij = μ2σij (μ) − 2mE

0 εij , (B56)

where we have used the relation

mE =
∫ μ

−∞
dηηm0(η) − Bn̄

8m2
, (B57)

which follows from Eq. (B36). From our discussion above, we
recognize the magnetization terms in Eqs. (B55) and (B56)
as precisely the negative of the contact terms in Eqs. (B30)
and (B33). Furthermore, we see that the explicit dependence
on the chemical potential in the first terms above indicates
that these are edge contributions. Upon subtracting the total
magnetizations, we have that the L’s are given by the bulk
contributions to the magnetizations, as asserted in Sec. V and
consistent with Eqs. (5.12)–(5.14). Thus, putting everything
together, we have

R
(1)
ij (μ) = σij (μ), (B58)

R
(2)
ij (μ) = R

(3)
ij (μ) = μσij (μ), (B59)

R
(4)
ij (μ) = μ2σij (μ), (B60)

in agreement with known results.

3. Extension to nonzero temperature

Having derived expressions for the R(n) at zero temperature,
we can now use Eq. (B47) to evaluate the transport coefficients
for all values of chemical potential μ and temperature T . Let
us start with the Hall conductivity R(1). As is well known, at
zero temperature we have in the thermodynamic limit (this is
the stage at which it is safe to take the limit) and with chemical
potential μ in a bulk gap

R
(1)
ij (μ) = 1

2π
εij

∑
n

�(μ − εn), (B61)
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where n indexes the Landau levels and εn is the Landau level
energy. At nonzero temperature, this becomes

R
(1)
ij (μ,T ) = −

∫ ∞

−∞
dη

dnF

dη
R

(1)
ij (η,0)

= −εij

1

2π

∑
n

∫ ∞

−∞
dη

dnF (η)

dη
�(η − εn)

(B62)

= 1

2π

∑
n

nF (εn)εij , (B63)

from which we see that corrections to the low-temperature
behavior are exponentially suppressed, as expected. In fact,
we have for η in a neighborhood of the chemical po-
tential μ that R(1)(η) is a slowly varying function when
μ is in a gap (actually, it is a constant), and hence for
temperatures T � ωc we can make use of the Sommerfeld
expansion

−dnF

dη
≈ δ(μ − η) + π2

6
T 2δ′′(μ − η) + · · · , (B64)

from whence we see that the corrections to the conductivity at
low temperature are nonperturbatively suppressed.

Using similar logic, we find for the thermoelectric transport
coefficients [14,31–33]

N
(1)
ij (μ,T ) = ν

2π
εij , (B65)

N
(2)
ij (μ,T ) = 0, (B66)

N
(3)
ij (μ,T ) = 0, (B67)

N (4)(μ,T ) = πνT 2

6
εij . (B68)

As emphasized throughout, the nonzero contribution to N (4)

is purely an edge effect. We have for an integer quantum Hall
system at low temperatures

J̄i = − ν

2π
εij ∂jφ, (B69)

J̄
Q
i = −πνT

6
εij ∂jT . (B70)

We see directly from this that the thermal Hall conductivity is
given by Eq. (1.1), with central charge c = ν corresponding
to ν filled Landau levels. Note also the Wiedemann-Franz
relation

κij = π2T

3
σij . (B71)
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