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Interacting topological insulator and emergent grand unified theory
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Motivated by the Pati-Salam grand unified theory [J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974)],
we study (4 + 1)d topological insulators with SU(4) × SU(2)1 × SU(2)2 symmetry, whose (3 + 1)d boundary
has 16 flavors of left-chiral fermions, which form representations (4,2,1) and (4̄,1,2). The key result we obtain
is that, without any interaction, this topological insulator has a Z classification, namely, any quadratic fermion
mass operator at the (3 + 1)d boundary is prohibited by the symmetries listed above; while under interaction,
this system becomes trivial, namely, its (3 + 1)d boundary can be gapped out by a properly designed short-range
interaction without generating nonzero vacuum expectation value of any fermion bilinear mass, or in other
words, its (3 + 1)d boundary can be driven into a “strongly-coupled symmetric gapped (SCSG) phase.” Based
on this observation, we propose that after coupling the system to a dynamical SU(4) × SU(2)1 × SU(2)2 lattice
gauge field, the Pati-Salam GUT can be fully regularized as the boundary states of a (4 + 1)d topological
insulator with a thin fourth spatial dimension, the thin fourth dimension makes the entire system generically a
(3 + 1)d system. The mirror sector on the opposite boundary will not interfere with the desired GUT, because
the mirror sector is driven to the SCSG phase by a carefully designed interaction and is hence decoupled from
the GUT.
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I. INTRODUCTION

In the standard model of particle physics and the grand
unified theories (GUT), the gauge coupling is asymmetric
between left- and right-handed fermions. This chiral gauge
coupling makes it difficult to regularize the field theory as a
full quantum theory on a lattice. The main obstacle of this
lattice regularization is the Fermi doubling theorem [1,2],
which states that both left- and right-handed fermions will
arise at low energy for any lattice fermion model. Then when
the lattice fermion is coupled to a gauge field, it will induce
the same coupling between left and right fermions, which is
inconsistent with the standard model or the GUT. In order to get
around the Fermi doubling theorem, one method is to realize
the GUT on the 3d boundary of a 4d topological insulator (TI),
or in other words at the domain wall of the mass of 4d Dirac
fermion [3–5].1 Then there is a mirror sector of fermions with
opposite chirality localized on the other opposite boundary,
which is spatially separated from the GUT. Fermions at each
boundary can naturally have a chiral coupling to the bulk gauge
fields. However, this method requires subtle adjustment of the
scale of the fourth dimension: if the fourth dimension is too
large, the gauge boson in the bulk will be gapless and interfere
with the low-energy physics of the boundary; on the other hand,
if the fourth dimension is too small, then the GUT suffers from
interference with its mirror sector on the other boundary [6].

In a GUT, effectively in every generation there are 16
left-handed fermions, thus its mirror sector must have 16
right-handed fermions with the same gauge coupling. It would
be ideal if we can gap out the mirror sector without affecting
the fermions in the GUT, i.e., decouple the mirror sector from
low-energy physics completely. Then we can regularize the

1Throughout the paper, 3d and 4d represent the spatial dimensions
of the boundary and bulk respectively, while (3 + 1)d and (4 + 1)d
represent the space-time dimensions.

GUT on the 3d boundary of a 4d TI with a very thin fourth
dimension (which makes the bulk generically a 3d system),
see Fig. 1. However, if the mirror sector is gapped out in the
standard way, namely, they are gapped out by condensing a
boson field that couples to the mass operators of the mirror
fermions, then the same boson field would couple to the
fermions in the GUT and gap them out as well. Thus we
seek the possibility to gap out the mirror sector while having
zero fermion bilinear expectation value, 〈ψᵀ

a iσyψb〉 = 0 in
the mirror sector,2 for arbitrary flavor indices a,b = 1, . . . ,16.
We label this fully gapped phase of the mirror sector as
“strongly-coupled symmetric gapped phase” (SCSG phase).3

(This phase was also called the “strongly-coupled symmetric
phase” or the “paramagnetic strong-coupling (PMS) phase” in
literature, see Appendix A for a review of the recent progress
on the SCSG phase in the condensed matter community.)

A SCSG phase with fully gapped but nondegenerate
spectrum in the mirror sector is only possible when the system
satisfies the following two necessary criteria. (1) Based on
the anomaly matching condition [7,8], the system should not
have any symmetry that would be anomalous in the mirror
sector once the system is coupled to the gauge fields. For
instance, the global charge U(1) symmetry of chiral fermions
ψa,L → eiθψa,L, which was a key assumption for the no-go
theorem proved in Refs. [1,2], should not exist in the lattice
model.

2In condensed matter physics, ψᵀiσ yψ is a Cooper pair operator;
while in high-energy physics, it is the Majorana mass of chiral
fermion.

3In principle, it is also possible to drive the mirror sector into a
fully symmetric topological order, which has a gapped spectrum,
but degenerate ground states. This case was immensely studied in
condensed matter physics. However, in our current work, we focus
on the case when the mirror sector is nondegenerately gapped by
interaction, i.e., there is no topological order in the SCSG phase.
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FIG. 1. (Color online) Regularizing the GUT on a lattice with
three extended dimensions x1,2,3 and a compactified dimension x4.
The light sector (GUT) and the mirror sector are separated in the
x4 dimension, as two 3d boundaries of a 4d TI. The mirror sector
is decoupled from GUT due to interaction, whose strength varies
with x4.

(2) The 4d bulk state is a nontrivial TI (hence must
have gapless chiral fermions on its 3d boundary) without
interaction; but under interaction it becomes a trivial state,
which means that its boundary can be driven into the desired
SCSG phase by interaction.4

Notice that there must be a minimum nonzero critical
interaction strength for this SCSG phase to exist, because a
weak short-range four fermion interaction is irrelevant for
(3 + 1)d Dirac or chiral fermions. Thus we assume that the
interaction on the mirror sector is stronger than the GUT, thus
the interaction only gaps out the mirror sector. Alternatively,
we can take a uniform interaction in the entire system, but
make the kinetic energy stronger on the GUT but weaker on
the mirror sector.

The second criterion mentioned above implies that the
4d bulk TI must be trivialized by interaction. This effect
of interaction on TI was studied immensely in condensed
matter community in the last few years [9–18], and now it is
understood that in one, two, and three spatial dimensions, there
are examples of topological insulators which are nontrivial
in the noninteracting limit, but can be trivialized by certain
well-designed interaction, namely their boundaries can be
driven into the SCSG phase by interaction. Thus to obtain the
desired lattice regularization for GUT, we need to demonstrate
the following two results.

First of all, there is a 4d TI which in the noninteracting
limit has massless chiral fermions on its 3d boundary, and
the symmetry of the TI is precisely the same as the gauge
symmetry of the GUT, so we can couple the system to the
correct gauge fields. Second, and most importantly, under
interaction the 4d TI must become a trivial phase, thus its
boundary can be driven into the SCSG phase.

4Based on the first criterion, the global U(1) symmetry in the
bulk must be explicitly broken, thus the term “insulator” is not
entirely accurate. We use the term topological insulator because in our
construction this anomalous U(1) symmetry is only broken by the four
fermion interaction term, while it is preserved at the noninteracting
level.

There are two equivalent ways to prove a TI is trivialized
by interaction: (1) one can directly show that the boundary of
the TI is driven into the SCSG phase by certain interaction; (2)
alternatively, we can also prove that the topological-to-trivial
quantum phase transition in the bulk is “erased” by interaction,
namely, under interaction the “trivial insulator” and TI in the
noninteracting limit can be connected adiabatically to each
other without closing the bulk gap.5 In Sec. II, we will apply
the first approach to a toy model, which is similar to the GUT in
the sense that its 3d boundary has 16 gapless chiral fermions.
In Sec.III, we will use the second approach to show that the
Pati-Salam GUT [19] emerges as the boundary of a 4d TI,
and the mirror sector is decoupled in the IR because it can be
driven into the SCSG phase by interaction.

The first lesson we learned from the studies of interacting
TI is that, the SCSG phase does not exist for arbitrary flavors
of fermions. It is now well-understood that in 0d and 1d, the
SCSG phase only exists for 8n flavors of Majorana fermions
with integer n; in 2d, the SCSG phase only exists for 16n

flavors of Majorana fermions (a review of these previous
results is given in Appendix A). The interaction that realizes
the SCSG phase must be a flavor mixing interaction term,
whose explicit form was given in 0d and 1d [9,10,20]. Thus
one has to carefully select the short-range interaction terms to
realize the SCSG phase.

We note here that the all-important SCSG phase of the
mirror sector was also sought for in the past [6,21–24]. This
phase was first proposed in high-energy physics community
in Ref. [25] and it was called the Eichten-Preskill mechanism.
However, the existence of the SCSG phase was never firmly
established. Recently, a new proposal of constructing the
SCSG phase based on a classification of symmetry protected
topological states (a generalization of topological insulator)
was made in Refs. [26,27], which is similar to the logic we
presented in this section. Besides, SCSG phases for anomaly-
free (1 + 1)d systems were also discussed in Ref. [28].
In Refs. [26,27], the general diagnosis for classification of
fermionic SPT states was based on the computation of super-
cocycles of symmetry group. In our current work, we will
use a very different way of understanding classification of
interacting TIs, which is more intuitive and more convenient to
analyze compared with super-cocycle calculation, especially
for the Lie groups involved in GUT. Meanwhile, our method
not only demonstrates the existence of the SCSG phase, but
also gives us guidance for constructing the specific interaction
that realizes the SCSG phase. A more detailed review of
Refs. [26,27] and comparison with our work will be given
in Appendix A 4.

5It is believed (although not proved) that these two approaches are
equivalent, namely if two d-dimensional states can be adiabatically
connected by tuning a parameter (for instance the Dirac mass m) with-
out closing the bulk gap, then it implies that the (d − 1)-dimensional
interface between these two states can be gapped and nondegenerate.
To visualize this statement, one can just make a smooth and wide
interface, over which the tuning parameter changes smoothly in space
from one state to another, then the gap never closes at this smooth
interface.
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II. TOY MODEL

Let us first start with a toy model, whose bulk theory is a
4d TI with a U(1) and Z2 symmetry, and we can use the same
bulk band structure introduced for the 4d quantum Hall state
in Refs. [27,29]:

HTI =
2∑

a=1

∑
�k

ψ
†
�k,a

(
4∑

i=1

�i sin(ki)

)
ψ�k,a

+ψ
†
�k,a

�5

(
4∑

i=1

cos(ki) − 4 + m

)
ψ�k,a, (1)

where �1,2,3 = σ 3 ⊗ σ 1,2,3, �4 = σ 1 ⊗ σ 0, �5 = σ 2 ⊗ σ 0

(with σ 1,2,3 being the Pauli matrices and σ 0 being the 2 × 2
identity matrix). m > 0 and m < 0 correspond to the topo-
logical and trivial insulators respectively. Close to the crit-
ical point m = 0, when expanded around �k = 0, Eq. (1)
becomes the standard 4d Dirac fermion Hamiltonian: HTI =∑

a=1,2

∑
�k ψ

†
�k,a

(�k · �� + m�5)ψ�k,a .
The 3d boundary of this theory (which is the domain wall

of mass m, Fig. 1) has precisely two flavors of chiral fermions
(domain wall fermions):

H3d =
∫

d3x
2∑

a=1

ψ†
a (iσ · ∂)ψa, (2)

with σx,y,z being the Pauli matrices in the spin space. The U(1)
and Z2 symmetries act on the boundary chiral fermions as

U(1) : ψa → [eiτ yθ ]abψb, Z2 : ψa → (τ y)abψb, (3)

where τ x,y,z denote the Pauli matrices in the flavor space.
As long as we preserve the U(1) × Z2 symmetry, the 3d

boundary can never be gapped without interaction for arbitrary
copies of this system, because the only fermion bilinear mass
terms that can gap out the boundary are the Cooper pair
operators: ψ

ᵀ
a iσyψb + H.c., which inevitably break at least

one of the symmetries. Thus this 4d TI has a Z classification
with the U(1) × Z2 symmetry, at the noninteracting level (see
Appendix D for a proof of the classification).

In the following, we will argue that short-range interactions
can reduce the classification of this 4d TI to Z8: local four-
fermion interactions can gap out eight copies of Eq. (2) and
drive it into a SCSG phase. Notice that here the U(1) symmetry
is not anomalous (it is analogous to the B-LU(1) symmetry of
the standard model), thus a SCSG phase in this case does not
violate the anomaly matching condition.

Directly studying strong four-fermion interactions is diffi-
cult, so we will follow the same logic as in Refs. [16,30–34]:
we will first manually break a subgroup of the U(1) × Z2

symmetry by condensing an order parameter that transforms
nontrivially under these symmetries. Then we will con-
dense/proliferate the defects of the condensate to restore the
broken symmetry. After condensing the defects, the order
parameter becomes disordered and can be safely integrated
out. This generates an effective interaction at low energy.

Let us first spontaneously break the U(1) symmetry by
condensing an O(2) “superfluid” order parameter with unit
length n = (n1,n2) ∈ R at the 3d boundary, which couples to

the fermions as

HO(2) = n · (Re[ψᵀτ xσ yψ], Re[ψᵀτ zσ yψ]). (4)

This superfluid order parameter gaps out the chiral fermions
and breaks the U(1) symmetry, but preserves the Z2 symmetry
in Eq. (3). The broken U(1) symmetry can be restored by
condensing the vortex lines of the O(2) order parameter n in
Eq. (4).

The dynamics of vortex lines can be systematically de-
scribed in the dual formalism. In an ordinary 3d superfluid
phase with spontaneous U(1) symmetry breaking, the U(1)
Goldstone mode is dual to a rank-2 antisymmetric tensor field
Bμν defined as

Jμ = εμνρτ ∂νBρτ . (5)

Jμ is the superfluid current. Bμν is coupled to the vortex loops,
which now can be described by a vector gauge field aμ, and
the fact that the vortex loop can never end corresponds to the
Gauss law of the gauge field ∇ · e = 0. The dynamics of vortex
loops can be described by the following schematic dual action
in the 4d Euclidean space lattice (which corresponds to the
(3 + 1)d boundary space-time):

S =
∑

�x
−t cos(∇μaν − ∇νaμ − Bμν)

− 1

e2
(εμνρ∇μBνρ)2 + · · · . (6)

The details of this, standard, duality formalism can be found
in Ref. [35]. Depending on t/e2, this model has two different
phases: with t/e2 	 1 the vortex loops are “small,” and the
system has one gapless gauge boson Bμν , which is the dual
of the Goldstone mode in the superfluid phase; while with
t/e2 
 1, the vortex loops condense, and Bμν and aμ will
both be gapped due to their coupling, this corresponds to the
quantum disordered phase of superfluid.

The above dual action only applies when the vortex loop
is “trivial,” namely, there is no extra low-energy degree of
freedom besides the vortex loops and superfluid Goldstone
mode. This requires the fermion ground state with a vortex loop
background be gapped and nondegenerate. For example, if the
fermion ground state within a vortex loop is twofold degener-
ate, then the vortex loop will carry an extra flavor index i =
1,2. In this case, after the vortex loops condense, the system is
not fully gapped, instead, it would enter a phase with a gapless
photon excitation [36]; or in other words, after the superfluid
order parameter is disordered, this system becomes a “U(1)
spin liquid” phase. This is because a1,μ and a2,μ are both cou-
pled to Bμν , thus when both a1,μ and a2,μ proliferate, a+,μ =
a1,μ + a2,μ will be rendered gapped by Bμν , while a−,μ =
a1,μ − a2,μ remains gapless since it is not coupled to any dual
Goldstone mode. More details about quantum phases after pro-
liferation of degenerate vortex loops can be found in Ref. [36].

Thus the desired SCSG phase is only possible when the
defects in the condensate have a trivial spectrum. We have
to be careful with the core of the vortex line, since it is the
singularity of the O(2) order parameter, and the fermions may
become gapless along the vortex line. Now we have reduced
our original 3d problem to a 1d problem inside a vortex line,
which we can analyze much more reliably. In our current
case, the vortex line of this O(2) order parameter traps 1d

nonchiral Majorana fermion modes that are localized at the
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vortex line [37]. Upon solving the Dirac equation in the vortex
background, we find that these modes are described by the
Hamiltonian

H1d = 1

2

∫
dx (χLi∂xχL − χRi∂xχR). (7)

and their transformation properties under the residual Z2

symmetries are

Z2 : χL → χL, χR → −χR. (8)

With this symmetry, it is straightforward to verify that for ar-
bitrary numbers of the 1d system Eq. (7), any fermion bilinear
mass term is forbidden. For example, χ̄χ = 2iχLχR is forbid-
den by the Z2 symmetry Eq. (8), thus without interaction, this
1d system cannot be gapped without degeneracy, for arbitrary
copies of this system Eq. (7), then this implies that without
turning on certain interaction at the vortex core, a SCSG phase
can not be obtained by condensing the vortex loops.

However, Refs. [9–11] showed that although all the fermion
bilinear mass terms are forbidden in Eq. (7), when there are
8n copies of Eq. (7), a particular four fermion interaction
term which preserves the Z2 symmetry still gaps out the 1d

fermions with 〈χ̄aχb〉 = 0 for arbitrary flavor index a,b. The
specific form of this interaction was given in Refs. [9,10,20]
and reviewed in Appendix B, and it can also be concisely
written as

Hint = −g

2

∫
dx

7∑
a=1

(
χ

ᵀ
Lγ aχR + H.c.

)2
, (9)

where the Majorana field χL,R has been extended to eight-
component. The coupling matrices γ a are the Gamma matrices
of the SO(7) group in its eight-dimensional spinor represen-
tation, which, under a specific choice of basis, may be writ-
ten as γ = (σ 002,σ 323,σ 021,σ 203,σ 231,σ 123,σ 211) (hereinafter
σ ijk··· ≡ σ i ⊗ σ j ⊗ σ k · · · denotes the tensor product of Pauli
matrices). As proven in Refs. [9,10,20], such interaction can
drive eight copies of the 1d system Eq. (7) into a SCSG phase
at strong coupling. Then the O(2) vortex loops can condense
to restore the U(1) symmetry and gap out the chiral fermions
on the 3d boundary.

To explicitly implement our picture of condensing vortex
loops, we need to control the dynamics of the vortex loops. In
order to do this, we propose to add the following interacting
Hamiltonian on the 4d lattice model:

Htotal = Hint-4d + HO(2) + H [n]. (10)

Hint is a four-fermion interaction term, which generates the
Eq. (9) in every vortex loop, which will gap out the vortex
loop without degeneracy. Its explicit form in the 4d bulk and
at the 3d boundary reads (see Appendix B for derivation)

Hint-4d = −g

2

∫
d4x

7∑
a=1

Re[ψᵀτ y�2γ aψ]2,

Hint-3d = −g

2

∫
d3x

7∑
a=1

Re[ψᵀτ yσ yγ aψ]2. (11)

HO(2) is the coupling between the O(2) vector n to the fermions
on the lattice model, which generates coupling Eq. (4) on
the 3d boundary. H [n] controls the dynamics of the O(2)

vector n, including the dynamics of the vortex loops. We
parametrize n as n = (cos(φ̂), sin(φ̂)), where φ̂ ∈ [0,2π ), and
label the canonical momentum of φ̂ as N̂ , with N̂ ∈ Integers.
We propose the following Hamiltonian H [n]:

H [n] =
∑

x,μ �=ν

−J cos(∇μφ̂) + V [N̂ (x)]

+K cos(∇μ∇νφ̂), (12)

where the sum is taken over all spatial positions x and
directions μ, ν. The lattice derivatives are defined as ∇μφ̂(x) =
φ̂(x + μ) − φ̂(x), ∇μ∇νφ̂(x) = φ̂(x + μ + ν) − φ̂(x + ν) −
φ̂(x + μ) + φ̂(x). V [N̂] is a local short-range repulsive
interaction of N̂ , whose explicit form has many choices,
but the simplest possibility is V [N̂ (x)] = v(N̂ (x))2. When
J dominates all the other terms, n is ordered, the O(2)
symmetry is spontaneously broken, and the fermions acquire
an ordinary fermion gap. If we start with a weak superfluid
phase (a superfluid phase with a small stiffness), the K term
will compete with the superfluid order by lowering the core
energy of vortices, and we expect it to drive the system into
a vortex condensate, with an appropriate choice of V [N̂ ]. An
analogue of H [n] in 2d was studied by quantum Monte Carlo
in Refs. [38,39]. It was shown in a spin-1/2 quantum XY model
that when the ring exchange term K dominates J , it indeed
drives an order-disorder quantum phase transition. Thus the
K term can be effectively viewed as ∼−Kρ2

v , where ρv is the
local density of vortices.

Our toy model demonstrated that eight copies of the
4d TI Eq. (1) can be trivialized under a local fermion
interaction with SO(7) × SO(2) symmetry. Since the mir-
ror sector is driven into the SCSG phase, we can obtain
16 chiral fermions on the other 3d boundary with lattice
regularization. In fact, the symmetry group can be further
enlarged to SO(7) × SO(3). In that case, we introduce an
O(3) order parameter with unit length n = (n1,n2,n3) ∈
R, which couples to the boundary fermions as HO(3) =
n · (Re[ψᵀτ xσ yψ], Re[ψᵀτ zσ yψ], Im[ψᵀσyψ]). Follow-
ing the similar defect condensation argument, we can first
gap out the chiral fermions on the 3d boundary by ordering
the O(3) order parameter at the price of breaking the SO(3)
symmetry, and then we attempt to restore the symmetry by
condensing the monopole defects of n. Each monopole will
trap eight Majorana zero modes χ (the calculation is identical
to that in Ref. [40]), which can not be gapped out by any
fermion bilinear terms because they are all forbidden by the
SO(7) symmetry. Now the same 3d interaction in Eq. (11) will
induce the following 0d interaction among the eight Majorana
zero modes at the monopole core:

Hint = −g

2

7∑
a=1

(χᵀγ aχ )2, (13)

with the same set of γ a matrices defined below Eq. (9). As
shown in Refs. [9,10,20] and reviewed in Appendix B, this 0d

interaction can gap out the Majorana zero modes and stabilize
a unique SO(7) singlet ground state in the monopole core. It
can also be verified that the monopole defect is a boson, so it
can condense to restore the SO(3) symmetry. Thus the chiral
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fermions in the mirror sector can also be driven into the SCSG
phase with the larger symmetry SO(7) × SO(3) as well.

One can see that the symmetry group and the design of
the interaction may vary from case to case, but the common
features that we wish to emphasize are (1) the interaction terms
we turn on explicitly breaks the anomalous U(1) symmetry of
the boundary chiral fermions, thus a SCSG phase is possible;
(2) the counting of 16 chiral fermions is crucial, if the fermion
flavor number is insufficient, the SCSG phase will not be real-
ized and the mirror sector can not be decoupled by interaction.

The key of the analysis in this section is to show that a
properly designed 4d bulk interaction can induce the correct
1d (0d) four fermion interaction Eq. (9) [Eq. (13)] inside the
vortex loop (monopole core), which is known to be capable
of driving the vortex loop (monopole core) into a SCSG
phase [9,10]. In the next section, we will also use the di-
mensional reduction argument, and we show that the standard
model can be successfully regularized as part of the Pati-Salam
GUT on the boundary of a 4d TI, and the mirror sector can be
driven into the SCSG phase and hence decoupled in the IR.

III. PATI-SALAM GUT

Motivated by the Pati-Salam GUT whose gauge group is
SU(4) × SU(2)1 × SU(2)2, we may directly start from a 4d

TI with SU(4) × SU(2)1 × SU(2)2 as its symmetry group. The
lattice model of the 4d TI is of the same form as Eq. (1), expect
that now ψ�k,a (for each a = 1,2 respectively) is extended to
an eight-flavor Dirac fermion field. The Hamiltonian respects
the SU(4) × SU(2)1 × SU(2)2 symmetry in the way that
ψ�k,1 and ψ�k,2 form the representations (4,2,1) and (4̄,1,2)
respectively. Its 3d boundary theory still takes the same form
as Eq. (2), but the boundary fermions ψa (a = 1,2) now
transform under SU(4) × SU(2)1 × SU(2)2 like (4,2,1) and
(4̄,1,2) representations, which can be written out explicitly as

SU(4) : ψ1 → eiθ ·ρψ1, ψ2 → e−iθ ·ρ∗
ψ2;

SU(2)1 : ψ1 → eiθ1·μψ1, ψ2 → ψ2;

SU(2)2 : ψ1 → ψ1, ψ2 → eiθ2·μψ2. (14)

ρ and μ denote the generators of SU(4) and SU(2) groups
respectively.

As long as the SU(4) × SU(2)1 × SU(2)2 symmetry is
preserved, the 3d boundary must remain gapless at the free-
fermion level. Because all the fermion bilinear mass terms
at the 3d boundary take the form of the spin-singlet Cooper
pairing: ψ

ᵀ
a iσyMψb + H.c. (where a,b = 1,2 and M is an

arbitrary matrix in the color-flavor space), but such terms are
forbidden by the SU(4) symmetry if a = b, and are forbidden
by the SU(2)1 × SU(2)2 symmetry if a �= b, therefore no
fermion bilinear mass term can be added without breaking
the SU(4) × SU(2)1 × SU(2)2 symmetry. Thus the 4d insu-
lating phases with SU(4) × SU(2)1 × SU(2)2 symmetry is Z
classified (see Appendix D for a proof of the classification).

Another way of making the same statement is to say that,
at the free-fermion level, the 4d bulk TI can not be smoothly
tuned (while preserving the symmetry) into a trivial insulator
without going through a gap-closing phase transition. Tuning
the TI to trivial corresponds to driving the mass m of a bulk
4d Dirac fermion from positive to negative, and close to the

quantum critical point m = 0 and expanded at �k = 0, the bulk
theory reads

HTI =
∫

d4x
∑
a=1,2

ψ†
a (i�� · �∂ + m�5)ψa, (15)

where ψa for each a is an eight-flavor Dirac fermion which
also carries SU(4) and SU(2) indices. While changing m, the
fermion bulk gap will close at m = 0. Without interaction, the
gap-closing transition can not be circumvented, because there
is no other symmetry-allowed mass terms to be added that
can gap out the point m = 0. For example, the Majorana mass
terms ψ

ᵀ
a i�2Mψb + H.c. could gap out the bulk criticality at

m = 0, however, as we have shown before, such terms are
all forbidden by the SU(4) × SU(2)1 × SU(2)2 symmetry. So
without interaction the 4d SU(4) × SU(2)1 × SU(2)2 TI and
the trivial insulator are in different phases, separated by a
phase transition that can not be avoid at the noninteracting
level without breaking the symmetry.

However, as seen before (and also recently studied in
literatures [9–18]), the classification of topological insulators
can be reduced by interaction. Here, as we will show in
the following, the classification of the 4d SU(4) × SU(2)1 ×
SU(2)2 TI is reduced from Z to trivial, meaning that under
interaction the 4d TI and the trivial insulator are actually in
the same phase, and the bulk phase transition between them can
be avoid by strong-enough and properly-designed interactions,
as shown in the phase diagram Fig. 2(a). In other words, the
gapless bulk fermion at the m = 0 critical point can be gapped
out by interaction.

To show this, we will again implement the argument of
defect proliferation/condensation, i.e., one may choose to
break part of the symmetry by condensing certain fermion-
bilinear order parameter, and then restore the symmetry by
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FIG. 2. (Color online) (a) Schematic phase diagram of the 4d TI
with SU(4) × SU(2)1 × SU(2)2 symmetry under interaction. There
exist a critical interaction strength �c, above which the topological-to-
trivial transition can be circumvented. (b) and (c) The O(4) monopole
core levels along a path connecting the 4d TI to the trivial insulator,
parameterized by the reduced mass m′. The effective Hamiltonian in
the monopole core reads H = Hfree + Hint, where Hint is taken from
(b) Eq. (18) or (c) Eq. (19). The 16-dimensional Hilbert space split
according to SU(4) representations as 16 = 1 + 1′ + 4 + 4̄ + 6 with
the unique ground state |1〉 + |1′〉 (marked out in red). The dashed
line marks out the m′ = 0 critical point, where degeneracy is avoided
by interaction.
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condensing topological defects of that order parameter field.
Due to the fact SU(2)1 × SU(2)2 � SO(4), one can introduce
the symmetry-breaking O(4) vector order parameter field
�n = (n0,n) = (n0,n1,n2,n3) ∈ R, which couples to the bulk
fermions as

HO(4) =
∫

d4x n0ψ
ᵀ
1 i�2ψ2 + n · ψ

ᵀ
1 �2μψ2 + H.c. (16)

The SU(2)1 and the SU(2)2 rotations act respectively as the
left and the right isoclinic rotations on the O(4) vector �n. We
first condense �n to gap out the bulk fermions for all range
of m (including m = 0) at the price of breaking the SU(2)1 ×
SU(2)2 symmetry. In the 4d bulk, a O(4) vector order parameter
has the hedgehog monopole topological defects, due to the fact
π3[S3] = Z. The broken symmetry is expected to be restored
by condensing the O(4) vector monopole defects in the 4d bulk.
Since our goal is to show that the critical point m = 0 can be
gapped out by interaction, we only need to demonstrate that
under interaction the fermion spectrum inside the monopole
will always be gapped and nondegenerate in the entire phase
diagram.

By directly solving the Schrödinger equation (see
Appendix C for details), one can show that the monopole will
trap four complex fermion localized modes fi (i = 1,2,3,4)
forming a fundamental representation of the SU(4) symmetry.
Since the SU(4) symmetry is not broken by the O(4) vector
�n, the effective Hamiltonian of fi must be SU(4) invariant.
Without interaction, the only fermion bilinear Hamiltonian
reads

Hfree ∼ m′
4∑

i=1

(f †
i fi − 1/2), (17)

here the coefficient m′ is proportional to the mass m of the bulk
Dirac fermion. Thus by tuning m from negative to positive,
the monopole core will close its spectrum gap at m ∼ m′ =
0, and the monopole will be 16-fold degenerate at m′ = 0.
Thus without four-fermion interaction inside the monopole,
condensing the monopole will still lead to a bulk quantum
phase transition at m = 0.6

However, the monopole core spectrum can be completely
changed by the following SU(4) invariant local four-fermion
interaction:

Hint = −�(f1f2f3f4 + H.c.). (18)

At m′ = 0, Hint will lift the degeneracy among these fermion
zero modes, and single out the unique ground state (|0000〉 +
|1111〉)/√2. |0〉 and |1〉 stand for the fermion occupation
number eigenstates of the zero mode. A slightly different inter-
action (see Appendix B for derivation) will play qualitatively

6If we project the 4d Dirac fermion Eq. (15) to the monopole
core, then m = 0 in the 4d bulk precisely coincides with m′ = 0
in the monopole core; the parameter m in the lattice model will
not be exactly proportional to m′ in Eq. (17), but since Hfree is the
only noninteracting term inside a monopole core, tuning m from
negative to positive in the lattice model will definitely cross the
point m′ = 0.

the same role as Eq. (18):

Hint = −g

2
(f ᵀλf + H.c.)2

= −24g(f1f2f3f4 + H.c.) − 8g
∑
i<j

ρiρj , (19)

λ = (σ 12,σ 20,σ 32,−iσ 21,−iσ 02,−iσ 23),

where λa (a = 1, . . . ,6) are six 4 × 4 matrices acting in the
SU(4) color sector [forming the representation 6 of SU(4)],
and ρi = f

†
i fi − 1

2 (i = 1,2,3,4) denote the fermion density
operators. The first term is the interaction in Eq. (18) by
identifying � = 24g, and the second term is a density-density
interaction, which does not qualitatively change the spectrum
of monopole, as seen by comparing Figs. 2(b) and 2(c).

With the protection of the gap �, the ground state of the
O(4) monopole evolves smoothly in all range of m without any
level crossing with the excited states, as shown in Figs. 2(b)
and 2(c). The interaction not only renders the monopole to a
nondegenerate SU(4) singlet, it also makes the monopole a
boson, this is because deep in the trivial phase of Eqs. (1)
and (15), i.e., when m is negative and it is the dominant
energy scale of the system, the ground state of a monopole
in the bulk must be a featureless boson. And we have proved
that with interaction Hint the ground state of the monopole
never has any level crossing with excited states, thus the
ground state of the monopole must remain as a boson for
the entire range of m. Thus the monopole can be safely
condensed to restore the broken SU(2)1 × SU(2)2 symmetry
without causing ground-state degeneracy or breaking other
symmetries. After the monopole condensation, we end up
with a symmetric gapped phase in the bulk for the entire
range of m, meaning that the bulk phase transition between
the 4dSU(4) × SU(2)1 × SU(2)2 TI and the trivial insulator
can be removed by the interaction with sufficient strength, see
Fig. 2(a). Note that the 3d boundary of the 4d TI is simply
the spatial interface between the 4d TI and the trivial insulator
(vacuum). Since the 4d TI can now smoothly evolve into the
trivial insulator without gap-closing phase transition, the 3d

interface between these two states (which can be viewed as an
evolution in space) must also be driven into a SCSG phase by
the same kind of interaction.

Again, to explicitly implement our picture of “condensing
topological defects,” we need to control the dynamics of the
topological defects. In order to do this, we propose to add the
following interacting Hamiltonian on the 4d lattice model:

Htotal = Hint-4d + HO(4) + H [�n]. (20)

Hint-4d is a 4d bulk interaction that will induce the correct
four-fermion term at the monopole core, which gaps out
the monopole for all range of m in the phase diagram (see
Appendix B for derivation):

Hint = −g

2

∫
d4x

(
ψ

ᵀ
1 �2μ2λψ1 + ψ

†
2�

2μ2λψ
†ᵀ
2 + H.c.

)2
.

(21)

This interaction is manifestly SU(4) × SU(2)1 × SU(2)2 in-
variant. HO(4) is given by Eq. (16). H [�n] is the Hamiltonian
for the O(4) unit vector order parameter �n that should control
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the dynamics of �n and its topological defects:

H [�n] =
∑
x,μ

−J (∇μ�n)2 + V [Lab(x)] − Kρm(x)2. (22)

V is a local interaction between SO(4) angular momentum
operator Lab(x) [which is conjugate to operator �n(x)], its
simplest form could be

∑
a<b v(Lab(x))2. When J dominates

all the other terms, vector �n would be ordered, and the fermions
will acquire an ordinary mass gap. ρm(x) is the local monopole
density of the SO(4) vector �n. To define a monopole on a
lattice, one can just follow the strategy of Ref. [41], which
defined SO(3) monopole on a 3d cubic lattice and numerically
studied its effects on phase transitions. Thus we can start with
a weak order of �n (when J and V terms are comparable with
each other), and gradually increasing K . Then we expect that
across a finite critical point, the K term will drive the system
into a monopole condensate in the 4d bulk. And based on
our argument presented before, the same interaction can drive
the mirror sector on the 3d boundary into the desired SCSG
phase.

Normally condensing a conserved bosonic point particle
will lead to a gapless Goldstone mode. But in our case,
inside an ordered phase of �n, monopoles have long-range
interaction, and the condensate of bosons with long-range
interaction can still have a gapped spectrum. This is precisely
the Higgs mechanism. For example, condensing the vortices
of a (2 + 1)d superfluid will not lead to any gapless Goldstone
mode, because in the standard dual formalism the vortex field
is a complex boson which are coupled to a dual U(1) gauge
field.

Our analysis above suggests that if we want to regularize the
Pati-Salam GUT on a 3d lattice (a 4d lattice with a thin fourth
dimension and a decoupled mirror sector), then a four-fermion
interaction Hint-4d is necessary. This four-fermion interaction
creates/annihilates a four-fermion SU(4) singlet, thus breaks
the baryon number (B) and lepton number conservation (L),
but it still conserves B-L. For instance this four fermion term
contains the standard dimension-6 operators that would lead
to proton decay: qqql/�2. However, here the UV cutoff �

should be the lattice scale, which is higher than any other scale
of the system. Thus the proton decay effect is expected to be
much smaller than that predicted in the SU(5) GUT, which is
suppressed by factor 1/�2

GUT.

IV. SUMMARY

In this work, we apply the latest progress in condensed
matter physics towards understanding strongly interacting
topological insulator to the long-standing problem in high-
energy physics: how to regularize the SM or GUT on a lattice?
In our approach, because the bulk topological insulator is
trivialized by interaction, the mirror sector is in the SCSG
phase and hence decoupled from the GUT in the infrared
limit. Our current work heavily relies on the analysis of
classification of topological insulators under interaction, and
our argument of topological defects condensation leads to
explicit construction of an interacting lattice Hamiltonian,
whose low-energy physics is described by the Pati-Salam GUT.
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APPENDIX A: REVIEW OF SCSG PHASE AND
INTERACTING TI IN LOWER DIMENSIONS

The interacting fermionic topological insulator/superco-
nductor (TI/TSC) has recently attracted much research at-
tention in condensed matter physics. In the noninteracting
limit, the TI/TSC has a fully gapped and nondegenerated bulk
state with gapless fermionic boundary modes protected by
symmetry. The gapless boundary fermions are also known as
the domain wall fermions [3,4,21,22] in high-energy physics.
It was first pointed out by Fidkowski and Kitaev [9,10]
that the classification of the TI/TSC can be reduced by the
fermion interaction, namely, certain nontrivial TI/TSC phases
can actually be smoothly connected to the trivial phase under
interaction, and correspondingly, their gapless boundaries can
be driven into the strongly-coupled symmetric gapped (SCSG)
phase by the same interaction.

1. SCSG phase in 0d: boundary of 1d systems

The simplest example is to consider the 0d boundary of a
1d TSC, which hosts Majorana fermion zero modes (the 0d

analog of the domain wall fermions). The Majorana modes
are denoted by the operators χa (a = 1, . . . ,N) satisfying
{χa,χb} = 2δab. Let us define a time-reversal symmetry ZT

2
(T 2 = +1), which acts trivially on the Majorana modes as
ZT

2 : χa → Kχa , whereK is the complex conjugation operator
(flipping the imaginary unit as K−1iK = −i). Any fermion
bilinear operator iχaχb will break the time-reversal symmetry,
because χa transforms trivially but i gets a minus sign. So if
we require the time-reversal symmetry, all the fermion bilinear
terms will be ruled out from the 0d boundary Hamiltonian,
and the 0d boundary fermions can not be gapped out in
the free fermion limit no matter how many modes N there
are. However, the four-fermion interaction term will not
break the time-reversal symmetry, since no factor i will be
involved. For N = 4, the only interaction term that one can
write down is H = −Jχ1χ2χ3χ4. Pairing up the Majorana
fermions to regular (complex) fermions c↑ = (χ1 + iχ2)/2,
c↓ = (χ3 + iχ4)/2, and defining the fermion number operator
nσ = c†σ cσ , the interaction Hamiltonian can be written as
H = J (2n↑ − 1)(2n↓ − 1), which can be interpreted as a
Hubbard interaction leading to a two-fold degenerated ground
state (as a spin-1/2 doublet), for either sign of J . So if we
have N = 8 Majorana zero mode, under the interaction, χ1,2,3,4

form a doublet and χ5,6,7,8 form another doublet, and the two
doublets can be coupled together into a singlet (such as via
the Heisenberg coupling), and the ground-state degeneracy is
completely removed by the interaction, which also implies
that the expectation value of any fermion bilinear operator
must vanish, because otherwise the ground state would be
degenerated. The explicit form of the interaction is given by
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Fidkowski and Kitaev [9,10]:

HFK ∼ + χ1χ2χ3χ4 + χ1χ2χ5χ6 + χ1χ2χ7χ8 + χ1χ3χ5χ7

− χ1χ3χ6χ8 − χ1χ4χ5χ8 − χ1χ4χ6χ7 − χ2χ3χ5χ8

− χ2χ3χ6χ7 − χ2χ4χ5χ7 + χ2χ4χ6χ8

+ χ3χ4χ5χ6 + χ3χ4χ7χ8 + χ5χ6χ7χ8. (A1)

This interaction looks rather involved and has a very high
SO(7) symmetry, nevertheless it is not the only choice. There
exist many other interactions (to be reviewed in Appendix B)
that can also gap out eight Majorana fermions in 0d. The
point is that in this 0d fermion system, only when we have
eight flavors of Majorana fermions, we can get a fully gapped
spectrum and a nondegenerate ground state (i.e., a SCSG state).
If the flavor number is insufficient (N < 8), the Majorana zero
modes can not be completely gapped out.

The above 0d system is actually first realized as the
boundary of the 1d Majorana fermion chain [42] with theT 2 =
+1 time-reversal symmetry (in the BDI [43,44] symmetry
class). The model Hamiltonian is defined on a 1d lattice of the
length L, as H = −∑L−1

i=0 iuiχiχi+1, where χi (i = 1, . . . ,L)
denotes the Majorana fermion operator on the site i, and
the bond strength ui = 1 + (−1)iδ alternates along the chain,
similar to the pattern of polyacetylene. If δ > 0, both the bulk
and the boundaries are fully gapped, and the system is in
its trivial phase; if δ < 0, the bulk is still fully gapped, but
each boundary will host a dangling Majorana zero mode,
and the system is in its nontrivial phase (known as a 1d

TSC of BDI class). The time-reversal symmetry acts as
ZT

2 : χi → K(−1)iχi , which will reduce on the boundary to
precisely the same the time-reversal symmetry that we defined
in the previous 0d example. Protected by the time-reversal
symmetry, the boundary Majorana zero modes can not be
gapped out at the free fermion level, and the 1d TSC is
therefore Z classified in the absence of interaction. However,
if we stack eight copies of the 1d TSC’s together, the boundary
Majorana zero modes (now there are eight zero modes) can be
gapped out by the Fidkowski-Kitaev interaction (A1) without
breaking the time-reversal symmetry, and the classification of
the 1d TSC is reduced from Z to Z8 under interaction. This
phenomena is known as the interaction reduced classification
of TI/TSC in condensed matter physics.

The interaction reduced classification indicates that eight
copies of the 1d TSC is actually in the same phase as the
1d trivial insulator, such that one can (with the help of the
interaction) smoothly tune eight copies of the 1d TSC to trivial
without going through a phase transition while respecting the
symmetry. First let us point out that without the interaction the
bulk phase transition can not be avoid. To see this, let us assume
|δ| 	 1, then the effective Hamiltonian of the 1d TSC at low-
energy becomes a 1d Dirac fermion H = 1

2

∫
dx χᵀ(i∂xσ

1 +
mσ 2)χ with the time-reversal symmetry ZT

2 : χ → Kσ 3χ .
The Dirac mass m is proportional to the parameter δ in the
lattice model, so that m > 0 (m < 0) corresponds to the TSC
(trivial) phase. Tuning from m > 0 to m < 0, the bulk gap must
close at m = 0, which triggers a phase transition. No matter
how many copies of the 1d TSC we made, the time-reversal
symmetry will always rule out the additional fermion bilinear
mass terms (which all take the form of χ

ᵀ
a iσ 3Aabχb with

Aᵀ = −A) that anticommute with mσ 2, so the bulk phase
transition is inevitable at the free fermion level. The interaction
reduced classification means that the bulk criticality at m = 0
actually can be removed by the properly designed interaction.

For 1d TSC, this conclusions has been rigorously proven [9]
at the field-theory level using the bosonization approach.
The precise conclusion of Ref. [9] is that, for eight copies
of the 1d TSC whose low-energy field theory reads H =
1
2

∫
dx

∑8
a=1 χ

ᵀ
a (i∂xσ

1 + mσ 2)χa , there is a SO(7) invariant
interaction [χa forms a spinor rep of SO(7)], which for
the entire range of m, renders the spectrum gapped without
ground-state degeneracy, even for the point where 〈χᵀσ 2χ〉 =
0 (in the field theory, this corresponds to the critical point
m = 0).

Instead of reproducing the proof in Ref. [9], here we will
present a more intuitive argument, which is analogous to
the argument we gave in the main text for the Pati-Salam
GUT. The advantage of this argument is that it can be easily
generalized to any higher spatial dimensions. We first consider
two copies of the 1d TSC coupled to a ZT

2 symmetry-breaking
Ising field n, as described by the effective Hamiltonian H =
1
2

∫
dx χᵀ(i∂xσ

10 + mσ 20 + n(x)σ 32)χ .7 The strategy is that
we first order the n field to locally gap out the critical fermions
in the bulk at the expense of breaking the ZT

2 symmetry, then
we disorder the Ising field n by condensing its kink defects
to restore the symmetry. A fully gapped and nondegenerate
bulk state can be obtained only if the kink is also fully gapped
and nondegenerate. For two copies of the 1d TSC, it is found
that the kink of n(x) will trap two Majorana localized modes,
which again defines a complex fermion localized mode c,
and the tuning parameter m is coupled to the density of the
complex fermion: m(c†c − 1/2). Thus at m = 0, the kink has
two degenerate states with opposite fermion parity. Thus the
point m = 0 cannot be driven into a gapped and nondegenerate
state by condensing the kinks. Further analysis shows that only
when we have eight copies of the 1d TSC, the kink, which is
a 0d object hosting eight Majorana localized modes, can be
trivially gapped out by the interaction for the entire range
of m (following the previous discussion of the 0d example).
Then when and only when there are 8n 1d TSC, can we
adiabatically connect m > 0 and m < 0 through condensing
the kinks without closing the gap. And in this case, the kink is
a boson that can condense to restore the symmetry. Thus we
arrive at the same conclusion that the 1d TSC is Z8 classified
under interaction.

2. SCSG phase in 1d: boundary of 2d systems

From the above discussion, we can see there are two equiv-
alent arguments to demonstrate that a TI/TSC is trivialized
by interaction: (1) the boundary argument by showing that
the boundary of TI/TSC can be driven to the SCSG phase
by interaction, (2) the bulk argument by showing that the
bulk topological-to-trivial phase transition can be removed by

7There are too many possible tuning parameters in the phase
diagram if ZT

2 is the only assumed symmetry. Hereinafter we focus
on the particular curve in the phase diagram where the only tuning
parameter is the same mass m for all flavors.
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interaction. The study of the interaction reduced classification
of TI/TSC is soon extended to higher spatial dimensions, such
as 2d p ± ip TSC [11–14] (D class), 3d 3He-B TSC [15,16]
(DIII class), 4d TSC [17] (A class), and higher dimensions
TI/TSC in general [18]. All these examples can be understood
following either the boundary or the bulk arguments concluded
above.

For example, it was shown that the 2d p ± ip TSC
with a Z2 symmetry is Z8 classified under interaction.
Close to the topological-to-trivial phase transition, the bulk
effective Hamiltonian in the free fermion limit is H =
1
2

∫
d2xχᵀ(i∂1σ

10 + i∂2σ
30 + mσ 23)χ with the Z2 : χ →

σ 03χ symmetry, where m > 0 (m < 0) corresponds to the
topological (trivial) phase. Following the boundary argument,
the 1d boundary of a 2d p ± ip TSC consists of a pair
of counter-propagating Majorana edge modes, described by
H = 1

2

∫
dxχᵀ(i∂xσ

1)χ , which, at the field-theory level, is the
same as the bulk theory of a single copy of the 1d (BDI class)
TSC at its m = 0 critical point discussed in the last subsection.
As eight copies of the 1d TSC can be trivialized by interaction
(due to its Z8 classification) without generating any fermion
bilinear order, it therefore suggests that eight copies of the
2d p ± ip TSC can also be trivialized by interaction, as its
boundary Majorana modes can be driven to the SCSG phase
by the same kind of interaction. This boundary argument can
be made precice [11] by the bosonization formalism as Ref. [9].

For the bulk argument, we can consider two copies
of the 2dp ± ip TSC close to the m = 0 critical point
while coupling to an O(2) real boson field n = (n1,n2), as
described by H = 1

2

∫
d2xχᵀ(i∂1σ

100 + i∂2σ
300 + mσ 230 +

n1σ
211 + n2σ

213)χ . Following the “defect proliferation argu-
ment,” we can first order the O(2) field n to locally gap out
the bulk fermion criticality at the expense of breaking the
Z2 symmetry, then we restore the symmetry by proliferating
vortices of n. It is found that the O(2) vortex will trap two
Majorana localized modes. Then again only for eight copies
of the 2d p ± ip TSC, the O(2) vortex will trap eight Majorana
localized modes, which can be gapped out by interaction for
the entire range of m, and then condensing the vortices not only
restore the symmetry, but also gives us an adiabatic evolution
from m > 0 to m < 0 without closing the bulk gap (one can
also check that the O(2) vortex has a bosonic statistics, thus
it is allowed to condense). Once again, we see that both the
boundary and the bulk arguments lead to the same conclusion
that the 2dp ± ip TSC is Z8 classified under interaction.

3. SCSG phase in 2d: boundary of 3d systems

It is soon discovered that the 3d 3He-B TSC with a
T 2 = −1 time-reversal symmetry (DIII class) isZ16 classified.
Close to the topological-trivial quantum phase transition, the
bulk effective Hamiltonian in the free fermion limit is H =
1
2

∫
d3xχᵀ(i∂1σ

11 + i∂2σ
13 + i∂3σ

30 + mσ 20)χ with the ZT
2 :

χ → Kiσ 12χ symmetry, where m > 0 (m < 0) corresponds
to the topological (trivial) phase. The 2d boundary of a
3d 3He-B TSC hosts a gapless Majorana fermion surface
mode, described by H = 1

2

∫
d2x χᵀ(i∂1σ

1 + i∂2σ
3)χ , So if

we start with 16 copies of the 3d 3He-B TSC, the boundary
will host 16 Majorana cones, which can then be driven to the

SCSG phase by interaction. The boundary argument proposed
in Refs. [16,34] is actually very similar to the bulk argument
in the previous subsection: we can first couple the 16 copies
of the 3d 3He-B TSC to an O(2) vector, and we manually
break the O(2) symmetry by condensing the O(2) vector. Then
when and only when there are 16 copies of 3He-B TSC, can
the vortex at the boundary be gapped and nondegenerate and
have bosonic statistics under interaction. Then this means that
one can condense the vortices at the 2d boundary to drive the
boundary in to the SCSG phase when and only when the flavor
number of the system is multiple of 16.

To backup the statement by the bulk argument, we
may consider four copies of the 3d 3He-B TSC near
the m = 0 critical point while coupling to an O(3) real
boson field n = (n1,n2,n3), as described by H = 1

2

∫
d3x

χᵀ(i∂1σ
1100 + i∂2σ

1300 + i∂3σ
3000 + mσ 2000 + n1σ

1210 +
n2σ

1222 + n3σ
1230)χ . Again, following the defect proliferation

argument, we can first order the O(3) field n to locally gap
out the bulk criticality at the expense of breaking the ZT

2
symmetry, then we restore the symmetry by condensing O(3)
monopoles of n. It is found that each O(3) monopole will trap
two Majorana localized modes. So only for 16 copies of the
3d3He-B TSC, the O(3) monopole will trap eight Majorana
localized modes and can be therefore trivialized by interaction
and safely condense. In fact, one may also consider disordering
the O(3) field n by condensing other topological defects, such
as vortex rings or domain walls. It turns out that [17] they all
reach the same conclusion that only 16 copies of the 3d3He-B
TSC can be trivialized by interaction.

One can see that the same pattern of arguments repeats
in every dimension. The interaction reduced classification of
fermionic TI/TSC states happens in all dimensions, and can be
studied systematically by connecting to the bosonic symmetry
protected topological states [18].

4. Application: realizing SCSG phase on SPT boundary

The recent progress in the interaction reduced classification
of TI/TSC has led to new proposals [26–28] of constructing
SCSG phase based on the classification of SPT states (a
generalization of topological insulators). It was pointed out
in Ref. [26] that all gauge anomalies are classified by the
SPT phases in one higher dimension, and the anomaly-free
condition is equivalent to the condition that the SPT state in
the bulk must belong to the trivial class, then its unprotected
boundary can be driven to the SCSG phase without obstruction.
Applying this idea, Ref. [27] argued that the 4d TI with SO(10)
symmetry has a trivial classification (under interaction), such
that the SCSG phase can be realized on its 3d boundary with
a properly designed interaction. It was further emphasized
in Ref. [28], after a thoroughly analysis of the previous
attempts towards the SCSG phase, that the interaction must
be well-designed to meet the “boundary fully gapping (BFG)
rules,” which exclude all the harmful interactions that could
potentially lead to gapless bound-state formation in the mirror
sector.

In Ref. [26], the classification of fermionic SPT states
was based on the computation of super-cohomology of the
symmetry group. The formalism of supercohomology [45] is
very intriguing and elegant, but whether it is the final complete
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classification or not is an open question. At least it is now
known that the cohomology classification of the bosonic SPT
states is not complete. Many states beyond cohomology have
been found (the first example of such states was proposed
in Ref. [46]). Thus it is worth trying to understand the
classification of interacting fermionic SPT states from all
different angles [47–53].

Moreover, in the supercohomology formalism, there is
a fermionic degree of freedom that is completely neutral
(invariant) under all symmetry transformations. This would
imply that, when we apply supercohomology to SO(10) GUT,
by combining the fermionic and bosonic degrees together, in
this theory, all representations of SO(10) can be either bosonic
or fermionic. For instance, there will be a fermionic SO(10)
spinor, fermionic SO(10) vector, fermionic SO(10) adjoint
(bound state of the neutral fermion and bosonic excitations),
etc. However, in SO(10) GUT, SO(10) vectors are always
bosons, and SO(10) spinors are always fermions. So the
system constructed by super-cohomology approach seems
rather different from the actual SO(10) GUT.

On the other hand, due to the technical difficulty of com-
puting high-dimension cohomology or supercohomology of
SO(10) group, it is still not mathematically proven whether the
SO(10) symmetry protected fermionic state can be trivialized
by interaction in 4d. Therefore we must rely on other physical
arguments. In the second part of Ref. [27], it was argued
that SO(10) GUT can be driven into the SCSG phase. The
argument was based on the fluctuating mass idea, which was
first attempted in Ref. [25]. Note that the mass terms of SO(10)
GUT form manifold S9, and S9 has trivial topological defects
in any dimensions lower than 6, so there is no topological term
at all for the S9 target manifold. Thus hopefully we can disorder
the mass terms, while keeping the fermions gapped. But in
order to guarantee the fermions are gapped, the mass vector
can only have very smooth and slow modulation in space-time.
However, if the mass vector only modulates slowly in the
space-time, it is probably still ordered and the symmetry will
be broken. For example, consider a 4d classical O(N ) vector
model on a 4d cubic (space-time) lattice. At infinitesimal
temperature, the vector is already modulating slowly in the
space-time, but it is still ordered. When the fluctuation is strong
enough to disorder the vector, the vector already has very
fast modulation in space-time, and in this case the fermions
may have the danger of becoming gapless. In conclusion, the
desired SCSG is an intermediate phase, where the mass vector
must fluctuate fast enough to prevent ordering, but not too fast
to close the fermion gap. The existence of such an intermediate
phase still awaits further numerical simulation to confirm.

Motivated by the previous work [26,27] as reviewed above,
in this work we have proposed a different and independent
argument for the “interaction trivialized 4d bulk topological
insulator,” which is based on the analysis of “condensation of
topological defects” of the mass manifold. Unlike in Ref. [27],
which tried to avoid topological defects, here we made use
of the topological defects to help us achieve our goal. The
success of the “topological defect condensation” argument
in all lower dimensional examples has been reviewed in the
previous part of this Appendix. The advantage of this approach
is that it does not assume the “slow modulation” of mass terms
(order parameters), and condensing the topological defects

will guarantee that the mass order parameter is disordered. As
long as the topological defects are gapped out by interaction
and nondegenerate, the dual theory for the topological defects
already captures all the low-energy degrees of freedom, and is
a complete description of all the low-energy physics.

Using the topological defect condensation argument, we
can deduce that both the SO(7) × SO(3) and the SO(6) ×
SO(4) (∼ Pati-Salam GUT) chiral fermions can be driven
to the SCSG phase under interaction. Since both symmetry
groups are subgroups of the SO(10) group, so our result also
adds a piece of supportive evidence for Ref. [27], though from
a very different approach. Moreover, our approach has led to a
concrete lattice model in the 4d bulk with explicit interacting
terms, which can be tested by future numerics.

APPENDIX B: DECOMPOSITION AND
RECONSTRUCTION OF THE INTERACTION

In Ref. [9], Fidkowski and Kitaev proposed an SO(7)
invariant interaction to fully gap out eight local Majorana
zero modes. As quoted in Eq. (A1), the interaction Hamil-
tonian contains 14 four-fermion terms. In this Appendix, we
will provide a Hubbard-Stratonovich decomposition of the
Fidkowski-Kitaev (FK) interaction by rewriting the interaction
as an inner product of fermion bilinear operators. The
decomposition potentially allows more efficient numerical
simulation (for example, the quantum Monte Carlo approach)
of the FK interaction in terms of Yukawa-type interactions.
The decomposition also allows us to reconstruct many other
interactions that have lower symmetry than SO(7) but also
gaps out eight local Majorana zero modes with the same
unique ground state. These variant interactions provide us
more choices to gap out the mirror sector fermions, and will be
particularly useful for our purpose of regularizing the GUT on
the lattice. The Yukawa-type interaction also naturally extends
to higher dimensions, which provides a general construction
of the interaction that is needed to gap out the gapless fermions
in any dimension.

1. The 0d Case: Fidkowski-Kitaev interaction and its variants

Let us start form eight Majorana fermion operators χi

(i = 1, . . . ,8) defined by {χi,χj } = 2δij , which can be pair-
wise combined into complex (regular) fermion operators
as fi = (χ2i−1 + iχ2i)/2 for i = 1, . . . ,4. They act on a
16-dimensional Hilbert space, which admits a set of Fock
state basis |n1n2n3n4〉 labeled by the fermion occupation
numbers ni = f

†
i fi = 0,1. The FK interaction is uniquely

determined [20] by specifying a reference state |e1〉 (the
naming convention will be evident later) in the 16-dimensional
Hilbert space, which is also the ground state to be stabilized
by the interaction,

HFK = −
∑

i<j<k<l

Vijkl χiχjχkχl, with Vijkl

= 〈e1|χiχjχkχl|e1〉. (B1)

In this paper, we choose |e1〉 = (|0000〉 + |1111〉)/√2. The
ground state |e1〉 is chosen to be a symmetric state such that
it will not have any fermion bilinear expectation value (not
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generating any fermion bilinear mass term which breaks the
symmetry in general),

〈e1|χiχj |e1〉 = δij for i, j = 1, . . . ,8. (B2)

It can be explicitly verified that for i < j < k < l, there are
14 nonzero entries of the interaction vertex tensor Vijkl , and
all of them take the value of either +1 or −1, i.e., Vijkl = ±1
if not vanishing. The corresponding 14 four-fermion terms
are actually commuting projectors, which single out their
common eigen state |e1〉 as the ground state of HFK with an
energy −14. To see this, we note that (χiχjχkχl)2 = 1 so the
eigenvalues of χiχjχkχl are ±1, then Vijkl = ±1 implies that
|e1〉 is the common eigenstate of every four-fermion term in
HFK. Moreover, because in general χiχjχkχl and χi ′χj ′χk′χl′

must either commute or anticommute with each other (which
follows from the Majorana fermion algebra), but since they
have a common eigenstate |e1〉 then they must commute, so the
14 four-fermion terms are commuting projectors. In the basis
that all the projectors are simultaneously diagonalized (which
is also an eigenbasis of HFK), they must be represented as direct
products of four σ 0 or σ 3 matrices [11], i.e., Vijklχiχjχkχl =
±σabcd (if not vanishing) where a,b,c,d = 0 or 3. Any 14
such matrices ±σabcd adding together can only produce at
most one eigenstate with eigenvalue −14, so we know that
|e1〉 must be the unique ground state of HFK. In conclusion,
HFK is a nicely designed interaction that can gap out eight
Majorana zero modes with a nondegenerate ground state |e1〉,
on which all the fermion bilinear expectation values vanish.

In fact, the complete set of eigenbasis of HFK can be
constructed from the ground state |e1〉. Depending on the
fermion parity F = (−)

∑4
i=1 ni , they can be divided into even

(F = +1) and odd (F = −1) parity states, denoted as |ei〉 and
|oi〉, respectively.

|ei〉 = χ1χi |e1〉, |oi〉 = χi |e1〉 for i = 1, . . . ,8. (B3)

|ei〉 and |oi〉 form a set of orthonormal basis for the 16-
dimensional Hilbert space, on which the FK interaction is
diagonalized:

HFK = −14|e1〉〈e1| + 2
8∑

i=2

|ei〉〈ei |. (B4)

The orthogonality of the basis follows from 〈ei |ej 〉 =
〈oi |oj 〉 = 〈e1|χiχj |e1〉 = δij and 〈ei |oj 〉 = 0 (due to the dif-
ferent fermion parity). The spectrum of HFK can be explicitly
verified by acting Eq. (B1) on these basis states. The SO(7)
symmetry of the FK interaction [9] is reflected in its spectrum:
the ground state |e1〉 is a SO(7) scalar, the odd parity states
|oi〉 (i = 1, . . . ,8) form a SO(7) spinor, and the excited even
parity states |ea〉 (a = 2, . . . ,8) form a SO(7) vector.

To reveal the SO(7) symmetry explicitly, one may introduce
the gamma matrices γ a ,

(γ a)ij = i〈e1|χiχj |ea〉 = i〈e1|χiχjχ1χa|e1〉 for i,

j = 1, . . . ,8 and a = 2, . . . ,8. (B5)

With our specific choice of |e1〉, the explicit matrix form of γ a

reads

γ 2,...,8 = (σ 002,σ 323,σ 021,σ 203,σ 231,σ 123,σ 211), (B6)

which are also the γ a matrices in Eqs. (9), (11), and (13).
The SO(7) generators are then given by Sab = χᵀsabχ =∑8

i,j=1 χi(sab)ijχj where sab = 1
2i [γ

a,γ b] (a,b = 2, . . . ,8). It
can be checked that [HFK,Sab] = 0, so that the FK interaction
has the SO(7) symmetry indeed. Using the γ a matrices, the
FK interaction can be decomposed as

HFK = − 1

4!

8∑
a=2

(�a�a − 16), with �a = χᵀγ aχ.

(B7)

To prove this, we expand Eq. (B7) into HFK =
− 1

4!

∑
i,j,k,l

∑
a(γ a)ij (γ a)klχiχjχkχl + const., with some

constant energy shift. It can be shown that∑8
a=2(γ a)ij (γ a)kl = ∑8

a=2〈e1|χiχj |ea〉〈ea|χkχl|e1〉 =
〈e1|χiχjχkχl|e1〉 = Vijkl (for i �= j �= k �= l), because |ea〉
(a = 2, . . . ,8) form a complete set of basis for the two-fermion
exited states, thus

∑8
a=2 |ea〉〈ea| is a resolution identity.

So HFK = − 1
4!

∑
i,j,k,l Vijklχiχjχkχl + const. = −∑

i<j<k<l

Vijklχiχjχkχl matches up with Eq. (B1) (and the constant
energy shift can be fixed by considering the cases when ij and
kl coincide). Therefore Eq. (B7) is a Hubbard-Stratonovich
decomposition of the FK interaction. Note that �a

(a = 2, . . . ,8) are fermion bilinear operators that rotates like
an SO(7) vector, so Eq. (B7) is manifestly SO(7) invariant.
With this decomposition, we can rewrite the FK interaction
in terms of a Yukawa model by introducing the O(7) real
boson field φa such that HFK = −∑

a φa�
a + 1

2g

∑
a φaφa ,

which may allow more efficient numerical simulations by, for
example, the quantum Monte Carlo method.

With the fermion bilinear operator �a , we can reconstruct
many other interactions that has a lower symmetry than SO(7),
which turns out to be useful for our purpose of designing
the appropriate interaction that has the same symmetry as the
GUT that we try to regularize. To our knowledge, SO(7) does
not appear as a gauge group in the mainstream GUT’s, so it
worth the effort to explore the variants of the FK interaction
with other symmetries. For example, we can take the last
six components of �a (a = 3, . . . ,8), and construct a SO(6)
invariant Yukawa interaction, Hint,SO(6) = − 1

4!

∑8
a=3(�a�a −

16), which is exactly the same interaction as in Eq. (19) up
to some constant energy shift, where �3,...,8 = χᵀγ 3,...,8χ =
f ᵀ(σ 32, − iσ 02,σ 20,−iσ 23,σ 12,−iσ 21)f + H.c. can be read
out from Eq. (B6) straightforwardly. These matrices are the
same as the λa matrices defined in Eq. (19) up to some
rearrangement. This SO(6) invariant interaction also gaps out
eight Majorana zero modes with a nondegenerated ground state
identical to |e1〉. To see this, we start from the representation
of the fermion bilinear operator �a in the diagonal basis of
HFK,

�a = (8i|e1〉〈ea| + H.c.) − 4
8∑

i,j=1

|oi〉(γ a)ij 〈oj |. (B8)
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FIG. 3. Energy spectrum of SO(n) invariant Yukawa interaction
(n = 1 case labeled by Z2), which is constructed by taking the last n

components of �a and coupling them to a n-component real boson
field.

Then we take the last n components of �a to construct an
SO(n) invariant Yukawa interaction,

Hint,SO(n) = − 1

4!

8∑
a=8−n+1

(�a�a − 16)

= −2n|e1〉〈e1| + 2n

3

8−n∑
b=2

|eb〉〈eb|

+ 2(n − 4)

3

8∑
a=8−n+1

|ea〉〈ea|, (B9)

whose energy spectrum is plotted in Fig. 3. As long as n � 2,
the Majorana zero modes are fully gapped with unique ground
state. From Eq. (B9), we can see the ground state is always
|e1〉, identical to the ground state of the FK interaction, which
will not generate any fermion bilinear expectation value. These
conclusions definitely applies to the n = 6 SO(6) case, which
is the interaction that we used to regularize the Pati-Salam
GUT in this paper.

At the first glance, the interaction Hint ∼ −∑
a �a�a

seems to favor the fermion bilinear ordering 〈�a〉 �= 0 at
the mean-field level, which would spontaneously break the
symmetry (if applying the interaction to a lattice system), but
actually the ordering does not happen. Because the 〈�〉 � φ

ordered state |φ〉 (given by the eigen equation (φ · �)|φ〉 � |φ〉
in the even fermion parity sector, and labeled by the unit
vector φ of the ordering direction) has the wave function
|φ〉 = (|e1〉 − i

∑8
a=2 φa|ea〉)/

√
2, which is a mixing between

the ground state |e1〉 and two-fermion excited states |ea〉.
Although the state |φ〉 indeed gains some interaction energy,
but judging from the energy spectrum given by Eq. (B9) and
Fig. 3, |e1〉 will gain even more energy than |φ〉 as long as
n � 2, thus the ordering does not happen. Physically, one may
consider �a as competing orders that can not make peace with
each other, so they compromise and eventually end up in a
quantum superposition state

∫
dφ|φ〉 � |e1〉, which does not

break the symmetry.
In summary, having specified a (desired) symmetric ground

state |e1〉 in the Hilbert space of eight Majorana fermion modes,
we can always find the γ a matrices by Eq. (B5) and use them

to construct the Yukawa interaction Hint ∼ − g

2

∑
a(χᵀγ aχ )2,

which, by construction, will single out |e1〉 as its unique ground
state. In this construction, the symmetry group and other details
of the interaction term may vary from one to another, but the
flavor number eight for the Majorana fermions (or four for the
complex fermions) always stand out. If the flavor number is
insufficient, the above construction will cease to work.

2. Higher Dimensions: generic Yukawa interaction

In the above, we have discussed various interactions that
can gap out the Majorana zero modes in the 0d system (such as
on a single site or in a monopole core). The construction can be
generalized to higher dimensions to design appropriate inter-
actions that can remove gapless fermion modes. Following the
defect proliferation argument elaborated in the main text and
in Appendix A, to trivialize a d-dimensional gapless fermion
system (if trivializable), we may first couple the fermions
to a symmetry-breaking O(d) vector order parameter n =
(n1, . . . ,nd ), as H = 1

2

∫
dd xχᵀ(i∂μαμ + nμβμ)χ , where αμ

(βμ) (for μ = 1, . . . ,d) are anticommuting symmetric (an-
tisymmetric) matrices. Then we can condense the order
parameter n to gap out the fermions locally, and finally restore
the symmetry by proliferating, say, the monopole defects of
the n field, meanwhile the interaction must take effect to
remove the fermion zero modes in the monopole core, such that
the monopole can be safely proliferated. So the interaction
in the d-dimensional system must be such designed that it
will reduce to the appropriate interaction (as we discussed
previously) in the monopole core which is capable of gapping
out eight Majorana zero modes. This is our guiding principle
to design the interactions in higher dimensions.

Of cause, one may also consider disordering the O(d) order
parameter n by proliferating higher dimensional defects, such
as 1d vortex lines or 2d domain wall membranes (if they can be
constructed). However, as demonstrated in Ref. [17], once the
monopole proliferation argument goes through, all the higher
dimensional defect proliferation argument will automatically
follow. For example, if we try to proliferate the vortex lines,
we must design the interaction to gap out the 1d gapless
fermion modes that reside along the vortex line. Then the
problem reduces to its 1d version, and we may evoke the defect
proliferate argument again, by considering kink proliferation
along the vortex line, which will then be exactly equivalent to
the monopole proliferation argument. So in the following, we
will only focus on the monopole proliferation argument.

Suppose the monopole configuration is given by nμ ∼ xμ

around the monopole core (which has been set to the origin),
then the fermion zero modes χ in the monopole core are deter-
mined as the common eigenstates of a set of eigen equations:
iβ1α1χ = · · · = iβdαdχ = χ . Now we define a matrix M =∏d

μ=1(iβμαμ), which will act trivially on the monopole modes
Mχ = χ by construction. So if we consider a fermion bilinear
operator �a = χᵀM ⊗ γ aχ in the d-dimensional system, then
in the monopole core it will reduce to �′a = χᵀγ aχ (as M is
effectively set to its eigenvalue M = 1), which is exactly the
operator that we need to construct the Yukawa interaction in
the monopole core. So the general construction is to start with
an SO(n) invariant Yukawa interaction in the monopole core
Hint = − g′

2

∑n
a=1(χᵀγ aχ )2, by reverting the above dimension
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reduction procedure, we know that the interaction in the
d-dimensional system should be

Hint = −g

2

n∑
a=1

�a�a = −g

2

n∑
a=1

(χᵀM ⊗ γ aχ )2, (B10)

in order to induce the desired interaction in the monopole
core. This is still an SO(n) invariant local interaction that
can act on each site (or in each unit cell). It shares many
similarities with the FK interaction. For example, its has a
fully gapped spectrum with a nondegenerated ground state |G〉,
whose leading component is a direct product state of |e1〉, i.e.
|G〉 ∼ ⊗m

α=1|e1〉α where m is the dimension of the matrix M ,
and all the fermion bilinear expectation values vanish on |G〉.

To see this, we need to make a few simplifications.
Note that the matrix M is a symmetric matrix by defini-
tion, therefore it can always be diagonalized (by orthog-
onal transformation) to σ 3 ⊗ 1 whose diagonal elements
will be denoted as ηα = ±1 (α = 1, . . . ,m) with m being
the dimension of M . Then the fermion bilinear operator
�a = χᵀM ⊗ γ aχ can be decomposed as a sum of smaller
fermion bilinear operators in the M diagonal basis, i.e.,
�a = ∑m

α=1 ηα�a
α with �a

α = χᵀ
α γ aχα . So the interaction in

Eq. (B10) can expanded as Hint = − g

2

∑
a(

∑m
α=1 ηα�a

α)2 =
− g

2 (
∑

α

∑
a(�a

α)2 + ∑
α �=β ηαηβ

∑
a �a

α�a
β). The first term

− g

2

∑
α

∑
a(�a

α)2 = − g

2

∑
α[

∑
a(χᵀγ aχ )2]α is simply the

sum of Yukawa interactions over the α sectors, which
select out |e1〉α state as the ground state in each α sec-
tor, so its ground state will be the direct product of |e1〉
states as |G0〉 = ⊗m

α=1|e1〉α . Obviously all the fermion bi-
linear expectation values vanish on |G0〉. The second term
− g

2

∑
α �=β ηαηβ

∑
a �a

α�a
β serves as an off-diagonal perturba-

tion that mix the |G0〉 state with 4k-fermion excited states
(k = 1,2, . . . ). Nevertheless, the true ground state |G〉 of Hint

will still be dominated by |G0〉, as verified by numerics. Also
because only 4k-fermion excited states are involved in the
mixing, so all the fermion bilinear expectation values will
still vanish on |G〉, which already implies that |G〉 is a trivial
representation of the SO(n) symmetry. To prove that |G〉 is the
unique ground state, we only need to show that the accidental

degeneracy does not occur. To this purpose, we calculate (by
exact diagonalization) the ground-state energy E0 (in the even
fermion parity sector), the even fermion parity sector first
excited state energy E1, and the odd fermion parity sector
lowest-energy state energy E2 of the interaction Hamiltonian
Hint in Eq. (B10):

E0 = −32g m(n + m − 1),

E1 = −32g[m(n + m − 1) + n − 1],

E2 = −32g m(n + m − 2) + 8g(3n − 4),

(B11)

which are indeed the three lowest energy levels of Hint.
One can see as long as n � 2, E1 and E2 never come into
degenerate with E0. Therefore we have shown that Hint has
a fully gapped spectrum with a nondegenerated ground state.
This conclusion applies to all the interaction Hamiltonians
that we constructed in the main text: Eqs. (9), (11), (13), (19),
and (21), because they all can be written as Eq. (B10) (with
n = 7 or 6 and m varies).

3. Pati-Salam Model in Majorana fermion basis

In this Appendix, we conclude the Pati-Salam model in
the Majorana fermion basis explicitly, such that the relations
among the various symmetry actions and order parameters
are clearly exposed. We first introduce the following 128-
component Majorana fermion field in the 4d bulk

χ =
[

1
2

]
⊗

[
L

R

]
chirality

⊗
[↑
↓
]

spin

⊗
[
u

d

]
flavor

⊗

⎡
⎢⎢⎣

r

g

b

w

⎤
⎥⎥⎦

color

⊗
[

Re ψ

Im ψ

]
particle-hole

. (B12)

The layer index 1 or 2 labels the fermions that rotate under
SU(2)1 or SU(2)2, respectively. In the color sector, r,g,b are
the three colors of quarks, and w stands for the lepton. In the
particle-hole sector, the complex fermion ψ is written in terms
of two Majorana fermion components as ψ = Re ψ + i Im ψ .
The full effective Hamiltonian in the 4d bulk with the coupling
to the O(4) and O(6) fields is given by H = HTI + HO(4) +
HO(6) [as translated from Eqs. (15), (16), and (21)],

HTI = 1

2

∫
d4xχᵀ(i∂1σ

0310000 − i∂2σ
0320002 + i∂3σ

0330000 + i∂4σ
0100000 + mσ 0200000)χ,

HO(4) = 1

2

∫
d4xχᵀ(−n0σ

1320001 + n1σ
1321003 − n2σ

2322001 + n3σ
1323003)χ,

HO(6) = 1

2

∫
d4xχᵀ(φ1σ

0322123 + φ2σ
0322203 + φ3σ

0322323 + φ4σ
3322211 + φ5σ

3322021 + φ6σ
3322231)χ. (B13)

Hereinafter, σ ijk··· = σ i ⊗ σ j ⊗ σ k ⊗ · · · denotes the ten-
sor product of Pauli matrices. The bulk Hamiltonian
HTI has the SU(4) × SU(2)1 × SU(2)2 symmetry, given
by

SU(4) :χ → eiθ ·ρχ,

SU(2)1 :χ → eiθ ·μ+χ,

SU(2)2 :χ → eiθ ·μ−χ,

(B14)

The 15 generators of SU(4) are represented as ρij = σp000ijq

with i,j = 0,1,2,3 except for ij = 00, while pq = 00 or 32 is
determined by ij to ensure that the generator is antisymmetric,
i.e., ρijᵀ = −ρij . The generators of SU(2)1 and SU(2)2 are
represented as μ± = 1

2 (σ 0 ± σ 3) ⊗ (σ 001002,σ 002000,σ 003002),
respectively. The symmetry transformation of the fermion χ

determines the symmetry transformation of the O(4) and O(6)
fields. The O(4) vector �n rotates under SU(2)1 × SU(2)2 �
SO(4), and the O(6) vector φ rotates under SU(4) � SO(6).
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The 3d boundary of the 4d bulk can be considered as the
domain wall of the mass term m flipping across x4 = 0. The
boundary fermion modes (domain wall fermions) are given by
the eigenequation iσ 0200000σ 0100000χ = χ , which essentially
requires to fix σ 0300000 = 1. Then the Hamiltonian HTI will
be reduced to H3d = 1

2

∫
d3xχᵀ(i∂1σ

010000 − i∂2σ
020002 +

i∂3σ
030000)χ , which describes the 16 chiral fermions on the

3d boundary.
The model Hamiltonian (B13) and symmetry actions (B14)

can be reduced to the O(4) monopole core. Suppose monopole
configuration is described by (n0,n1,n2,n3) ∝ (x1,x2,x3,x4) in
the vicinity of its core, then the fermion modes localized in
the monopole core are given by the following eigenequations
(which can be derived from the Schrödinger equation [37]):

− iσ 1320001σ 0310000χ = −iσ 1321003σ 0320002χ

= −iσ 2322001σ 0330000χ

= iσ 1323003σ 0100000χ = χ. (B15)

Equation (B15) can be diagonalized to σ 3000000χ =
σ 0300000χ = σ 0030000χ = σ 0003000χ = χ under the following
orthogonal transform:

χ → e
iπ
4 σ 2030001

e
iπ
4 σ 0012000

e
iπ
4 σ 3202002

e− iπ
4 σ 0133002

χ, (B16)

which also transforms σ 0200000 → −σ 0333002, σ 0322ij3 →
σ 0330ij3, σ 3322ij1 → σ 3330ij1. It is straightforward to see from
the diagonalized eigenequations that there are eight solutions,
which corresponds to the eight Majorana modes (or four
complex fermion modes f1,2,3,4 in the main text) localized
in the O(4) monopole core. They can be arranged as

χ =

⎡
⎢⎣

r

g

b

w

⎤
⎥⎦

color

⊗
[

Re f

Im f

]
particle-hole

. (B17)

In the subspace of these localized Majorana modes, the model
Hamiltonian is reduced to

HTI|O(4) monopole = χᵀ(−mσ 002)χ,

HO(6)|O(4) monopole = χᵀ(φ1σ
123 + φ2σ

203 + φ3σ
323

+φ4σ
211 + φ5σ

021 + φ6σ
231)χ. (B18)

The SU(2)1 × SU(2)2 symmetry is broken by the O(4)
monopole. The remaining symmetry in the monopole core
is the SU(4) symmetry, whose generators are reduced to
ρij = σ ijk with i,j = 0,1,2,3 expect for ij = 00, and k = 0
or 2 determined by ij to ensure that ρij is an antisymmetric

matrix. It is then obvious that the localized fermion modes
form a fundamental representation of the SU(4) symmetry.

Judging from the reduced Hamiltonian, these localized
fermion modes will become zero modes at m = 0 (where
the bulk topological-trivial phase transition is suppose to
occur). However, as discussed in the main text [see Fig. 2(c)]
and in Appendix B, one can construct an SO(6) invariant
Yukawa interaction Hint = HO(6)|O(4) monopole + 1

2g
φ2 to gap

out the localized fermion modes for all range of m (including
m = 0). Since the O(6) Yukawa couplings in the monopole
core is originated from the O(6) Yukawa couplings in the
bulk Eq. (B13), so the corresponding bulk interaction must
be given by Hint = HO(6) + 1

2g

∫
d4x φ2. After integrating out

the bosons field φ, one obtains exactly the interaction we
proposed in Eq. (21) in the main text.

APPENDIX C: CLASSIFICATION OF 4d FREE
FERMION TOPOLOGICAL INSULATORS

The topological insulators/superconductors are classified
as the fermionic symmetry protected topological (FSPT)
states. In this Appendix, we fit the various 4d topological
insulators discussed in the main text into the “tenfold way”
classification scheme of free FSPT states [43,44,54–57]. In
particular, we will focus on the SU(4) and related symmetries,
which is important for our discussion in the main text. In
the noninteracting limit, the classifications are concluded
in Table I. It is worth mentioning that interaction may
further reduce some of the classifications in the table, as
demonstrated in the main text and reviewed in Appendix A.
The toy model we discussed corresponds to the U(1) × Z2

FSPT state, while the Pati-Salam model corresponds to the
SU(4) × SU(2)1 × SU(2)2 FSPT state.

Let us start from the U(1) FSPT states, which belong
to the symmetry class A. With the U(1) symmetry, the
fermion Hamiltonian can be written in the complex basis
as H = c†(

∑4
i=1 i∂i�

i + mM)c, where �i (i = 1, . . . ,4) and
M are anticommuting matrices. Adding the mass matrix M

corresponds to the extension problem C�4 → C�5, whose
classifying space is C4

∼= C0, so the free FSPT classification is
given by π0(C0) ∼= Z. The 4d U(1) FSPT state is also known
as the 4d quantum Hall (QH) state. We can stack two 4d QH
states of opposite chiralities together to make a nonchiral 4d

topolotical insulator (TI), provided an additionalZ2 symmetry,
which acts as the fermion parity only on one of the chirality.
The Z2 symmetry simply splits the single-particle Hilbert
space to two subspaces (according to the ±1 eigen values
of the symmetry operator), and in each subspace the problem

TABLE I. Free fermion classification of some FSPT states in 4d .

Class Symmetry Extension problem Classifying space Classification

A U(1) C�4 → C�5 C4
∼= C0 Z

U(1) × Z2 Z × Z
C SU(2) C�8,0 → C�8,1 R−6

∼= R2 Z2

SU(2)1 × SU(2)2 Z2 × Z2

AII SU(4) C�10,0 → C�10,1 R−8
∼= R0 Z

AI SU(4) × SU(2) C�9,3 → C�9,4 R−4
∼= R4 Z

SU(4) × SU(2)1 × SU(2)2 Z × Z
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is reduced to the U(1) FSPT with Z classification, so putting
together, the U(1) × Z2 free FSPT states are Z × Z classified
in general. The two Z’s stand for the classification of the
nonchiral 4d TI and that of the chiral 4d QH, respectively.
The U(1) × Z2 toy model we considered in the main text fits
into the nonchiral Z classification and is hence free from the
perturbative anomaly.

Now we turn to the SU(2) FSPT states, which belong to
the symmetry class C. In the Majorana basis, the fermion
Hamiltonian reads H = χᵀ(

∑4
i=1 i∂i�

i + mM)χ where �i

(i = 1, . . . ,4) and M are anticommuting matrices. For Ma-
jorana Hamiltonian, �i and M must also satisfy the symmetry
properties that �iᵀ = �i is symmetric and Mᵀ = −M is
antisymmetric. Denote the SU(2) generators as μa (a =
1,2,3), which (in the Majorana basis) are three anticommuting
and antisymmetric (μaᵀ = −μa) matrices. To respect the
SU(2) symmetry, the Hamiltonian (the �i and M matrices)
must commute with these three generators. All these algebraic
relations can be realized in a single Clifford algebra by
embedding the matrices in a larger space with auxiliary Pauli
matrices as

σ 1 ⊗ �i = αi (i = 1, . . . ,4),
σ 2 ⊗ μa = α4+a (a = 1,2,3),
σ 3 ⊗ 1 = α8,

σ 1 ⊗ M = β1.

(C1)

Then by requiring the symmetric matrices αpᵀ = αp (p =
1, . . . ,8) and the antisymmetric matrices β1ᵀ = −β1 to an-
ticommute with each other, all the algebraic properties of
�i , M , and μa are realized. So adding the mass matrix M

corresponds to the extension problem of C�8,0 → C�8,1, whose
classifying space is R−6

∼= R2, therefore the 4d SU(2) free
FSPT classification is given by π0(R2) ∼= Z2. If the SU(2)
symmetry is enlarged to SU(2)1 × SU(2)2, the classification
will be doubled to Z2 × Z2 correspondingly.

Similar classification approach can be applied to the SU(4)
(and SU(4)-related) FSPT states. However, unlike the SU(2)
group whose generators are automatically anticommuting, the
15 generators of the SU(4) group do not always anticom-
mute with each other. One need to find out the minimal
anticommuting subset among the 15 generators. It is found that
C�0,5

∼= C(4) is (one of) the minimal Clifford algebra in which
the su(4) Lie algebra can be embedded. Denote the generators
of C�0,5 as λa (a = 1, . . . ,5), which are anticommuting and

antisymmetric (λaᵀ = −λa) matrices, e.g., a specific choice
may be λ = (σ 102,σ 200,σ 312,σ 320,σ 332). The 15 SU(4) group
generators can then be obtained either as λa or as iλaλb.
To respect the SU(4) symmetry, it is sufficient to require
the Hamiltonian (the �i and M matrices) to commute with
λa . All these algebraic relations can be realized in a single
Clifford algebra by embedding the matrices in a larger space
with auxiliary Pauli matrices as

σ 1 ⊗ �i = αi (i = 1, . . . ,4),
σ 2 ⊗ λa = α4+a (a = 1, . . . ,5),
σ 3 ⊗ 1 = α10,

σ 1 ⊗ M = β1.

(C2)

Then by requiring the symmetric matrices αpᵀ = αp (p =
1, . . . ,10) and the antisymmetric matrices β1ᵀ = −β1 to
anticommute with each other, all the algebraic properties of
�i , M and λa are realized. So adding the mass matrix M

corresponds to the extension problem of C�10,0 → C�10,1,
whose classifying space is R−8

∼= R0 (which belongs to
the symmetry class AII), therefore the 4dSU(4) free FSPT
classification is given by π0(R0) ∼= Z.

The SU(2) symmetry can be added to the SU(4) FSPT
states, and the Z classification will not change (but the
symmetry class does change from AII to AI). With the
SU(4) × SU(2) symmetry, the Clifford algebra embedding
scheme can be

σ 1 ⊗ �i = αi (i = 1, . . . ,4),
σ 2 ⊗ λa = α4+a (a = 1, . . . ,5),
σ 3 ⊗ μb = βb (b = 1,2,3),
σ 1 ⊗ M = β4,

(C3)

where the symmetric matrices αpᵀ = αp (p = 1, . . . ,9) and
the antisymmetric matrices βqᵀ = −βq (q = 1, . . . ,4) are
anticommuting matrices. So adding the mass matrix M

corresponds to the extension problem of C�9,3 → C�9,4, whose
classifying space is R−4

∼= R4 (which belongs to the symmetry
class AI), therefore the 4d SU(4) × SU(2) free FSPT classifi-
cation is given by π0(R4) ∼= Z. If the symmetry is enlarged to
SU(4) × SU(2)1 × SU(2)2, the classification will be doubled
to Z × Z. Again, the two Z’s stand for the classification of the
nonchiral 4d TI and that of the chiral 4d QH respectively. The
Pati-Salam model fits into the nonchiral Z classification and
is hence free from the perturbative anomaly.
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