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Enhancement of the thermoelectric power by electronic correlations in bad metals:
A study of the Kelvin formula
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In many strongly correlated electron metals the thermoelectric power has a nonmonotonic temperature
dependence and values that are orders of magnitude larger than for elemental metals. Inspired by Kelvin, Peterson
and Shastry derived a particularly simple expression for the thermopower in terms of the temperature dependence
of the chemical potential, now known as the Kelvin formula. We consider a Hubbard model on an anisotropic
triangular lattice at half filling, a minimal effective Hamiltonian for several classes of organic charge transfer salts.
The finite temperature Lanczos method is used to calculate the temperature dependence of the thermopower using
the Kelvin formula. We find that electronic correlations significantly enhance the magnitude of the thermopower
and lead to a nonmonotonic temperature dependence. The latter reflects a crossover with increasing temperature
from a Fermi liquid to a bad metal. Although, the Kelvin formula gives a semiquantitative description of some
experimental results it cannot describe the directional dependence of the sign of the thermopower in some
materials.
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I. INTRODUCTION

Strongly correlated electron materials have attracted in-
terest as candidate thermoelectric materials because they
can exhibit values of the Seebeck coefficient S as large as
100 μV/K [1]. Understanding and describing the temperature
dependence of S in strongly correlated materials represents
a significant theoretical challenge. Both the magnitude and
the temperature dependence of S is distinctly different than
in elemental metals. At low temperatures S increases linearly
with temperature, with a large slope, and reaches a maximum
value of order kB/e � 86 μV/K (kB is Boltzmanns constant
and e is the charge of an electron). With increasing temperature
S decreases and can even change sign. These qualitative
features are seen in diverse materials including organic charge
transfer salts [2], cuprates [3,4], heavy fermion compounds [5],
cobaltates [6], strained rare earth nickelates [7], and iron
pnictides [8]. This is illustrated in Fig. 1 with experimental
results for an organic metal. Behnia, Jaccard, and Floquet
showed that for a wide range of materials that the slope of the
temperature dependence of S and the specific heat capacity
at low temperatures were proportional to one another [9]. For
heavy fermion materials, this observation can be explained
in terms of a slave boson treatment of the Kondo lattice
model [10].

Understanding the thermopower in strongly correlated
electron materials has recently attracted increasing theoretical
interest [1,11]. Shastry and coworkers have argued [12–14]
that the high-frequency limit of the Kubo formula for
the thermopower actually gives a good approximate value
to the dc limit. This approach has the advantage that
the thermopower (a transport property) can actually be
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evaluated from an equal-time expectation value (an equi-
librium property). Peterson and Shastry [15] have shown
that the thermopower is approximately given by the Kelvin
formula, the derivative of the entropy with respect to the
particle number, which via a thermodynamic Maxwell identity
equals the derivative of the chemical potential with respect
to temperature. Recent dynamical mean-field theory (DMFT)
calculations for the Hubbard model [16] and the Falicov-
Kimball [17] model show that although the Kelvin formula
is unreliable at low temperatures in the bad metal regime
it can be a reasonable approximation. The Kelvin formula
has the significant advantage that a transport property can be
calculated from an equilibrium thermodynamic property. It
also illuminates the physical significance of work by Jaklič
and Prelovšek who showed [18] that for the t-J model the
entropy as a function of doping is a maximum close to
optimal doping. This means that the thermopower should
change sign at optimal doping, as is observed experimentally
in the cuprates [3,4], and found theoretically within cellular
DMFT [19].

Figure 1 shows the measured temperature dependence of
the thermopower of an organic metal [2]. The authors also
calculated the thermopower using a Boltzmann equation and a
band structure obtained with the Huckel approximation. They
were able to reproduce the two signs of the thermopower,
which arose from the electron and hole parts of the Fermi
surface. However, they obtained values that were about five
times smaller than the experiment. But, they found that if all
the hopping integrals were reduced by about a factor of five
that the results were comparable to experiment. Similar results
were obtained earlier by Mori and Inokuchi [21]. Merino
and McKenzie suggested that the nonmonotonic temperature
dependence arose from a crossover with increasing tempera-
ture from a renormalized Fermi liquid to a bad metal [22].
They showed this was consistent with results of calcula-
tions for a Hubbard model based on dynamical mean field
theory.
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FIG. 1. (Color online) Temperature dependence of the thermo-
electric power in the organic metal κ-(BEDT-TTF)2Cu[N (CN)2]Br.
The two different curves correspond to two different intralayer direc-
tions in the crystal. Experimental data is taken from Ref. [2]. Note
the nonmonotonic temperature dependence and that the thermopower
is comparable to kB/e = 86 μV/K. For temperatures below about
50 K the thermopower is approximately linear in temperature, as
expected in a Fermi liquid. The material becomes a superconductor
below Tc = 12 K. The inset shows a schematic of the electron (blue)
and hole (red) Fermi surfaces deduced from a tight-binding band
structure [20]. Transport in the a and c directions will be dominated
by holes and electrons, respectively.

II. THE KELVIN FORMULA

Starting from a Kubo formula, Peterson and Shastry showed
that if one interchanges the thermodynamic and the static limits
that the thermopower is given by the temperature derivative of
the chemical potential [15]

SK = −1

e

(
∂S̃

∂Nel

)
T ,V

= 1

e

(
∂μ

∂T

)
N,V

, (1)

where e is the magnitude of the charge of an electron, S̃ is the
entropy, and Nel is the particle number. Note that this result
is independent of the direction of the thermal gradient in the
crystal. Hence, it will be unable to explain the origin of the
different signs shown in Fig. 1. As a result of the third law of
thermodynamics, the entropy should vanish as the temperature
goes to zero for all Nel and so SK (T ) → 0 as T → 0.

III. HUBBARD MODEL

For numerical calculations we consider a system at fixed
temperature T and chemical potential μ, and model it with a
(grand canonical) Hubbard model on the anisotropic triangular
lattice,

Ĥel =−
∑
i,j,s

ti,j c
†
i,scj,s + U

∑
i

n̂i,↑n̂i,↓ − μN̂el. (2)

At half filling, this is a minimal effective Hamiltonian for
several classes of organic charge transfer salts, including the
κ-(BEDT-TTF)2X family [23]. N̂el ≡ ∑

i,s n̂i,s is the total
electron number operator, ti,j = t for nearest neighbor bonds
in two directions and ti,j = t ′ for nearest neighbor bonds in
the third direction. Electronic spin is denoted with s (↑ or ↓).

For the organic charge transfer salts, such as the compound
whose data is shown in Fig. 1, the values of U/t and t ′/t

determine whether the ground state is a metal, Mott insulator,
antiferromagnet, spin liquid, or superconductor. These param-
eters can be varied with pressure or chemical substitution,
leading to a rich phase diagram. Accurately determining the
parameters from electronic structure calculations, such as
those based on Huckel or density functional theory [24] is
challenging, and reviewed in detail in Ref. [23].

For a fixed half filled system the chemical potential changes
with temperature and μ(T ) is fixed by the constraint that

〈N̂el〉 = N, (3)

where N is the number of lattice sites, ensuring half-filling.
〈Â〉 denotes the grand canonical thermal average, 〈Â〉 ≡
Tr[Â exp(−βĤel)]/Z with Z being the thermodynamic sum
Z = Tr[exp(−βĤel)]. Here we have also used β = 1/(kBT ).

Our numerical results were obtained by the finite-
temperature Lanczos method (FTLM) [25], which employs
finite lattices, averaging over starting random vectors to obtain
finite-T results. In addition we use also twisted boundary con-
ditions to reduce the finite-size effects. We used this method
previously to determine several thermodynamic quantities of
the Hubbard model [26]. We showed that there was a transition
from a metal to a Mott insulator with increasing U/t , with the
critical value depending on the amount of frustration t ′/t .
In the metallic phase as the temperature increased there is a
crossover from a Fermi liquid (with a specific heat and entropy
that increased linearly with temperature) to a bad metal,
characterized by an entropy of order kB ln(2), associated with
noninteracting localized spins. The coherence temperature
associated with this crossover was substantially reduced by
strong correlations, having a value of order t/10, near the
metal-insulator transition.

IV. RESULTS

In Fig. 2 we show the thermopower estimated with Kelvin
formula SK , calculated for 16 lattice sites. It shows a large
enhancement with increasing electronic interactions U at low
T . In comparison to the noninteracting (U = 0) system the
enhancement can be an order of magnitude and originates
in electronic correlations. The largest magnitude of SK is
reached for T ∼ Tcoh ∼ 0.1t , which is much lower than the
Fermi energy (measured from the band edges). Below Tcoh

one enters a coherent Fermi liquid regime in which one
expects a linear temperature dependence of SK , extrapolating
to zero at zero temperature, in accordance with the third law
of thermodynamics. This regime is hard to reach numerically
and our results only indicate it with SK tending to 0 at T → 0
for T < Tcoh. In Fig. 2 we linearly extrapolated SK to 0 for
T → 0 by hand to demonstrate the expected behaviour. One
can estimate Tcoh from SK as the temperature at which SK has
maximal absolute value or as the end of a linear-in-T regime.
These roughly agree with the estimate Tcoh ∼ 0.1t from the
specific heat [26]. Tcoh is expected to increase with decreasing
U , and this is nicely seen in the specific heat [26] and also in
Fig. 3, but is less clear in Fig. 2.

To investigate the possible role of finite size effects we
show in Fig. 3 also SK results for smaller N = 14 and N = 12
cluster sizes. It is evident from the figures that although the
high T results are robust, there are still some finite size effects
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FIG. 2. (Color online) Enhancement of the thermopower by
strong correlations. The temperature dependence of the Kelvin
thermopower SK is shown for several different values of the Hubbard
U . All results are for the isotropic triangular lattice, t ′ = t . As
the Mott metal-insulator transition (Uc � 7.5t) [26] is approached
the magnitude of the thermopower increases to values that are an
order of magnitude larger than for noninteracting electrons (U = 0)
for temperatures of about T ∼ t/10. The maximum in |SK | at low
temperatures corresponds to the crossover from a Fermi liquid at low
temperatures to a bad metal at higher temperatures. This maximum
is also seen in the specific heat [26] and the spin susceptibility. The
curves have been linearly extrapolated from their value at T = 0.06t

to zero at zero-temperature. All results shown are for a 16-site cluster.
Also shown is the linear temperature dependence obtained by a
Sommerfeld expansion for noninteracting electrons [27].

at lower T . In particular the maximum slightly shifts to lower
T and the low-T SK still increases with increasing system size.
However, the main features in our results, namely, increase
with U , nonmonotonicity in T , and values of the order kB/e,
are observed for all cluster sizes.

The MIT is expected to affect the thermopower and it is
interesting to see whether one can observe some change in
SK due to the MIT. We show in Fig. 4 how for several T

above TcohSK changes with increasing U and that a minimum
is observed for U ∼ 7.5t , where the MIT is expected [26].
However, there is no clear signature of the MIT. This is
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FIG. 3. (Color online) Limited finite-size effects. The same
quantities as shown in Fig. 2 are plotted here for smaller 12- and
14-site clusters. All the main features, namely, that SK increases with
U at low temperatures, is nonmonotonic in T , and is of the order of
kB/e close to the MIT, are present. However, at lowest T there are
still some finite size effect and SK still seems to slightly increase with
system size.
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FIG. 4. (Color online) The dependence of SK on U for several
different fixed temperatures T is shown. It is seen how correlations
increase SK at low temperatures, with possibly a signature of the MIT
near the critical Uc ∼ 7.5 [26].

similar to what is observed for the specific heat, entropy,
and spin susceptibility, which exhibit a smooth crossover
as one goes from the metal to Mott insulator. It is not
clear what the temperature dependence and magnitude of
the thermopower should be in the Mott insulator. We are
unaware of any theoretical predictions for finite U . In a
conventional semiconductor the thermopower is given by
S = −kB/e[�/T + 5/2], where � is the charge gap [see for
example, Eq. (A20) in Ref. [28]]. However, this formula does
not seem to be a very good description of our results for the
Kelvin thermopower. For U = 8t , we previously estimated
that �/t ∼ 0.1 − 0.2 [26]. Specifically, the formula gives too
larger values and diverges as T goes to zero. But, we should not
necessarily expect this formula to be relevant since it assumes
well-defined quasiparticles with nondispersive scattering.

V. NONINTERACTING FERMIONS

In a noninteracting fermion system the chemical potential,
at temperatures much less than the Fermi temperature, can be
estimated via the Sommerfeld expansion leading to [27]

μ(T ) = EF − π2

6
(kBT )2 g′(EF )

g(EF )
. (4)

Here g(EF ) is the density of states (DOS) at the Fermi
energy (EF ) and g′(EF ) is its slope. Substituting Eq. (4) in
the Kelvin formula gives a SK that is linear in temperature,
with a magnitude of order, (kB/e)(kBT /EF ), which for
elemental metals will be very small. We show in Fig. 2
that the Sommerfeld expansion, Eq. (4), gives a good low
T estimate for noninteracting electrons, up to about T = 0.3t .
The noninteracting density of states is shown in Fig. 5.

VI. FERMI LIQUID REGIME

When using the Kelvin formula one should, however, be
careful, since it may not be a good approximation in some
regimes. For example, its weakness for T < Tcoh can be
understood by starting with the Mott formula [14,15]

SMott = −T
π2k2

B

3e

d

dμ
ln

[
g(μ)v2

k,xτk,μ

]|μ→EF
. (5)
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FIG. 5. (Color online) Energy dependence of the density of states
g(ε) for the tight-binding band structure associated with noninteract-
ing electrons with t ′ = t . For half filling μ = EF = 0.82t at zero
temperature, and g(EF ) = 0.14/t and g′(EF ) = 0.056/t2. The latter
determines the slope of the Kelvin thermopower versus temperature
for noninteracting electrons. Reversing the sign of t ′, or both t and t ′,
corresponds to a particle-hole transformation and reverses the sign of
this derivative [g′(EF )].

Here, v2
k,xτk,μ denotes the average of the quasiparticle velocity

at wave vector k in the x direction (vk,x) times the quasiparticle
lifetime (τk,μ) over a surface in reciprocal space at energy
equal to μ. To obtain the Kelvin formula from SMott one needs
to neglect the μ dependence of v2

k,xτk,μ in Eq. (5) leading to

SK = −T
π2k2

B

3e

d

dμ
ln[g(μ)]|μ→EF

. (6)

This is the same result as obtained for the noninteracting
case via Eq. (4) and also represents the low-temperature Kelvin
formula in a coherent regime with well-defined quasiparticles.
The problem with the Kelvin formula in a Fermi liquid regime
is in neglecting the μ dependence of the velocity in the term
v2

k,xτk,μ, while keeping the μ dependence of the density of
states g, which is also related to the velocity since g ∝ 1/v. It is
also unlikely that in a Fermi liquid regime that τ would cancel
the μ dependence of v2

k,x in v2
k,xτk,μ. That the Kelvin formula is

more appropriate for higher temperatures and in the incoherent
regime was already pointed out in Ref. [15], while in the
low-temperature regime it only gives a rough approximation.
This is explicitly found in recent DMFT calculations for the
Hubbard model [16] and the Falicov-Kimball [17] model. It
has also been shown that Kelvin formula fails near the critical
point of a one-dimensional exactly solvable model [29].

VII. EFFECT OF DIMERIZATION

In Fig. 1 the measured thermopower of an organic metal
in two different directions is shown. The opposite signs
for the two directions was argued [2] to originate in the
finite dimerization of the hopping (alternating hopping t − δt ,
t + δt, . . .) in two directions on the triangular lattice. Such
a dimerization splits the band into two bands, one electron

and the other hole like [20,30]. Each band dominates the
thermopower in its own direction and leads to opposite signs
of the thermopower for the two directions. Due to the band
splitting the density of states is also split. However, it turns
out that just the density of states cannot capture the change of
sign and that v2 term discussed above needs to be included
to reproduce the opposite signs. The Boltzmann transport
equation approach in Ref. [2] does take these terms into
account and captures the correct signs.

VIII. COMPARISON TO EXPERIMENT

For comparison of the experimental data shown in Fig. 1 and
our results shown in Fig. 2 we set the energy scale t = 50 meV
∼580 K as appropriate value obtained by Density Functional
Theory for organic charge transfer salts [24,31–34]. We note
that with our definition of hopping parameters in Eq. (2) we
should for organics either take both t and t ′ negative [24,32,33]
or positive t and negative t ′ [31], but both changes correspond
at half-filling to a particle-hole transformation (with additional
shift in k space for the later) and therefore only reverse the sign
of SK shown in Fig. 2. Then we estimate from Fig. 2 that the
maximal thermopower would appear at roughly Tcoh = 60 K,
which is in agreement with experiment, in particular with Sc

for the material in Fig. 1.
We also capture the qualitative T dependence of the

thermopower. However, as already discussed above, the Kelvin
formula does not have the potential to describe the orientational
dependence shown in Fig. 1, which originates in the finite
dimerization of the lattice. Dimerization can also significantly
alter the absolute values and sign of S and is therefore needed
for reconciliation of the experimental, e.g., Sc � 22 μV/K
at maximum, and theoretical, SK � 86 μV/K at maximum,
values.

IX. CONCLUSION

We have shown with the Kelvin forumla, which is a
good approximation in the bad metallic regime, that the
thermopower is strongly enhanced by electronic correlations
at low T , even by an order of magnitude compared to
the weak or noninteracting electron limit. Comparing with
experimental data for an organic charge transfer salt, we
capture qualitatively the temperature dependence and overall
magnitude of the thermopower. On the other hand, the Kelvin
formula cannot capture the orientational dependence of S

observed in experiment, for which one would need to employ
a Kubo formula and introduce dimerization of the lattice into
the model. We leave this as a future challenge.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Jak Chakhalian,
Jernej Mravlje, Nandan Pakhira, Michael Peterson, Philip
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