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Self-consistent solutions of the Dyson equation are obtained using a plane-wave basis set for seven small
molecules. Such self-consistent solutions can help to unify the different GW self-consistent schemes, reduce
the scatter of results in current GW calculations, and shed light on the true effects of GW self-consistency.
Unlike other works of self-consistent GW calculations, in the present work the Green’s function is expressed as a
matrix under the plane-wave basis set. The algorithmic details which enable such calculations are presented. The
ability to solve the full Green’s function using a plane-wave basis set may open the door for future beyond-GW

many-body perturbation theory calculations.
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I. INTRODUCTION

The GW method has been used as one of the most accurate
methods to calculate the electronic structures of materials from
bulk crystals to molecules [1]. However, there is a strong
dependence of the traditional GW results on the initial input
single-particle electron wave functions {ψi} and eigenenergies
{εi}, especially for G0W0 calculations [2–5] (e.g., up to 1 eV
for some oxide band gaps [6]), where the Green’s function G
and screened electron-electron interaction W are not updated.
One way to solve this problem is to introduce self-consistency
in the solution. However, there are different approaches to
solve the GW problem self-consistently. One can divide these
approaches into two major categories. In the first category, the
Green’s function is still described by an noninteracting Green’s
function using the eigenfunctions and eigenenergies of the
single-particle orbital, e.g., G0(ω) = ∑

i ψi(r1)ψ∗
i (r2)/(ω +

μ − εi ± iδi), although ψi and εi will be updated during
the self-consistent iterations [7–11]. However, some of the
self-consistence conditions could be a bit arbitrary since one
can propose different self-consistent schemes [6]. Further-
more, in some cases, there can still be initial wave function
dependence [12]. In the second category, on which we will
focus, the Dyson equation is solved self-consistently, and
the Green’s function G can no longer be described by a
noninteracting single-particle Green’s function G0. Schöne
and Eguiluz [13] have solved the Dyson equation by expanding
the Green’s function G with the input single-particle orbital
and used a truncation on the number of these orbitals. They
used the Baym-Kadanoff formalism [14] to express the Dyson
equation. Similarly, Kutepov, Savrasov, and Kotliar [15,16]
also used the band states to expand the Green’s function
and iteratively solved the Dyson’s equation in a bulk. The
Matsubara frequency mesh [16] on the imaginary time and
frequency axis is used for frequency integrations. Caruso,
Scheffler et al. have used atomic orbitals to solve the Dyson
equation [17,18]. So has the group of Thygesen [19,20];
they have solved the Dyson equation using localized atomic
orbitals for 34 different molecules. The atomic orbital has
also been used by van Leeuwen et al. [21,22] and Koval
et al. [23] to solve the Dyson equation. Computationally, the
atomic orbital has the advantage of being able to significantly
reduce the dimensions of the problem while still being able to
cover the important high-energy single-particle excitations.

They are thus particularly suitable for isolated molecule
systems, while the periodic crystals are traditionally solved
with plane waves or full potential linearized augmented plane
wave (FLAPW) methods. We notice that, for the methods
starting with the plane-wave or FLAPW basis sets, the band
states are often used to expand the Green’s function G [13].
However, this could lead to issues related to the truncations
of these band states [24,25]. In this work, we will use a
plane-wave basis set to directly represent the Green’s function
matrix G without any truncation. Although doing so will
significantly increase the computational cost, as we will show
in this work, with the help of modern supercomputers, it is
now possible to carry out such calculations. There could be
other advantages for adopting this approach. For example, by
representing the Green’s function matrix in reciprocal and real
space, the formalism becomes simpler. This might ease the
step to adopt other formalisms beyond the GW approximation
in the future.

One might ask why one should choose the Dyson equation
as the self-consistent solution of the GW problem, given all the
possible ways for the GW self-consistent calculations (i.e., an
input equaling output criterion in an iterative procedure). Baym
and Kadanoff [14,26] have shown that many conservation laws
are preserved under the self-consistent solution of the Dyson
equation. The same is true for the charge conservation law [27].
The Dyson equation is the variational minimum (or stationary
point) solution of Klein’s total energy expression [28] under
the random phase approximation (RPA). This is like the
Kohn-Sham equation is the variational minimum solution of
the density functional theory (DFT) total energy. Furthermore,
it has been shown that [29,30] under such a variational
solution, the differences of the RPA total energies after
adding or subtracting one electron equal the GW quasiparticle
eigenenergies. Recently, there has been a surge of interest
in using RPA for total energy calculations [29,31–33]. But
many such calculations are based on the input (e.g., DFT)
noninteracting single-particle Green’s function G0. The self-
consistent solution of the Dyson equation is to find the
electronic ground state of the total energy expression. As
a result, one can, for example, use the Hellmann-Feynman
theory to calculate the atomic force under the RPA total
energy. Considering all these factors, it is not difficult to
conclude that the Dyson equation as derived from the original
GW formalism [34] is the most natural choice for the GW
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self-consistent calculations. However, the cost is to represent
the Green’s function G as a full matrix. It can no longer be
represented by a set of single-particle wave functions and
eigenenergies.

The effects of self-consistency for GW calculations for
homogeneous electron gas have been studied by Holm and
Barth [35]. They found an overestimation of the free-electron
bandwidth and the disappearance of the plasmon satellite
structures in the spectral function due to self-consistent
calculations. They thus concluded that the non-self-consistent
G0W0 calculation is preferred unless the vortex correction is
included, despite the fact that the self-consistent GW total
energy is found to be rather accurate. Nevertheless, their
conclusion is based on model metallic systems. It is thus
interesting to test the self-consistent GW results on real and
nonmetallic systems. Ku and Eguiluz [36] have calculated bulk
Si and Ge using the self-consistent GW (sc-GW ) method,
and concluded that the self-consistency and core level should
be used together as their effects can cancel out each other,
although this conclusion has been contested by some later
studies [24,25] due to the band state truncation issue. In terms
of molecules, Caruso et al. [18] found that the self-consistency
does not necessarily make the spectrum result worse than the
non-self-consistent results. Thus, this could be the right time to
revisit many of the related issues, especially if more accurate
sc-GW calculations become available without the truncation
issues.

We will use plane-wave pseudopotentials to solve the GW

problem. There has been a long debate over the effects of ignor-
ing the core levels and using the pseudo–valence wave func-
tions in GW calculations. For example, Ku and Eguiluz [36]
have claimed that the use of pseudopotentials will introduce a
large error in the GW result. However, Delaney et al. [25] and
Tiago et al. [24] have debated this result, and concluded that
the pseudopotential should be good enough for most problems.
More recently, Gomeze-Abal et al. [37] have revisited this
problem. They concluded that the ignoring of core levels and
the use of pseudo–wave functions might indeed have some
effects on the final results. How to overcome these problems,
e.g., by developing GW -appropriate pseudopotentials, will be
beyond the scope of the current paper. For example, perhaps
the effects of core level can be included in a core-level
polarization model [38], and the effect of the pseudo–wave
function might be corrected by introducing additional terms in
the exchange integral [39,40]. Here, we would like to point out
that for the light elements to be used in the current study, the
pseudopotential introduced error should be small compared to
the band gap, the highest occupied molecule orbital (HOMO),
and the lowest unoccupied molecule orbital (LUMO) energies.

One technical issue for solving the Dyson equation under
the GW approximation is the frequency-space integration.
This is a convolution in frequency, and there are different
ways to carry it out. One approach, recently adopted by Koval
et al. [23], is to calculate this convolution integral directly in
real frequency space together with the use of spectral functions
to avoid the singularity of G(ω). We will use the Fourier
transformation to convert the functions to time space, then use
the direct products in time space. To avoid the singularities
in real frequency, imaginary frequency will be used. This is
the approach used by Roja, Godby, and Needs [41] more than

ten years ago, and it has also been used recently by several
other groups [15,18]. Very often, the Matsubara time and
frequency mesh [15] is used with an artificial temperature.
One often extrapolates the final result from a series of artificial
temperatures [15,22]. Recently, in a work by Caruso et al. [18],
the scheme of McMahan et al. [42] was adopted to carry
out this frequency integration without the use of artificial
temperature. In this paper, we will introduce an alternative
integration scheme, which also has high accuracy without the
use of artificial temperature.

We will calculate 7 small molecules: Si3, C3, O3, Al2,
SiH2, HNO, and CHF. These molecules are chosen because
their electron affinities are positive (LUMO level below the
vacuum level). Thus, both experimental HOMO and LUMO
levels exist. In contrast, for many of the small molecules
studied previously (e.g., in Ref. [19]), only HOMO levels exist.
We believe it is interesting to have both HOMO and LUMO
levels since they might have very different characteristics.
Besides comparing the G0W0 calculation with the full sc-GW

results, we will also study how the self-consistent Green’s
function G is different from the single-particle noninteracting
Green’s function G0. There is also a practical question to
answer: Can the full GW equation be solved using current-day
supercomputers by expressing the Green’s function matrix
directly using a plane-wave basis set without any additional
truncations beyond the plane-wave kinetic energy cutoff?

II. THE BASIC FORMALISM

We will follow the “space-time” method on the imaginary
iω axis first used by Roja, Godby, and Needs [41]. Under
this scheme, the Green’s function will be solved along the
imaginary axis iω + μ [to be denoted as G(iω)] in the ω

complex plane, where μ is the electron Fermi energy (thus
in our notation, both ω and μ are real numbers). The Dyson
equation can be written as

G−1(iω) = iω + μ − H0 − �(iω), (1)

where G, H0, and � are all matrices either represented
in the real space r index, or reciprocal space q in-
dex. H0 = − 1

2∇2 + V (r) + ∑
l |φl〉〈φl| is the noninteracting

single-electron Hamiltonian, with |φl〉〈φl| being the nonlocal
pseudopotential projector. The single-particle potential is
calculated as V (r) = ∑

R vat (r − R) + ∫
ρ(r ′)
|r−r ′ |d

3r ′, where vat

is the local part of the atomic pseudopotential, and the ρ is the
electron charge density. The �(iω) is the self-energy term.
For the ω-dependent matrices X(iω) (e.g., G and �), they
can also be represented in the time (τ ) space as X(iτ ). The
transformation between these temporal duel representations is

X(iτ ) = i

2π

∫ ∞

−∞
X(iω)eiωτ dω,

(2)

X(iω) = −i

∫ ∞

−∞
X(iτ )e−iωτ dτ.

The above equation is carried out separately for every
element of the matrix. On the other hand, the r and q space
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transformation can be carried out as

X(q1,q2,z) = 1

�

∫
X(r1,r2,z)eiq1r1e−iq2r2d3r1d

3r2,

(3)

X(r1,r2,z) = 1

�

∑
q1,q2

X(q1,q2,z)e−iq1r1eiq2r2 ,

where z can be either iω or iτ , and � is the volume of the
periodic unit cell.

With the above definition, the electron charge density can
be calculated as ρ(r) = −iG(r,r,iτ )|τ→0+ . The correct total
electron charge can be obtained by adjusting the Fermi energy
μ. Within the GW approximation [34], the self-energy term
� can be expressed as

�(r1,r2,iτ ) = iW (r1,r2,iτ )G(r1,r2,iτ ), (4)

where the screened Coulomb interaction W can be calculated
in (q,iω) space as

W (q1,q2,iω) = 4π

q2
1

ε−1(q1,q2,iω), (5)

and the dielectric function ε is calculated as

ε(q1,q2,iω) = δq1,q2 − χ (q1,q2,iω)
4π

q2
2

. (6)

Finally the polarizability χ can be calculated as

χ (r1,r2,iτ ) = −iG(r1,r2,iτ )G(r2,r1, − iτ ). (7)

The above equations form a close loop for the calculation
of G. The key is the transformation of the matrix between the
real space (r1,r2,iτ ) representation and the reciprocal space
(q1,q2,iω) representation, and matrix inversion [Eqs. (1), (5)]
in reciprocal space representation for each iω. A plane-wave
(PW) energy cutoff Ecut is used to select the PW vector q1, q2

in G(q1,q2,z) and �(q1,q2,z). However, in the expressions of
W (q1,q2,z), χ (q1,q2,z), and ε(q1,q2,z), their q1, q2 are defined
within an energy cutoff Ecut2 = 4Ecut. This is because these
matrices are the squares of the Green’s function G [Eq. (7)].
In practice, a smaller Ecut2 can often be used, much like in
a conventional plane-wave DFT calculation. In the following,
we will introduce numerical methods to calculate the above
equations.

III. NUMERICAL TECHNIQUES

We first introduce an algorithm to numerically transform
G(q1,q2,iω) obtained from Eq. (1) to G(q1,q2,iτ ) via Eq. (2).
We will set up an exponential grid to discretize ω: ωk =
sgn(k)α1(β |k|

1 − 1) for k = −200, 200, and the maximum ω

equals to 3 × 106 hartrees, while the smallest interval ω1 − ω0

equals 2 × 10−4 hartrees. A similar exponential grid τk is used
for τ , with k = −20, 20, and maximum τ is 200 hartree−1,
while the smallest interval τ1 − τ0 is 0.01 hartree−1. The grid
convergence has been tested to ensure that the resulting error
in quasiparticle eigenenergy is less than 0.01 eV.

To carry out the Fourier transformation of Eq. (2) from
G(iω) to G(iτ ), the

∫
dω is carried out piecewise ana-

lytically for each interval [ωk,ωk+1]. To do this, for each
matrix element (q1,q2) within the interval [ωk,ωk+1], we first
fit the G(q1,q2,iω) using an expression f1(iω) = C1

iω−Z1
+

C2
iω−Z2

. Assuming G1 = G(q1,q2,iω1), G2 = G(q1,q2,iω2),
and G3 = G(q1,q2,iω3) for a given (q1,q2) element, where
ω1 = ωk−1, ω2 = ωk , ω3 = ωk+1, then the complex C1, C2 and
real Z1, Z2 can be obtained through the following equations:

I1 = −(ω3 − ω2)ω2
1G1 − (ω1 − ω3)ω2

2G2 − (ω2 − ω1)ω2
3G3,

I2 = i[−(ω3 − ω2)ω1G1 − (ω1−ω3)ω2G2−(ω2−ω1)ω3G3],

I3 = (ω3 − ω2)G1 + (ω1 − ω3)G2 + (ω2 − ω1)G3, (8)

and

x = Re(I1)Im(I3) − Re(I3)Im(I1)

Re(I2)Im(I3) − Re(I3)Im(I2)
,

(9)

y = Re(I2)Im(I1) − Re(I1)Im(I2)

Re(I3)Im(I2) − Re(I2)Im(I3)
.

Then the real Z1 and Z2 can be obtained from the following
formulas:

Z1 = x

2
+

√
x

2

2
− y,

(10)

Z2 = x

2
−

√
x

2

2
− y.

After Z1, and Z2 are obtained, the C1 and C2 can be
obtained by simple linear equations using the corresponding
analytical expressions of G1 and G2. After the Z1, Z2, C1, C2

are obtained, to carry out the integral within [ωk,ωk+1], we
need an analytical expression for

I =
∫ ω3

ω2

eiωτ

iω − Z
dω. (11)

We first define t1 = Zτ − iω2τ , t2 = Zτ − iω3τ . Then for
large |t1| and |t2|, say bigger than 8, one can use

I = −ieZτ

{
e−t1

t1

N1∑
n=0

n!

(−t1)n
− e−t2

t2

N2∑
n=0

n!

(−t2)2

}
. (12)

Here N1, N2 are the order of terms which make the minima
of n!

(−t1)n and n!
(−t2)n , respectively. For |t1| < 8 and |t2| < 8, one

can use

I = −ieZτ [ln(t1/t2) + Ein(t2) − Ein(t1)], (13)

and the Ein(t) function is

Ein(t) =
∞∑

k=1

(−1)k+1t k

k × k!
. (14)

Using the above formulas, one can get the analytical ω integral
within an interval [ω1,ω2] for the G(iω) to G(iτ ) Fourier
transform.

To test this integration scheme, we have used the nonin-
teracting G0 for the Si3 molecule with LDA {ψi,εi}, where
its analytical expression in both iω and iτ spaces are known.
More specifically, the G0(q1,q2,iω) can be written down as

G0(q1,q2,iω) =
∑

i

ψi(q1)ψ∗
i (q2)

iω − (εi − μ)
, (15)
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FIG. 1. The G0(q1,q2,iω) for an typical off diagonal (q1,q2)
element (a), and (b) its fitting error within each interval [ωk,ωk+1]
using the analytical formula with coefficients obtained from Eqs. (8)–
(10). The horizontal line with ticks in (a) indicates the ωk positions.

while its analytical expression in iτ space is

G0(q1,q2,iτ ) = i
∑

i,εi<μ

ψi(q1)ψ∗
i (q2)eτ (εi−μ), for τ > 0,

= −i
∑

i,εi>μ

ψi(q1)ψ∗
i (q2)eτ (εi−μ), for τ < 0.

(16)

The G0(q1,q2,iω) for a typical off-diagonal element (|q1| =
1.43 a.u., |q2| = 1.66 a.u., and q1, q2 are not in the same
direction) is illustrated in Fig. 1(a) together with its grid
points ωk , while the error of f1(iω) fitting is shown in
Fig. 1(b). We have also calculated the average relative
fitting error using the formula {∑ω,q1,q2

|G0(q1,q2,iω) −
Gfit(q1,q2,iω)|2/∑

ω,q1,q2
|G0(q1,q2,iω)|2}1/2, where Gfit is

the fitted G0 using f1(iω) = C1
iω−Z1

+ C2
iω−Z2

, and ω is taken at
the center of the interval [ωk,ωk+1] where the error is maximum
as shown in Fig. 1. The average error so calculated for the Si3
system is 5.2 × 10−5, similar to the one shown in Fig. 1(b). The
numerically transformed G0(q1,q2,iτ ) together with its grid
points τk are shown in Fig. 2(a), and its error when compared
with the analytical expression Eq. (16) is shown in Fig. 2(b).
As we can see, the errors are rather small, typically 10−4 times
smaller than its absolute values.

To carry out the ω to τ Fourier transformation, massively
parallel processing can be used to distribute the q2 into
different computer processors. Typically, we have the number
of processors in the same order as the number of q2.
After G(q1,q2,iτ ) is obtained, it is Fourier-transformed into
G(r1,r2,iτ ) using fast Fourier transformation (FFT) one τk at
a time, so there is no need to store the full G(r1,r2,iτ ) for all τ .
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FIG. 2. The numerically integrated G0(q1,q2,iτ ) from the
G0(q1,q2,iω) in Fig. 1(a); the error of the numerically integrated
G0(q1,q2,iτ ) when compared with the analytical expression of
Eq. (16) (b). The ticks on the horizontal axis in (a) indicate the
τk positions.

After G(r1,r2,iτ ) is obtained for each τk , the χ (r1,r2,iτk)
for this τk is calculated using Eq. (7), and it is followed by a
(r1,r2,iτk) to (q1,q2,iτk) transformation to store χ (q1,q2,iτk)
for all τk . After the values for all τk are obtained, a time
Fourier transformation for all elements (q1,q2) is carried out to
obtain χ (q1,q2,iω). Note, in the iω representations of χ (iω),
ε(iω), and W (iω), we have used a different ω grid ω′

k with
k = −50,50 points, and ω′

50 = 200 hartrees, and ω′
1 − ω′

0 =
2 × 10−3 hartrees. This is allowed since these functions decay
much faster than that of G(iω). For each matrix element
(q1,q2), in transforming χ (iτ ) to χ (iω) we have represented
χ (iτ ) within the interval [τk,τk+1] with an analytical ex-
pression of f2(τ ) = [C3 + C4(τ − τk)] exp[−β2(τ − τk)]. An
analytical expression is then used to represent the interval
integral −i

∫ τk+1

τk
f2(τ ) exp(−iωτ )dτ of Eq. (2). The resulting

χ (q1,q2,iω) is used in Eq. (6) and Eq. (5) to get W (q1,q2,iω).
The inversion of the matrix ε(q1,q2,iω) for each iω′

k value is
done with SCALAPACK with additional parallelization on the k

index.
The W (q1,q2,iω) is then transformed into W (q1,q2,iτ ). For

this Fourier transformation, a linear expression C5 + C6(ω −
ω′

k) is used to represent W (iω) within interval [ω′
k+1,ω

′
k].

With W (q1,q2,iτ ) obtained, we can now transform it to
W (r1,r2,iτk) at each τk point, together with G(r1,r2,iτk),
to get �(r1,r2,iτk) according to Eq. (4). After �(r1,r2,iτk)
for each τk is calculated, it is immediately transformed and
stored as �(q1,q2,iτk). After �(q1,q2,iτk) for all τk are
calculated, it is Fourier-transformed to �(q1,q2,iωk) to be
used in Eq. (1). In this transformation, the �(q1,q2,iτ ) within
[τk,τk+1] is represented as f3(τ ) = C7 + C8(τ − τk). Through
the iterations over the loops of Eqs. (1) to (7), the potential
V (r) is updated with a Kerker potential mixing [43].
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IV. RESULTS AND DISCUSSION

The molecules studied are listed in Table I, along with their
atomic positions. These atomic positions are obtained starting
from the literature-reported experimental atomic positions,
followed by density functional theory (DFT) atomic relax-
ations using the generalized gradient approximation (GGA)
PBE functional.

To calculate these systems with our sc-GW method, the
molecules are placed in periodic boxes about 10 to 12 Å
in size. To avoid dipole-dipole interactions for the Coulomb
interaction and exchange integrals from the periodic imaging
molecules, a special technique is used to truncate the range
of the unscreened electron-electron interaction 1/|r − r ′|.
This truncated interaction is then Fourier-transformed back
to q space as v(q). This v(q) is then used to replace the
4π/q2 in Eqs. (5) and (6), which can avoid the possible
correlation effects between periodic imaging molecules (e.g.,
van der Waals interactions). The Poisson equation

∫
ρ(r ′)
|r−r ′ |d

3r ′

is solved using a double-box technique where a box twice
the size of the original box is used to place the ρ(r ′) at the
center, then a longer range truncated 1/|r − r ′| can be used
to calculate the Hartree potential via an FFT technique. The
convergence of this procedure is tested using LDA calculations
with different box sizes to ensure the finite box size results are
similar to the large box limit results. Note that we could also use
postprocess extrapolation to get the converged results without
using the above truncation techniques. In such a scheme,
several box sizes will be used to carry out the calculations [44].

TABLE I. The atomic coordinations of the small molecules
calculated in this work. The coordinates are relaxed using DFT PBE
functional. The Ecut is the plane-wave cutoff energy used for the
GW calculation. Nq is the resulting number of plane waves, while
Nr = n1n2n3 is the total number of grid points in real space, where
n1, n2, n3 are the real space grids of the supercell in 1, 2, 3 directions,
respectively.

Systems Atoms x (Å) y (Å) z (Å) Ecut (Ry) Nq Nr

Si3 Si 0 0 0 30 6272 55296
Si 0 2.817 0
Si 1.664 1.409 0

C3 C 0 0 0 50 7210 46080
C 1.302 0 0
C −1.302 0 0

O3 O 0 0 0 50 8484 57600
O −1.284 0.016 0
O 0.593 1.139 0

Al2 Al 0 0 0 30 6072 46080
Al 2.838 0 0

SiH2 Si 0 0 0 30 6290 43200
H −1.412 −0.606 0
H −0.586 1.420 0

HNO N 0 0 0 50 8484 57600
O 1.215 −0.080 0
H −0.409 −0.998 0

CHF C 0 0 0 50 8484 57600
H −1.009 −0.528 0
F −0.373 1.278 0

The plane-wave cutoff energies Ecut are listed in Table I,
along with the resulting number of plane waves Nq and number
of real space grid points Nr . We can see that Nq is around 5000
to 8000, while Nr can be about 57 000 (because plane-wave
vectors are within a sphere defined by Ecut while Nr is defined
by the full FFT grid points). Thus G(q1,q2,iω) could be an
8000×8000 matrix for each iω point, requiring 1 GB of
memory for each iω point. The number of real space grid
points Nr is much larger. Hence we cannot store the real
space matrix like G(r1,r2,iτ ) for all iτ points. Instead, we
only store the G(r1,r2) matrix for one iτ as discussed above.
This G(r1,r2,iτ ) is obtained by spatial FFT from G(q1,q2,iτ )
for the same iτ . Note, we can store all the G(q1,q2,iτ ) and
G(q1,q2,iω) in memory (for all iτ points and iω points).
Also note that, unlike the conventional GW calculations
where only a limited number of conduction bands are used
in the Green’s function expression, here there is no such
cutoff. The full matrix, hence in a sense, all the conduction
band states, are used in the G expression. In our calculation,
norm-conserving pseudopotentials are used. As discussed in
the introduction, the pseudopotential-introduced GW error is
relatively small [24,25,37]. This should be particularly true
for our molecules consisting of mostly light elements where
the semicore effect is small [39]. The calculations are carried
out on the Titan supercomputer at the Oak Ridge Leadership
Computing Facility using about 50 000 CPU processors. It
takes about a few hours to finish one molecule calculation.

We first test the self-consistent convergence of the it-
erations. During the iterations, the single-electron potential
is mixed with results from previous steps using the con-
ventional Kerker mixing scheme [43], while the self-energy
terms �(q1,q2,iω) are used directly in the next iteration
without any mixing. We found that, with the local density
approximation (LDA) ψi , εi as the inputs, the iteration
converges typically in 10 to 20 steps. Figure 3 shows the
convergence of the Si3, HNO, and Al2 molecules. Note,
to judge the convergence, we have used the eigenvalues of
H0 + �(iω = 0). The eigenvalues ε′

i(iter) of all the occupied
states plus one unoccupied state are used, where “iter” is
the iteration number. The convergence shown in Fig. 3(a)
is measured as

∑
i |ε′

i(iter) − ε′
i(converged)|/N , where N is

the number of states i in the summation. We can see that
the system converged in about 15 iterations. We have also
measured this self-consistent convergence directly by the
change of the Green’s function as {∑ω,q1,q2

|Giter(q1,q2,iω) −
Giter−1(q1,q2,iω)|2/∑

ω,q1,q2
|Giter(q1,q2,iω)|2}1/2. This is

shown in Fig. 3(b). As we can see, the convergence measured
this way has similar rate as it is measured by the eigenenergies.
We also found that the final results are independent of the
initial input wave functions and eigenenergies. Figure 3(c)
shows the convergence between an initial LDA ψi , εi result
and a initial Hartree-Fock (HF) ψi , εi result measured by∑

i |ε′
i(iter,LDA) − ε′

i(iter,HF)|/N . Despite the large initial
difference, they converge into the same final result after 15 it-
erations. Note, here, the initial HF result is first calculated using
the same GW program with the screening in W turned off.

In the introduction, we asked how the full Green’s function
is different from the noninteracting Green’s function of
Eq. (15), which is used in many current self-consistent
(category 1) or non-self-consistent GW calculations. The first
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FIG. 3. (a) The self-consistent field (SCF) convergence of the
GW calculations. The convergence is measured by the convergence
of the eigenvalues of H0 + �(ω = 0). See main text for more details.
(b) The convergence using the difference of the Green’s function
between adjacent steps. (c) The convergence between the LDA initial
wave functions and eigenenergies and the HF initial wave functions
and eigenenergies.

difference is the non-Hermitian part of the self-energy term �,
which is ignored in the construction of G0 in Eq. (15). The non-
Hermitian part of � can be as large as the Hermitian part, as
indicated by the imaginary part of its expectation value shown
in Fig. 4(a). Its amplitude can be around 1 eV. Besides, both its
real and imaginary parts vary significantly with ω, while for the
G0 it is assumed to be a constant εi . Besides the eigenenergy ω

dependence, the H (iω) = H0 + �(iω) = iω + μ − G−1(iω)
also has an iω dependence for its eigenvector wave functions,
while in G0 these eigen–wave functions are assumed to be
iω independent. To show how large this wave function ω

dependence is, we have first hermitized H (iω) as H ′(iω) =
1
2 [H (iω) + HT (iω)], then diagonalized H ′(iω) to get ψ ′

i (iω)
for different ω. To check whether ψ ′

i (iω) is changing with ω,
we have calculated di(iω) = 1 − ∑

j |〈ψ ′
i (iω)|ψ ′

j (iω = 0)〉|4.
The larger the change, the larger is the value of di (0 means no
change). The di(iω) for the first 12 states from the Si3 molecule
are shown in Fig. 5. As can be seen, for all the occupied states
(i � 6), di is rather small. Only for some high conduction band
states, di become large. This means the eigen–wave functions
have minimum ω dependence. We thus conclude that while
the eigenenergy ω dependence and the imaginary parts of the
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FIG. 4. The expectation value �̄(iω) = 〈ψ ′
i (0)|�(iω)|ψ ′

i (0)〉 for
i = 6 on the imaginary axis (a). The crosses are the directly calculated
values, and the continued lines are the analytical fitting curve; the
analytically extended �̄(ω) on real ω axis (b).

eigenenergies are both large, which can render Eq. (15) invalid,
the wave function ω dependence is small. This suggests a
direction for future approximations of the Green’s functions if
the full Green’s function is not to be used.

We next study the quasiparticle eigenenergies. As shown
in Fig. 5, for the HOMO and LUMO states, their ψ ′

i (iω) do
not change significantly with ω in the imaginary axis. Thus
we can also assume they do not change much along the real ω

axis based on their analytic extension properties. As a result,
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FIG. 5. The spread of the eigenvectors along the imaginary iω

axis. The di(iω) is defined in the text. The numbers are the state
index i’s.
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TABLE II. The quasiparticle lowest unoccupied molecule orbital
(LUMO) and highest occupied molecule orbital (HOMO) energies,
and comparison with the experimental EA and IE (in units of eV). The
mean averaged error (MAE) (taken as the root-mean-square average
of the errors) for the calculated values are measured against the
experimental results. The experimental EA and IE are taken from
Refs. [45,46]. For the G0W0 calculation, the input single-particle
wave functions and eigenenergies are from LDA calculations.

System LDA G0W0 GW Exp.

Si3 LUMO −4.75 −2.88 −3.01 −2.4
HOMO −5.39 −8.17 −7.72 −8.0

C3 LUMO −5.69 −2.76 −2.67 −2.0
HOMO −8.01 −11.46 −11.91 −13.0

O3 LUMO −6.44 −3.05 −3.46 −2.10
HOMO −8.14 −12.32 −12.63 −12.53

Al2 LUMO −3.72 −1.81 −1.20 −1.46
HOMO −4.07 −6.40 −5.93 −5.4

SiH2 LUMO −4.09 −1.54 −1.04 −1.12
HOMO −5.90 −9.50 −9.28 −8.92

HNO LUMO −4.70 −0.25 −0.29 −0.34
HOMO −5.62 −9.96 −10.40 −10.1

CHF LUMO −4.40 −0.19 −0.19 −0.54
HOMO −5.89 −10.22 −10.52 −10.06

MAE err 3.64 0.65 0.59

we can approximate ψ ′
i (iω) with ψ ′

i (0) [which is ψ ′
i (iω = 0)].

To get the corresponding quasiparticle energy, we can find
the ω solution of 〈ψ ′

i (0)|G−1(ω)|ψ ′
i (0)〉 = 0 (the pole of G).

This requires us to get �̄i(ω) = 〈ψ ′
i (0)|�(ω)|ψ ′

i (0)〉 on the
real axis. From the above calculations, we can get �̄i(iω)
on the imaginary axis. To analytically extend it to the real
axis, we have followed the procedure from Ref. [41]. An
analytical expression

∑
l Cl/(iω − Zl) (with typically three

l terms and complex Cl and Zl) is used to fit the �̄i(iω)
on the imaginary axis, with the fitting accuracy shown in
Fig. 4(a). Then the same analytical expression is used to
obtain the values of �̄i(ω) on the real axis, as shown in
Fig. 4(b). By testing different numbers of l, we found this
procedure very reliable in obtaining �̄i(ω) on the real axis
for ω within 1 or 2 hartrees from μ. The quasiparticle
energy εi on the real axis can be obtained by solving the
equation ω + μ = εi(0) + Re[�̄i(ω) − �̄i(0)]; here εi(0) is
the eigenenergy of H ′(0). The resulting εi can be compared
with the experimental electron affinity (EA) and ionization
energy (IE) [45,46] as shown in Table II. We see that the
GW results agree well with the experimental results, but the
GW root-mean-square (rms) error is similar to the G0W0

results. However, we do not see a systematic increase of
the GW band gap compared to the G0W0 band gap. This
is different from the conclusions based on self-consistent GW

calculations by only updating the eigenenergies in G and W
using the G0 formalism of Eq. (15) [9,47–48]. Our result is
similar to Ref. [19], where they found the mean average errors
(MAE) of sc-GW , G0W0 (HF-initial), and G0W0 (PBE-initial)
as 0.5, 0.4, and 0.5 eV, respectively (taken from the HOMO
levels of 34 molecules). In our case, the MAE of sc-GW

and G0W0 (LDA-initial) are 0.6 and 0.7 eV, respectively
(taken from HOMO and LUMO levels of the 7 molecules
studied).
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FIG. 6. The spectral functions as calculated from Eq. (19). The
dotted lines are for G0W0 results starting with LDA input wave
functions and eigenenergies, and the solid lines are for sc-GW results.
The Fermi energy μ for Al2, CHF, and HNO are around −3, −5, and
−5 eV, respectively.

In the work of Holm and von Barth [35], it is the valence
band bandwidth and spectral functions which are evaluated
and compared to experiment, not the band gap. Here, we also
calculate the spectral functions of the molecules. The spectral
functions can be defined as

A(ω) = 1/πTr[ImG(ω)]. (17)

Here “Tr” is the trace of the matrix G. Thus, it can also be
expressed as

A(ω) = 1

π

∑
i

Im〈ψ ′
i (0)| 1

ω − μ − H0 − �(ω)
|ψ ′

i (0)〉. (18)

If we further assume ψ ′
i (0) are a set of good eigenvectors in the

energy range in which we are interested, then the expectation
values under ψ ′

i (0) can be applied to the denominator, and the
above equation can be approximated as

A(ω) = 1

π

∑
i

Im

[
1

ω − μ − εi(0) − �̄i(ω) + �̄i(0)

]
.

(19)
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Here �̄i(ω) = 〈ψ ′
i (0)|�(ω)|ψ ′

i (0)〉 can be obtained from the
above analytical extension from imaginary axis to real axis,
as shown in Fig. 4. The resulting A(ω) for Al2, CHF, and
HNO are shown in Fig. 6. The fully self-consistent GW

results for A(ω) are compared with the non-self-consistent
G0W0 results. A few features are worth noticing. First, the
widths of the valence bands, counted from the lowest occupied
valence state to the highest occupied valence state, are slightly
wider in sc-GW than G0W0 results, similarly to what is
found in the homogeneous electron gas [35]. Unfortunately, for
these systems, there are no experimental data for comparison.
Second, in the G0W0 result, one can indeed see some satellite
peaks (e.g., the peak around −20 eV in Al2, and the small
peak around −48 in CHF). Such satellite peaks disappear
in sc-GW calculations. It will be interesting to see whether
such satellite peaks are real in future experiments. Lastly, we
notice that the A(ω) peaks in sc-GW are much sharper than
the ones in G0W0. This conclusion is in contrast with the
results found in the case of homogeneous electron gas [35],
but is consistent with the results found in Ref. [18]. The
sharpness of A(ω) peaks for molecules is expected, especially
for HOMO and LUMO states. Note that the sc-GW spectral
peak widths for deep levels (e.g, the ones near −40 eV in CHF
and HNO) are significantly larger than the ones for HOMO.
This is expected, as for such large excitation energies, there
could be other excitation modes involving two shallow levels
being excited to continuous spectrum of the vacuums. Hence
different excitation modes can be mixed together, reducing
the quasiparticle lifetime and increasing the peak width. To
describe such excitation properly, one needs to describe all the
continuous states accurately, which highlights the advantages
of plane-wave basis sets.

V. CONCLUSIONS

We have demonstrated that, with the help of
supercomputers, it is now possible to solve the Dyson equation
self-consistently with a plane-wave basis set. The space-time

scheme on the imaginary frequency axis is used. Some numer-
ical techniques to solve this problem have been presented. In
particular, a method is introduced to carry out the numerical
Fourier transformation for the Green’s function from
frequency space to time space. The self-consistent iteration
converges well within about 15 iterations, and different initial
single-particle wave function and eigenenergy inputs result in
the same final solution. Seven small molecules are calculated.
We found that for their HOMO and LUMO quasiparticle
eigenenergies, the sc-GW results have errors similar to those of
the G0W0 results when compared to experiments. For the spec-
tral functions, we found that sc-GW results have sharper peaks
than the G0W0 results, while the satellite peaks in some of
the G0W0 results disappear in the sc-GW results. The sc-GW

gives slightly wider valence band width than the G0W0 results.
For the self-energy term, we found that while its expectation
values have large imaginary parts and frequency dependence,
the eigenvectors of the Hamiltonian (after being hermitized)
have much less frequency dependence. This perhaps points
out a way for a future Green’s function approximation that
maintains the noninteracting Green’s function form of Eq. (15),
but with frequency-dependent and complex eigenenergies
εi(ω).
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