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Spin transitions in graphene butterflies at an integer filling factor
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Recent experiments on the role of electron-electron interactions in fractal Dirac systems have revealed a host of
interesting effects, in particular, the unique nature of the magnetic field dependence of butterfly gaps in graphene.
The novel gap structure recently observed in the integer quantum Hall effect is quite intriguing [G. L. Yu
et al., Nat. Phys. 10, 525 (2014)], where one observes a suppression of the ferromagnetic state at one value of
the commensurable flux but a reentrant ferromagnetic state at another. In our present work we introduce the
magnetic translation symmetry in the integer quantum Hall effect regime and consider the interplay between
the electron-electron interaction and the periodic potential. In this approach, we explain the underlying physical
processes that can lead to such a unique behavior of the butterfly gaps as observed in that system where we invoke
the spin-flip transitions in the ground state.
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I. INTRODUCTION

The fascinating dynamics of Dirac fermions in graphene
has been exhaustively studied in recent years [1–3]. Coulomb
interaction between Dirac fermions [4], in particular, in the
presence of a strong perpendicular magnetic field has resulted
in the fractional quantum Hall states in monolayer [5] and
bilayer graphene [6], which have also been experimentally
observed [7]. Graphene placed on boron nitride with a twist
displays fractal butterflies [8,9] of Dirac fermions [10] when
subjected to a perpendicular magnetic field. After the exciting
discovery of the fractal butterflies in graphene [11–13] in 2013,
more recent theoretical [14] and experimental [15] studies have
focused on the influence of electron-electron interactions on
the butterfly gaps. Given the intricacies of these gaps, the
interaction effects are, quite expectedly, more complex in the
integer and the fractional quantum Hall effect regime, where
one observes an interplay between the quantum Hall effect gap
and the Hofstadter gap [16].

In studying the interaction effects in the integer quantum
Hall effect regime, Yu et al. [15] employed capacitance
spectroscopy to explore the “Hofstadter minigaps” for zero
and integer filling factors. Their results for the energy gaps
at filling factors ν = 0, ± 1 (ν = nφ0/B, n is the particle
density, and φ0 is the flux quantum) showed very unusual
magnetic field dependence. In the low-magnetic-field region,
the ν = 0 gap rises linearly with B and saturates near the
magnetic flux value φ = φ0/2 but exhibits a minimum at
φ = φ0. Additionally, they have also explored the energy gaps
for the first Landau level (LL), and their results show that for
filling factor ν = 4 the gap shows oscillating behavior (see
the Supplementary Information in [15]). It again rises linearly
with B for low magnetic fields, reaches the maximum value
at around the magnetic flux value φ = φ0/3, and then goes
to almost zero at φ = φ0/2. After that the same behavior is
repeated in the region of φ = φ0/2 to φ = φ0. Therefore for
both the zeroth and the first LLs the gap deviates significantly
from the Coulomb energy in several regions, thereby indicating
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that the transitions across the gap from the ground state do not
necessarily involve the particle charge alone.

By employing the magnetic translation group algebra [17]
in the quantum Hall effect regime [16,18–20], we have
analyzed the magnetic field dependence of the ν = 0 and
ν = 4 butterfly gaps. Our results reveal that the observed gap
structure involves spin-flip transitions in the ground state, as
explained below, and can be used to analyze the magnetic field
dependence of the energy gaps for filling factors ν = 0 and
ν = 4, as observed in Ref. [15].

II. THEORETICAL FRAMEWORK

In what follows, we consider monolayer graphene in an
external periodic potential [14,21–23]

V (x,y) = V0[cos(qxx) + cos(qyy)], (1)

where V0 is the amplitude of the periodic potential and
qx = qy = q0 = 2π/a0, where a0 is the period of the external
potential. Then the many-body Hamiltonian is

H =
Ne∑
i

[
Hi

B + V (xi,yi)
] + 1

2

Ne∑
i �=j

Vij , (2)

where Hi
B is the Hamiltonian of an electron in graphene in a

perpendicular magnetic field and the last term is the Coulomb
interaction. The electron energy spectrum of graphene has
twofold valley and twofold spin degeneracy in the absence
of an external magnetic field, the periodic potential and the
interaction between the electrons. It is well known [1,2]
that for magnetic fields that are presently accessible in the
experiments, the conservation of the SU(2) valley symmetry
in the presence of the Coulomb interaction is a fully justified
approximation. We therefore employ this approximation in
our studies. In order for the external periodic potential to
break the SU(2) valley symmetry, the scattering process will
require momentum transfer comparable to the value of the
difference of momentum between the two valleys. The period
of the external potential accessible in the experiment for the
moiré superlattice is much bigger than the graphene lattice
constant. Therefore the probability for such a momentum
transfer process is exponentially small and can be disregarded.
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In order to investigate the optimum state of total valley and
real spin that is favored by the system in our calculations,
we consider both the spin and valley degrees of freedom of
the electron system. Here the spin degeneracy is lifted due
to the Zeeman effect, while in the approximation described
above there is no term in the Hamiltonian (2) that lifts the
valley degeneracy. The single-particle Hamiltonian HB is then
written as [1–3]

HB = ξvF

(
0 π−

π+ 0

)
+ 1

2
geμBBσz, (3)

where π± = πx ± iπy , π = p + eA/c, p is the two-
dimensional electron momentum, A = (0,Bx,0) is the vector
potential, vF ≈ 106 m/s is the Fermi velocity in graphene, and
the last term is the electron Zeeman energy. The ξ is the valley
index: ξ = 1 for valley K and ξ = −1 for valley K ′. The
honeycomb lattice of graphene consists of two sublattices A
and B, and the two-component wave functions corresponding
to the Hamiltonian (3) can be expressed as (ψA,ψB)T for
valley K and (ψB,ψA)T for valley K ′, where ψA and ψB

are wave functions of sublattices A and B, respectively. The
eigenfunction of the Hamiltonian (3) for both K and K ′ valleys
can be written in the form [1–3]

�n,j = Cn

(
sgn(n)(−i)ϕ|n|−1,j

ϕ|n|,j

)
, (4)

where Cn = 1 for n = 0 and Cn = 1/
√

2 for n �= 0, sgn(n) = 1
for n > 0, sgn(n) = 0 for n = 0, and sgn(n) = −1 for n < 0.
Here ϕn,j is the electron wave function in the nth LL with the
parabolic dispersion, taking into account the periodic boundary
conditions (PBC) [20,24]

ϕn,j (x,y) = 1√
Lyπ

1/2
02nn!

∞∑
k=−∞

e
i


2
0

(Xj +kLx )y

× e
− (x+kLx+X

j
)2

2
2
0 Hn

(
x + kLx + Xj


0

)
, (5)

where Xj = 2πj
2
0/Ly , 
0 = √

c�/eB is the magnetic length,
Hn(x) are the Hermite polynomials, and Lx and Ly describe
the size of the system. The eigenvalues of the Hamiltonian (3)
without the Zeeman term and corresponding to the eigenvec-
tors (4) for both valleys K and K ′ are εn = sgn(n)�ωB

√|n|,
where ωB = √

2vF /
0.

III. MAGNETIC TRANSLATION ANALYSIS

We now develop the magnetic translation algebra [16,18–
20] which will be used to characterize the states of the
many-body Hamiltonian (2) and will let us bring the many-
body Hamiltonian matrix into block diagonal form using the
eigenvectors of the appropriate magnetic translations. The
single-particle translation operator which commutes with the
Hamiltonian (3) has the form

τ (a) =
(

e− i
�

a·K 0
0 e− i

�
a·K

)
, (6)

where K = −p − eByx̂/c. Since the magnetic translation
operator (6) is diagonal in its components, we will develop the

algebra for only one component of the diagonal matrix. Using
the Baker-Campbell-Hausdorff formula, it can be shown that

T (a) = e− i
�

a·K = e
i


2
0

(axy+ 1
2 axay )

e
i
�

a·p. (7)

The application of the PBC implies that the wave function ϕn,j

is the eigenvector of the translation operator T (Lmn), where
Lmn = mLx x̂ + nLy ŷ defines the magnetic translation lattice
vector and m,n are integers. In addition, it results in j of Xj

in (5) taking integer values in the range 0 � j < Ns , where
LxLy = 2πNs


2
0 and Ns is the number of flux quanta piercing

through the magnetic translation lattice cell or, alternatively,
describes the LL degeneracy for each value of the spin and
valley indices and takes integer values. The maximal set of
translations which both commutes with the Hamiltonian (3)
and acts within a given Hilbert space described by the
eigenvectors (5) is the set {Lmn/Ns} [18,20].

In the presence of an additional periodic potential the size
of the system is expressed as Lx = Mxa0 and Ly = Mya0
(Mx and My are integers). Defining the parameter α = φ0/φ,
where φ = Ba2

0 is the magnetic flux through the unit cell of
the periodic potential and φ0 = hc/e is the flux quantum, we
have

Ns

MxMy

= 1

α
= r

v
, (8)

where r and v are coprime integers. Before the application
of PBC, the single-particle Hamiltonian which includes the
periodic potential is symmetric under the translations with
the periodic potential lattice vector T (auw), where auw =
ua0x̂ + wa0ŷ and u and w are again integers. In order to have
this symmetry after the application of PBC the translations
with the periodic potential lattice vector T (auw) and the
magnetic translation lattice vector T (Lmn) must commute.
This condition results in additional constraints on our system
that Mx and My are divisible by v. These constraints and (8)
dictate that Ns = κx,yMx,y , where κx,y are integers. Therefore
for the case with the periodic potential the maximal set of
translations which both commutes with the single-particle
Hamiltonian (periodic potential included) and acts within
the same Hilbert space described by the eigenvectors (5) is
the subset of {Lmn/Ns} with the elements which are also
translations by the periodic potential lattice vector.

We now analyze the magnetic translation algebra for a
many-body system in the presence of the external periodic
potential. We consider a system of a finite number Ne of
electrons again in a toroidal geometry similar to the case of a
single electron, i.e., the size of the system is again Lx = Mxa0
and Ly = Mya0 (Mx and My are integers), and we apply
PBC in order to eliminate the boundary effects. Although this
analysis is quite general and can be used for any filling factor of
the system, in this work we consider the filling factors ν = 0
and ν = 4. This means that the number of electrons in the
appropriate LL if both valleys are included is Ne = 2Ns due to
the fourfold degeneracy of each LL in graphene, and Ne = Ns

if only the K valley is considered.
Based on the above considerations we search for the

appropriate translations to characterize the states of the many-
body Hamiltonian (2) in the form of the center-of-mass (c.m.)
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translations, which are defined as

T c.m.(a) =
Ne∏
i=1

Ti(a), (9)

with the translation vector ap = mβ1a0x̂ + nβ2a0ŷ, where
β1 and β2 are integers to be determined below. It can
easily be shown that the c.m. translation T c.m.(ap) commutes
both with the many-body Hamiltonian (2) and with the
translation Ti(Lmn) for any particle i. Additionally, it also acts
within the same Hilbert space described by the many-body
states |j1,j2, . . . ,jNe

〉 (besides ji , each single-particle state
is characterized by the LL, spin, and valley indices, which
are not shown but are implicitly assumed to be included
in the indices ji) which are constructed from the single-
particle eigenvectors (4). In order for these c.m. translations
to be diagonalized simultaneously, i.e., the c.m. translations
commute with each other, the following condition must be
satisfied:

Neβ1β2

α
= ±1, ± 2, . . . , (10)

where β1β2 describes the degeneracy of the system for each
value of the c.m. momentum. By choosing, for example, β2 =
1 and demanding the above condition for β1, it can be shown
that this condition is the same as the one obtained earlier by
Kol and Read [19].

We now make the assumption that the application of the
normal momentum operator Q(Q) = ∑

i eiQ·ri to the many-
particle state will increase its momentum by Q provided that Q
is allowed by PBC, i.e., it is a magnetic translation reciprocal-
lattice vector. From the relation

T c.m.(ap)Q(Qst ) = eiap ·QstQ(Qst )T
c.m.(ap), (11)

it follows that the eigenvalues of the c.m. translation operator
will have the form e2πi(β1ms/Mx+β2nt/My ), where s and t are
integers which characterize the vector Qst in a magnetic
translation reciprocal lattice. Hence s and t are defined
only modulo Mx/β1 and My/β2, respectively, and there
are MxMy/β1β2 allowed eigenvalues. It is clear from the
discussions above that s and t are related to the c.m. momentum
of the system. We then factorize the c.m. translation operator
T c.m.(ap) into two parts,

T c.m.(ap) = (−1)Neβ1β2mn/αT c.m.(β1ma0x̂)T c.m.(β2na0ŷ), (12)

and calculate how the constituents in the factorization act on
the many-body state |j1,j2, . . . ,jNe

〉,

T c.m.(β2na0ŷ)
∣∣j1,j2, . . . ,jNe

〉 = e
i2π

β2n

My
t ∣∣j1,j2, . . . ,jNe

〉
, (13)

T c.m.(β1ma0x̂)
∣∣j1,j2, . . . ,jNe

〉
= ∣∣j1 + mβ1κx,j2 + mβ1κx, . . . ,jNe

+ mβ1κx

〉
, (14)

where t = ∑
i ji mod (My/β2) is the total momentum quantum

number in the y direction. We then use these results to construct
the eigenstates of the c.m. translation T c.m.(ap) based on
the procedure outlined previously in Ref. [20] for the case
without the periodic potential. This means we fix the total
momentum t and construct the set T of all the Ne particle

states with the momentum t , i.e., T = {|j1,j2, . . . ,jNe
〉| 0 �

ji < Ns,
∑

i ji = t mod (My/β2)}. We then divide the set T
into equivalence classes by defining the states |j ′

1,j
′
2, . . . ,j

′
Ne

〉
and |j1,j2, . . . ,jNe

〉 equivalent iff they are related by the rule
∣∣j ′

1,j
′
2, . . . ,j

′
Ne

〉
= ∣∣j1 + mβ1κx,j2 + mβ1κx, . . . ,jNe

+ mβ1κx

〉
. (15)

It can easily be seen that these equivalence classes can contain
at most Mx/β1 members because the momenta ji are defined
(mod Ns). Let L be one such set represented by the state
|j1,j2, . . . ,jNe

〉. It is clear from the construction that the
members of this set are mapped back to the set by the
translation operators T c.m.(β1ma0x̂) and T c.m.(β2na0ŷ) and
therefore by any translation operator T c.m.(ap). Based on
the above consideration we assert that the complete set of
normalized states

|(s,t)〉 = 1√|L|
|L|−1∑
k=0

e
−i2π

β1s

Mx
k

× ∣∣j1 + β1κxk,j2 + β1κxk, . . . ,jNe
+ β1κxk

〉
(16)

forms the set of the eigenstates of T c.m.(ap). Using these eigen-
states of the c.m. translations, we can divide the Hamiltonian
matrix constructed from the Hamiltonian operator (2) and the
many-body states |j1,j2, . . . ,jNe

〉 into block diagonal form
where each block is diagonalized separately. It also allows
us to identify each eigenvalue of the Hamiltonian with the
c.m. translation T c.m.(ap) eigenvalue and therefore with the
appropriate c.m. momentum. Hence, using the c.m. transla-
tion analysis, the Hamiltonian matrix can be approximately
divided into MxMy/β1β2 separate blocks, which can then be
diagonalized using the exact diagonalization procedure.

IV. RESULTS AND DISCUSSION

In what follows we consider the two cases α = 1 and α = 2
that were studied in the experiment [15]. We then choose the
system size based on condition (8) and the number of electrons.
After comparing the results for small system sizes in the cases
with and without the inclusion of the contribution of higher
LLs, in what follows we disregard the LL mixing and present
all the results for the n = 0 LL for ν = 0 and the n = 1 LL
for ν = 4. Here we present the results for three system sizes,
Ne = 8, taking into account both K and K ′ valleys; Ne = 6,
taking into account only the K valley for ν = 0; and Ne = 8,
again taking into account only the K valley for both ν = 0 and
ν = 4. For Ne = 8 in two valleys the system size is Mx = 2
and My = 2 for α = 1 and Mx = 4 and My = 2 for α = 2. For
Ne = 6 in one valley the system size is Mx = 3 and My = 2
for α = 1 and Mx = 6 and My = 2 for α = 2, and for Ne = 8
in one valley the system size is Mx = 4 and My = 2 for α = 1
and Mx = 4 and My = 4 for α = 2. In order to investigate the
magnetic field dependence of the gap we fix the value of α

and change the magnetic field B and the period of the periodic
potential simultaneously.

In Fig. 1 the dependence of the gap between the ground
state and the first excited state on the magnetic field strength is
presented for Ne = 8 electrons and ν = 0 in K and K ′ valleys
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FIG. 1. (Color online) The gap between the ground and the first
excited states of an eight-electron system in two valleys vs the
magnetic field B for ν = 0 with V0 = 20 meV, α = 1,2, and also
without the external periodic potential.

for α = 1 and for α = 2 with V0 = 20 meV and without the
periodic potential. In the absence of the periodic potential the
change of α results only in the change of geometry of the
system and therefore does not have any contribution in the gap
value, and in the figures the V0 = 0 case is presented without
the indication of the value of α. For V0 = 0 and for all values
of the magnetic field the ground state corresponds to four
electrons in each valley, with all electrons having their spins in
the direction opposite to the magnetic field. In the excited state
we have seven spin-down electrons and one spin-up electron.
This excited state is degenerate because the spin-up electron
can be in either of the two valleys, i.e., either in the one where
the three spin-down electrons are or in the one where there are
four spin-down electrons. It should also be noted that there is
no momentum transfer in this transition from the ground state
to the excited state described above, which means that both
the ground and excited states have the same total momentum
(equal to zero) and the gap is equal to the Zeeman energy
of the spin flip. Therefore for V0 = 0 the electron-electron
interaction does not have any contribution in the lowest gap
of the system. As can be seen from Fig. 1, surprisingly, the
situation remains the same for α = 2 and V0 = 20 meV.

For α = 1 and V0 = 20 meV the situation is remarkably
different. In the magnetic field region up to 18 T the ground
state has Sz = −2 and there are four electrons in each valley.
This corresponds to the case when in each valley three elec-
trons have spin down and one electron spin up. Therefore, the
periodic potential changes the ground state of the system from
the fully spin polarized state to the spin partially polarized state
in this case. In the excited state Sz = −1, which again means
one additional spin flip, and again the level is degenerate with
respect to the exchange of spin-up parts between the valleys. In
Fig. 1 the gap is again equal to the Zeeman energy of the spin
flip. At B ≈ 18 T there is a crossing between the first and the
second excited states and up to B = 20 T the first excited state
has Sz = −4, and the gap corresponds to the transition between
the states with double spin flip from the spin up to down and
is again equal to the Zeeman energy of that transition. At

FIG. 2. (Color online) Same as in Fig. 1, but for the system of six
electrons. Only the K valley is considered in this case.

B ≈ 20 T there is a crossing between the ground and the first
excited states, and after that the ground state is the state with
Sz = −4. The first excited state is the state with Sz = −2 up to
24 T and the state with Sz = −3 (which is again degenerate due
to the different configurations of the spin-up states between
two valleys) afterwards. For these two parts, the gap is
again equal only to the Zeeman energy for the appropriate
transition. It should be noted that in the range of magnetic fields
considered in this case both the ground and the excited states
are described by the total momentum equal to zero, and there
is no momentum transfer in these transitions. Although the gap
energy in this case is always equal to the Zeeman energy of
the appropriate transition, the gap structure shown for α = 1
and V0 = 20 meV is not the single-particle effect. Both the
electron-electron interaction and the periodic potential are
essential for the system to deviate from the ferromagnetic state
at low magnetic fields and afterwards for the observation of
the transition from a spin partially polarized state to the fully
polarized spin state by increasing the magnetic field.

In Figs. 2 and 3 the dependence of the gap between
the ground state and the first excited state on the magnetic

FIG. 3. (Color online) Same as in Fig. 2, but for the system of
eight electrons. Only the K valley is considered in this case.

125131-4



SPIN TRANSITIONS IN GRAPHENE BUTTERFLIES AT . . . PHYSICAL REVIEW B 91, 125131 (2015)

field strength is presented for Ne = 6 and Ne = 8 electrons,
α = 1 and α = 2, with V0 = 20 meV and without the periodic
potential and for filling factor ν = 0. Only the K valley is
considered in these cases. The cases of V0 = 0 and V0 =
20 meV with α = 2 show the same behavior as for Ne = 8
electrons in the K and K ′ valleys shown in Fig. 1. The
ground state is ferromagnetic for all values of the magnetic
field, and the gap corresponds to the transition to the excited
state with a single spin flip. For α = 1 and V0 = 20 meV the
situation is different. For small magnetic fields (up to 10 T)
the ground state has Sz = 0 (spin unpolarized state), and the
transition corresponds to the excited state with Sz = −1. It
should be noted that in addition to the spin flip, there is also
the momentum transfer in these transitions because the first
excited stated is characterized by a nonzero momentum up to
10 T. Therefore these transitions correspond to the collective
excitations, and the gap energy comprises both the Zeeman
term and the � ∝ √

B term. This structure is clearly visible
for the Ne = 8 electron case, but for the Ne = 6 electron case
the collective nature of the excitation is completely suppressed
by the Zeeman term for magnetic fields considered in Fig. 2.
In Figs. 2 and 3, starting with B = 10 T, the structure of the
transition is the same as that for the case of Ne = 8 electrons
in the K and K ′ valleys shown in Fig. 1. There are several
crossings between the low-lying states, and the ground state of
the system changes from the spin-unpolarized ground state to
the ferromagnetic (fully polarized) state. In the ferromagnetic
regime the gap again corresponds to the spin flip and is equal
to the Zeeman energy of that flip.

In Fig. 4 the dependence of the gap between the ground
state and the first excited state on the magnetic field strength is
presented for Ne = 8 electrons, α = 1 and α = 2, with V0 =
20 meV and without the periodic potential and for the filling
factor ν = 4. Only the K valley is considered in these cases.
While the dependence of the gap for V0 = 0 is the same as
that for the ν = 0 filling factor, in the case of ν = 4 and V0 =
20 meV and α = 1,2 there is a transition from the partially
spin polarized or the unpolarized ground state to the fully
polarized (ferromagnetic) ground state with the increase of
the magnetic field. When α = 2, the system is initially in

FIG. 4. (Color online) Same as in Fig. 2, but for the filling factor
ν = 4. Only the K valley is considered in this case.

the partially spin polarized ground state with Sz = −2, and
the transition corresponds to the excited state with Sz = −1.
Starting from B ≈ 10 T, again, several crossings take place in
the low-lying states, and at B ≈ 12 T the system becomes the
ferromagnetic ground state. This transition is similar to the case
of α = 1 of Fig. 1 because for all values of the magnetic field
considered, both the ground and excited states are described
with the same total momentum, so the gap energy is comprised
only from Zeeman term for the appropriate transition. For
α = 1 the system is initially in the spin-unpolarized ground
state with Sz = 0, and the transition is to the excited state
with Sz = −1. By increasing the magnetic field to B ≈ 19 T
the system again becomes the ferromagnetic state. This case
is similar to that of α = 1 in Fig. 2 or Fig. 3 because up to
the B ≈ 18 T the transition involves total momentum change
(collective excitation), and the gap energy again comprises
both the Zeeman term and the � ∝ √

B term. After the passage
to the ferromagnetic state the gap energy is described again
solely by the Zeeman term.

We now use the features observed in this work to interpret
the result shown in Figs. 4 and S4 of Ref. [15] (for Fig. S4
see the Supplementary Information in Ref. [15]) for the filling
factors ν = 0 and ν = 4. For filling factor ν = 0 and magnetic
fields up to 20 T, due to the valley anisotropic terms [25]
and also due to the spin-unpolarized state observed for low
magnetic fields in our work, the system is presumably in a
spin-unpolarized state. The almost linear dependence of the
gap at magnetic fields up to around 5 T and the

√
B dependence

for magnetic fields between 5 and 20 T indicate that the excita-
tions have both spin-flip and momentum transfer components
(collective excitation). Based on these observations, it can
be assumed that there is a competition between these two
components and that for up to 5-T magnetic fields the Zeeman
contribution is dominant in the gap energy, whereas in the
range of magnetic fields from 5 to 20 T the electron-electron
interaction contribution is dominant. The lowering of the gap
in the region close to α = 1, then almost linear dependence
after around 28 T, coupled with the absence of similar features
for α = 2 closely resembles the results obtained in our paper.
We therefore suggest that this behavior indicates that there is
a phase transition around α = 1; that is, there is a transition
from the spin-unpolarized state to the partially or fully spin
polarized state. Similar reasoning can be applied for the ν = 4
case, where for the magnetic fields up to 8 T (φ = φ0/3) the
energy gap increases linearly and then decreases to zero at 12
T (φ = φ0/2). Similar behavior is observed also in the range
of 12–24 T (φ = φ0/2 to φ = φ0), although the dependence
slightly deviates from the linear dependence. Observation of
similar features for both α = 1 and α = 2 in our results for
ν = 4 strongly supports our analysis and indicates that the
system is again in a spin-unpolarized or partially polarized
state for low magnetic fields and makes the transition to another
partially polarized state at φ = φ0/2 and a partially or fully
polarized state at φ = φ0.

V. CONCLUSION

In conclusion, we have considered the influence of the
periodic potential due to the moiré lattice on the dependence
of the energy gap on the magnetic field for filling factors ν = 0
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and ν = 4 in graphene using the exact diagonalization scheme.
We have considered three cases: Ne = 8 electrons in the K

and K ′ valleys and Ne = 6 and Ne = 8 electrons located only
in the K valley and disregarding the contribution of the K ′
valley. In all cases for ν = 0 we find that for α = 1, inclusion
of the periodic potential and the electron-electron interactions
results in an unpolarized or partially polarized ground state in
lower magnetic fields and a transition to the fully polarized
ground state by increasing the magnetic field. This behavior
is not observed for the α = 2 case, where we observe only
the ferromagnetic state for all values of the magnetic field. In
contrast to the case of ν = 0, for ν = 4 the transition from

the unpolarized or the partially polarized ground state to the
fully polarized ground state by increasing the magnetic field is
observed for both the α = 1 and α = 2 cases. The similarity
between the results obtained here and those reported in Figs. 4
and S4 in Ref. [15] was analyzed, and a possible explanation
was presented on the behavior of the dependence of the gap
on the perpendicular magnetic field observed in that work.
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