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Theoretical prediction of fragile Mott insulators on plaquette Hubbard lattices
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Employing extensive cellular dynamical mean-field theory calculations with an exact diagonalization impurity
solver, we investigate the ground-state phase diagrams and nonmagnetic metal-insulator transitions of the half-
filled Hubbard model on two plaquette (the 1/5 depleted and checkerboard) square lattices. We identify three
different insulators in the phase diagrams: dimer insulator, antiferromagnetic insulator, and plaquette insulator. We
also demonstrate that the plaquette insulator is a novel fragile Mott insulator (FMI) which features a nontrivial one-
dimensional irreducible representation of the C4v crystalline point group and cannot be adiabatically connected
to any band insulator with time-reversal symmetry. Furthermore, we study the nonmagnetic quantum phase
transitions from the metal to the FMI and find that this Mott metal-insulator transition is characterized by the
splitting of the noninteracting bands due to interaction effects.
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I. INTRODUCTION

Mott insulators [1,2] are a fundamental phenomenon in
strongly correlated quantum many-body physics. At fractional
filling (throughout this paper, the “filling” corresponds to the
number of electrons per unit cell and per spin projection [3]), a
material must be metallic according to the conventional band
theory. However, it could be a Mott insulator due to dramatic
correlation effects. If such a Mott insulator does not break any
symmetry and has a spin gap, it will carry fractionalized excita-
tions [4,5] and possess a nontrivial topological order [6–8]. At
integer filling, on a Bravais lattice with one site per unit cell, the
system becomes a band insulator. In contrast, for a non-Bravais
lattice with multiple sites per unit cell, the situation may
change, in which some partially filled bands crossing the Fermi
energy may touch with other bands at some high-symmetry
points in the Brillouin zone in the presence of crystalline
point-group symmetries. Nevertheless, the lattice symmetries
and correlation effects may again forbid such a trivial band
insulator state; meanwhile other types of symmetric Mott insu-
lating phases, either with [3,9] or without [10,11] topological
orders, may emerge. Among the latter cases, one category
of novel Mott insulator is dubbed a fragile Mott insulator
(FMI) [12,13]. A fragile Mott insulator features a nontrivial
one-dimensional irreducible representation of crystalline point
group and cannot be adiabatically connected to any band insu-
lator which respects the time-reversal and the same crystalline
point-group symmetry. In this sense, it is the interplay between
symmetries of the underlying system and correlation effects
that give rise to the fragile Mott insulator phase.

Although proposed in Refs. [12,13], to the best of our
knowledge, there has been no unbiased demonstration of the
existence of FMI with advanced numerical approaches in
strongly correlated systems. Here, we perform such a sys-
tematic study. Employing extensive cellular dynamical mean-
field theory (CDMFT) [14–17] calculations with an exact
diagonalization (ED) impurity solver [18–22], we investigate
the ground-state phase diagram and Mott metal-insulator tran-
sitions of the half-filled Hubbard model on two plaquette (the
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1/5 depleted and checkerboard) square lattices. Based on the
simulation results and group-theory analysis, we unambigu-
ously demonstrate that there exist FMI phases in these systems.

Both 1/5-depleted and checkerboard square lattices consist
of coupled plaquette unit cells with four sites per unit cell
(see Fig. 1) and are non-Bravais lattices with C4v crystalline
point-group symmetry. Here we consider the conventional
half-filling case, which corresponds to four electrons within
a unit cell and thus belongs to the above-defined integer
filling case. The 1/5-depleted square lattice [23–25] was
first discovered in the study of spin-gapped calcium vanadate
material CaV4O9 [23] and, later, in a vacancy-ordered iron
selenide family of pnictides [26–28] where a rich variety
of phases, including several magnetically ordering and su-
perconducting, have been observed [29,30]. Recently, the
half-filled Hubbard model on this lattice has been studied
with different numerical methods, including CDMFT with
a continuous-time quantum Monte Carlo impurity solver
[31], determinantal quantum Monte simulations [32], and
variational cluster approximation [33]. However, a systematic
study in which magnetic-to-nonmagnetic phase transition and
Mott metal-insulator transition, as well as the realization of
a fragile Mott insulator phase, has not been carried out.
Here we employ extensive CDMFT + ED simulations to
explore the ground-state phase diagram and the nonmagnetic
metal-insulator transitions. We find a fragile Mott insulator
phase in this model and confirm its novel symmetry properties
and its Mott insulator character, based on numerical results
and group-theory analysis. In addition, we find that in the
checkerboard square lattice [34–37], a fragile Mott insulator
also exists. We determine its ground-state phase diagram by
means of extensive CDMFT + ED simulations as well.

II. MODEL AND METHOD

We study a two-dimensional single-band Hubbard model
on 1/5-depleted and checkerboard square lattices, as schemat-
ically shown in Fig. 1. The Hamiltonian reads

Ĥ = Ĥ0 + U
∑
iα

n̂iα↑n̂iα↓, (1)
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Ĥ0 = −
∑

iα,jβ,σ

tiα,jβ ĉ
†
iασ ĉjβσ − μ

∑
iασ

n̂iασ

=
∑

k∈BZ,σ

ĉ†kσ H0(k)ĉkσ , (2)

where H0(k) is the noninteracting Bloch Hamiltonian matrix,
i and j label the unit cells, and α and β label the sites
(a,b,c,d) within a unit cell. In momentum space, ĉ†kσ =
(ĉ†akσ ,ĉ

†
bkσ ,ĉ

†
ckσ ,ĉ

†
dkσ ). U is the on-site repulsive Coulomb

interaction and we set the chemical potential μ = U/2 for the
half-filling. Here tiα,iβ = t is the intraplaquette hopping and
tiα,jβ (i �= j ) = t ′ is the interplaquette hopping. As we vary the
ratio t ′/t , the bandwidths of the noninteracting band structures
in the two models are fixed at W = 4. Correspondingly, we set
the energy unit to be W/4 throughout the paper. For simplicity,
we introduce a parameter λ ∈ [0,1], specified as follows. For
the 1/5-depleted square lattice [Fig. 1 (a)]:

t = 2λ/(1 + λ) and t ′ = 2 − 4λ/(1 + λ),
λ = 0 is the decoupled-dimer limit,
λ = 1 is the decoupled-plaquette limit, and
λ = 1/2 is the homogenous case with t = t ′,
and for the checkerboard square lattice [Fig. 1 (b)]:
t = λ and t ′ = 1 − λ,
λ = 0 is one decoupled-plaquette limit,
λ = 1 is another decoupled-plaquette limit, and
λ = 1/2 is the homogenous square lattice limit.
Figure 2 shows the noninteracting band structure of the 1/5-

depleted square lattice. In the half-filling case, there is a band
insulating phase in the region of 0 < λ < 1/3 and a metallic
phase with nested Fermi surface in the region of 1/3 < λ < 1
[31], respectively. The noninteracting band structure of the
checkerboard square lattice is shown in Fig. 3, in which the
system is always metallic with nested Fermi surface for the
entire λ range.

To study the correlated systems described by Eq. (1),
we employed the CDMFT + ED method. The CDMFT, as
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FIG. 1. (Color online) Illustration of the 1/5-depleted square
lattice (a) and checkerboard square lattice (b). Intra- (inter-) plaquette
hoppings are represented by thick red (thin green) solid lines. The
black dashed (dotted) square represents the four- (eight-) site cluster
used in our CDMFT + ED calculations; these clusters reflect C4v

point-group symmetry. The lowercase letters (a, b, c, and d) represent
four sites in a unit cell. White dots with blue letters and blue dots with
white letters denote the two magnetic sublattices when the system
develops antiferromagnetic order.

FIG. 2. (Color online) Noninteracting band structure of the 1/5-
depleted square lattice along the high-symmetry path �(0,0) →
X(0,π ) → M(π,π ) → �(0,0). In the region of 0 < λ < 1/3, e.g.,
(a), the system is a band insulator; in the region of 1/3 < λ < 1, e.g.,
[(b)–(d)], the system becomes a metal with a hole pocket centered
at the � point and an electron pocket centered at the M point, and
the Fermi surface is nested. At λ = 1/2, both the � and M points are
threefold degenerated.

a cluster extension of dynamical mean-field theory, maps
an interacting lattice problem onto an auxiliary quantum
cluster impurity problem embedded in a self-consistently
determined mean-field bath. The short-range correlations
within the cluster can be treated exactly, while the nonlocal
correlations between clusters are treated at a mean-field level.
In this paper, we perform zero-temperature CDMFT + ED
calculations with four (eight) correlated impurities (see Fig. 1)
in the plaquette (dimer) side of the phase diagram and
keep eight bath levels in total. We introduce the nomencla-
ture “(ds/cs/s)nc-mbb-AF/PM/ED” [38] to differentiate the
technical details of impurity cluster systems used in the
simulations, where “(ds/cs/s)nc-mbb” represents the 1/5-
depleted/checkerboard/homogenous square lattices with nc

correlated impurities and mb bath levels, while “AF/PM/ED”
denotes the CDMFT calculations with the antiferromagnetic
mean-field bath, the paramagnetic mean-field bath, or a purely
finite-size Lanczos ED calculation, respectively.

In the CDMFT + ED simulations, the size of impurity
system (correlated impurities plus bath levels) cannot be too

FIG. 3. (Color online) Noninteracting band structure of the
checkerboard square lattice along the high-symmetry path. Different
from the 1/5-depleted square lattice, there is no band insulator for
the whole λ range, and the Fermi surface is always nested.
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large as the Hilbert space of the system grows exponentially
with its size. However, we have verified that the sizes of the
impurity system employed here are sufficient to capture the
thermodynamic limit properties of the underlying strongly
correlated many-body ground states. Appendix A shows our
CDMFT + ED simulation results of the impurity system
with various sizes on the staggered magnetization for the
half-filled Hubbard model on a homogeneous square lattice.
The results agree well with the quantum Monte Carlo ones
at the Heisenberg limit. For the 1/5-depleted square lattice,
we employ the ds8-8b-AF impurity system in the dimer side
[labelled by the black dotted diamond in Fig. 1 (a)], and this
impurity system is able to treat the inter- and intraplaquette
short-range correlations on equal footing. In the plaquette
side, however, the ds8-8b-AF is not suitable since it cannot
correctly take the strong intraplaquette correlations of the outer
four boundary sites in their own plaquettes into consideration.
Instead, we use the ds4-8b-AF impurity system [labelled by
the black dashed square in Fig. 1 (a)] which captures the
correlation within a plaquette.

III. RESULTS AND ANALYSIS

Figure 4(a) shows the phase diagram of the half-filled
Hubbard model on the 1/5-depleted square lattice, obtained
from the CDMFT + ED simulations. Three different insulating
phases exist: dimer insulator (DI), plaquette insulator (fragile
Mott insulator), and the intervening Néel antiferromagnetic
insulator (AFI). The magnetic-to-nonmagnetic phase transi-

tions are continuous, which can be seen from the contin-
uous vanishing of the staggered magnetization ms shown
in Figs. 4(b) and 4(c). The dimer (plaquette) insulator has
all the symmetries of the underlying lattice and is a singlet
gapped state which is adiabatically connected to the decoupled
dimer (plaquette) limit. In these two spin-gapped phases, the
energy gap is a singlet-triplet excitation gap. This gap can be
directly calculated by the finite-size ED and the corresponding
results are shown in Fig. 4(d). The AFI, with a magnetic
long-range order, breaks the SU(2) spin rotational symmetry
and then has gapless Goldstone modes. Thus, the gap closing
transitions in Fig. 4(d) signify the DI-to-AFI and FMI-to-AFI
transitions.

The physical picture of the phase transitions in Fig. 4(a)
can be readily appreciated. The nested Fermi surface in the
area of 1/3 < λ < 1 at U = 0 (see Fig. 2) is unstable towards
the antiferromagnetic insulating phase upon infinitesimally
small U . As U is further increased, depending on the value
of λ, the short-range interplaquette and intraplaquette spin
correlations start to develop. As can be seen from the spin-spin
correlations shown in Figs. 4(e) and 4(f), the system would
favor a spin-singlet ground state, either in the form of a dimer
or a plaquette. When the short-range correlation inside the
dimer or plaquette is strong enough to destroy the long-range
AF order, the continuous quantum phase transitions from AFI
to DI or from AFI to FMI occur.

The phase boundaries obtained here are close to those
obtained by other methods on the Hubbard model [32,33].
Furthermore, extrapolating to the Heisenberg limit, we get

FIG. 4. (Color online) (a) Phase diagram of the half-filled Hubbard model on the 1/5-depleted square lattice. The blue circles, red squares,
and green triangles are the phase boundaries obtained from ds8-8b-AF, ds4-8b-AF, and ds16-0b-ED systems, respectively. The dimer insulator
at small λ and the fragile Mott insulator at large λ are separated by the AF insulator. The region of AF insulator shrinks as the interaction
strength U/W increases. [(b) and (c)] Staggered magnetization ms = 1

2nc

∑nc

i=1 |〈n̂i↑〉 − 〈n̂i↓〉| as functions of λ and U/W ; the solid and hollow
points are obtained from ds4-8b-AF and ds8-8b-AF impurity systems, respectively. (d) Spin gap �s = E1(S = 1) − E0(S = 0) are calculated
from ds8-0b-ED (solid line) and ds16-0b-ED (hollow points) systems with periodic boundary condition show two minima in the curves which
can be used to estimate the quantum phase transitions from dimer insulator to AF insulator and from AF insulator to FMI. Insets are the
enlarged plots at the two phase-transition regions. [(e) and (f)] Spin-spin correlations between intraplaquette (red, blue) and interplaquette
(green) sites become more inhomogeneous as U increases. Solid lines and hollow points are obtained from the ds8-0b-ED and ds16-0b-ED
systems, respectively.
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the transition points λCDMFT
1c ≈ 0.418 (obtained by ds8-8-

AF) and λCDMFT
2c ≈ 0.536 (obtained by ds4-8b-AF), which

are consistent with the quantum Monte Carlo results for
Heisenberg model in Refs. [25,39], with λ

QMC
1c ≈ 0.436 and

λ
QMC
2c ≈ 0.509, respectively.

Next we discuss the differences between the dimer insulator
and the plaquette insulator and reveal the fact that the plaquette
insulator is essentially a fragile Mott insulator. According
to the group theory, a nondegenerate ground state which
does not break the crystalline point-group symmetry must
transform according to one of the one-dimensional irreducible
representations of the crystalline point group. Therefore, two
non-symmetry-breaking phases must be distinct phases if their
respective nondegenerate ground states transform according
to different one-dimensional irreducible representations of the
point group. Now let us consider a finite-size system which
contains L × L plaquettes (e.g., the L = 3 cases in Fig. 1)
and preserves the C4v crystalline point-group symmetry. In
the decoupled-dimer limit, λ = 0, the nondegenerate ground
state of this system is a product state of all the singlets
on each interplaquette bond. This ground state transforms
according to the identity (A1) representation of C4v point
group no matter whether L is even or odd. Since the DI
phase can be adiabatically connected to the decoupled-dimer
limit, the DI phase will transform according to the identity
representation. Note that the U = 0 band insulator with
0 < λ < 1/3 [Fig. 4(a)] certainly transforms according to the
identity representation [13].

The situation differs in the plaquette side. In the decoupled-
plaquette limit, λ = 1, the nondegenerate ground state of the
L × L plaquette system is a product of all the singlets on each
plaquette. The singlet on a plaquette is an entangled quantum
state and has dx2−y2 symmetry [12,13,34]. This remarkable
feature directly determines the nontrivial group symmetry
of the plaquette-limit ground state. Following the argument
in Ref. [13], we perform detailed group-theory analysis, as
shown in Appendix B. It follows that the ground state in
the plaquette limit transforms according to the nontrivial
B2 (trivial A1) representation when L is odd (even). In the
thermodynamic limit, a phase will not depend on how
the thermodynamic limit is approached; therefore, the pla-
quette insulator phase, which is continuously connected to the
plaquette limit state, cannot be adiabatically connected to DI or
any time-reversal symmetric band insulator (as they transform
according to the A1 representation). Hence, the plaquette
insulator is an FMI, as proposed in Refs. [12,13]. Accordingly,
there must be some intervening phases or a direct phase
transition between the DI and the FMI. And, indeed, there
is an intervening AFI phase with Néel antiferromagnetic order
between the DI and the FMI in the phase diagram, as shown
in Fig. 4(a).

Furthermore, in the noninteracting U = 0 limit, there are
four bands among which two bands touch at high-symmetry
points � and M in the Brillouin zone (see Fig. 2) due to the
wave-vector group Gk = C4v at k = M or �. The wave-vector
group is a subgroup of the crystalline point group that leaves
the wave vector invariant or translates it by a reciprocal
lattice vector. According to the group representation theory, the
Bloch Hamiltonian H0(k) at the M or � point can be block-
diagonalized according to the irreducible representations of

FIG. 5. (Color online) Spectral function A(k,ω) =
−Im[G(k,ω + iη)]/π of the half-filled Hubbard model on the
1/5-depleted square lattice along the high-symmetry path. Here
the Lorentzian broadening factor η is 0.05. Panels (a) and (b) are
obtained from ds8-8b-PM impurity system at λ = 0.4 in the dimer
side. We use the self-energy � periodization scheme [31,40] to
restore the unit cell translation symmetry. As U increases, the
electron pocket centered at the M point and the hole pocket centered
at the � point shrink, and the system undergoes a Lifshitz transition
[31,41]. [(c) and (d)] The spectral function A(k,ω) is obtained from
the ds4-8b-PM impurity system at λ = 0.7 in the plaquette side.
The splitting of electronic bands near the Fermi surface is clearly a
hallmark of a Mott-Hubbard metal-insulator transition, i.e., a direct
Mott gap opens by U with the spectral weights transfer to higher
energies.

the wave-vector group: A1 ⊕ B2 ⊕ E. The presence of a
two-dimensional irreducible representation E indicates that
the two bands are essentially degenerated at the � and M points
(see Fig. 2 and Fig. 5). Taking the M point, for example, the
lower two bands touch and form a two-dimensional irreducible
representation(E) of GM in the region of 0 < λ < 1/2, while
the middle two bands touch in the region of 1/2 < λ < 1.
The different bands touching at the M or � point have remark-
able effects upon the nonmagnetic metal-insulator transition,
as can be seen from the spectral functions calculated from
the CDMFT + ED in Fig. 5. The nonmagnetic metal-insulator
transition in the region of 1/3 < λ < 1/2 is of a Lifshitz
type [31,41,42] with shrinking electron and hole pockets and
opening an indirect gap at critical Uc [see Figs. 5(a) and 5(b)].
On the contrary, in the plaquette region of 1/2 < λ < 1, the
correlation effect does not push the middle two quasiparticle
bands away from each other, but instead, it splits the bands
near the Fermi energy to form an insulator as U increases [see
Figs. 5(c) and 5(d)]. Thus, the nonmagnetic metal-insulator
transition in the plaquette side is of a Mott-Hubbard type. In
this sense, the plaquette insulator is indeed an FMI because
of not only its nontrivial symmetry properties but also being
the Mott metal-insulator transition. In addition, the d-wave
character of the ground-state wave function will have some
impact on the macroscopic observable properties, such as
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FIG. 6. (Color online) Phase diagram and staggered magnetiza-
tion of the half-filled Hubbard model on the checkerboard square
lattice. The results are obtained by the CDMFT + ED with cs4-
8b-AF impurity system. We use four-site cluster [see Fig. 1 (b)]
in the CDMFT simulations in order to accurately incorporate the
correlations within the plaquette.

the d-wave symmetry of the pairing correlations [12,32].
Therefore, we can also call the plaquette insulator a “d-Mott”
insulator [12,13].

Now we study the case of the checkerboard square lattice.
We obtain two symmetric phase boundaries and further find
that the magnetic-to-nonmagnetic phase transitions are also
continuous, as shown in Fig. 6. The extrapolated critical
point λCDMFT

2c ≈ 0.62 is also compatible with the quantum
Monte Carlo result λ

QMC
2c ≈ 0.5745 in the Heisenberg limit

[35,43]. Similarly, the ground states at the two plaquette
insulator phases transform according to the nontrivial B1

(identity A1) representation when L is odd (even). Thus we
can use the similar symmetry argument to prove that these two
plaquette insulators cannot be adiabatically connected to any
time-reversal symmetric band insulator in the thermodynamic
limit. The noninteracting band structure in Fig. 3 shows that
there is no band insulator in the whole λ range. The bands
touching at the � and M points are also due to the wave-vector
group GM(�) = C4v . Likewise, the metal-insulator transition
is of the Mott-Hubard type. Therefore, the plaquette insulators
in this model are also FMI or d-Mott insulator, as referred to
in Refs. [12,34,37].

IV. SUMMARY AND DISCUSSION

In summary, we have mapped out the ground-state phase di-
agrams of the Hubbard model on the 1/5-depleted and checker-
board square lattices by means of extensive CDMFT + ED
simulations. Using an advanced numerical approach, we
find out that the plaquette insulators in these systems are
actually a well-defined fragile Mott insulator. The FMI is
always separated from a band insulator at the U = 0 limit.
In the phase diagram of the 1/5-depleted square lattice, an
intervening Néel-ordered AFI separates the DI and FMI at
finite U/W . Our numerical and analytical calculations show
that the DI is adiabatically connected to band insulator, while
the FMI cannot be adiabatically connected to any time-reversal
symmetric band insulator or DI. The nonmagnetic metal-

insulator transition at the dimer side is of Lifshitz type, while
that at the FMI side is of Mott-Hubbard type with splitting of
the energy bands crossing the Fermi energy.

As the DI and FMI transform according to different one-
dimensional irreducible representations of the C4v point-group
symmetry, it will be interesting to investigate possible super-
conductivity instabilities in the two plaquette systems upon
doping. Under the interplay of crystalline point-group sym-
metry and correlation-driven magnetic properties, a change of
the superconducting pairing symmetry is expected [32,34,44].
Direct observation of such change of pairing symmetry will
shed light on the unconventional superconductivity in the iron
selenide family as well as the understanding of the intimate
relation between magnetic and superconducting correlations
in similar systems.
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APPENDIX A: CDMFT + ED BENCHMARK
CALCULATIONS ON TWO-DIMENSIONAL

HOMOGENEOUS SQUARE LATTICE

As a benchmark test, we perform CDMFT + ED simula-
tions for the half-filled Hubbard model on two-dimensional
homogeneous square lattice. The results are shown in Fig. 7.
From the comparison between systems with the same cluster

FIG. 7. (Color online) The staggered magnetizations of the Hub-
bard model on the homogeneous square lattice calculated by
CDMFT + ED with several different impurity systems. When U is
small, more than two bath levels per cluster boundary site are needed
to produce a remarkably good result (see the inset). When U is large,
two bath levels per cluster boundary site are sufficient to produce a
good result.
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TABLE I. The character table of C4v point group.

C4v E c2 2c4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0

and different number of bath levels, it can be shown that
two bath levels per cluster boundary site are sufficient in an
insulating regime, but more bath levels are needed to produce
a remarkably good result close to U = 0. Extrapolating to to
the Heisenberg limit, the staggered magnetizations (not shown
in Fig. 7) are as follows: 0.422(s1-4b-AF), 0.398(s2-8b-AF),
and 0.370(s4-8b-AF). These results do show a remarkable
convergence to the quantum Monte Carlo result mQMC

s =
0.3070(3) [45] of the Heisenberg model on the homogeneous
square lattice.

For the lattice models we studied in this paper, the phase
boundaries lie between two insulating phases, see Fig. 4(a)
and Fig. 6(a). In addition, the nonlocal correlations are short
range in the plaquette insulator and dimer insulator regimes.
Therefore, although we use small clusters and total eight bath
levels in the CDMFT + ED calculations, we have good reason
to expect that our numerical results can qualitatively well
describe magnetic phase transitions and the insulating ground
states.

APPENDIX B: ONE-DIMENSIONAL IRREDUCIBLE
REPRESENTATION OF DECOUPLED PLAQUETTE STATE

The two generators of the C4v group are the clockwise π/4
rotation about the z axis, c4, and the reflection in a vertical
plane, σv . The group character table is shown in Table I.
There are four different one-dimensional irreducible represen-
tations (A1,A2,B1,B2) and one two-dimensional irreducible
representation (E). A unique ground state which preserves
the C4v symmetry must transform according to one of the
one-dimensional irreducible representations.

To simplify the following discussion about the decoupled
plaquette state at λ = 1, we can go to the Heisenberg limit. The
unique many-body ground-state wave function can be taken as

the direct product of singlet states on each plaquette,

∣∣�L
λ=1

〉 =
L×L∏
n=1

d̂†
n|0〉, (B1)

where d̂
†
n = (ŝ†n,abŝ

†
n,cd − ŝ

†
n,ad ŝ

†
n,bc)/

√
3 and ŝ

†
n,ab =

(ĉ†n,a↑ĉ
†
n,b↓ − ĉ

†
n,a↓ĉ

†
n,b↑)/

√
2. d̂

†
n|0〉 creates a plaquette

singlet state at the n-th plaquette on the L × L plaquette
lattice, and ŝ

†
n,ab|0〉 creates an ab bond singlet within the n-th

plaquette (see Fig. 1). Applying the c4 symmetry operation,

P̂c4 d̂
†
nP̂

−1
c4

= 1√
3

(ŝ†m,bcŝ
†
m,da − ŝ

†
m,baŝ

†
m,cd )

= − 1√
3

(ŝ†m,abŝ
†
m,cd − ŝ

†
m,ad ŝ

†
m,bc)

= −d̂†
m, (B2)

where P̂c4 is a symmetry operator of the corresponding
group element c4. We can demonstrate that the ground state
transforms as

P̂c4

∣∣�L
λ=1

〉 = P̂c4 d̂
†
1P̂

−1
c4

P̂c4 d̂
†
2 · · · P̂ −1

c4
d̂
†
L×LP̂c4 P̂

−1
c4

|0〉
= (−1)L×Ld̂

†
i1
d̂
†
i2

· · · d̂†
iL×L

|0〉

=
{−∣∣�L

λ=1

〉
, L odd;

+∣∣�L
λ=1

〉
, L even,

(B3)

where we have used the commutation relation [d̂†
n,d̂

†
m] = 0.

This result holds for both the 1/5-depleted and checkerboard
square lattices.

In a similar way, we can prove that the ground state
transforms as

P̂σv

∣∣�L
λ=1

〉 =
{−∣∣�L

λ=1

〉
, L odd;

+∣∣�L
λ=1

〉
, L even,

(B4)

for the 1/5-depleted square lattice and

P̂σv

∣∣�L
λ=1

〉 =
{+∣∣�L

λ=1

〉
, L odd;

+∣∣�L
λ=1

〉
, L even,

(B5)

for the checkerboard square lattice. Other eigenvalues of
C4v group operators can also be deduced. Together with
Table I, we can show that the ground state of the 1/5-depleted
(checkerboard) square lattice at the decoupled plaquette
limit transforms according to the nontrivial B2 (B1) one-
dimensional irreducible representation when L is odd.

[1] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).
[2] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039

(1998).
[3] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and

A. Vishwanath, Nat. Phys. 9, 299 (2013).
[4] P. W. Anderson, Science 235, 1196 (1987).
[5] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987).

[6] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B
35, 8865 (1987).

[7] X. G. Wen, Phys. Rev. B 40, 7387 (1989).
[8] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[9] R. Roy, arXiv:1212.2944 (2012).

[10] S. A. Parameswaran, I. Kimchi, A. M. Turner, D. M. Stamper-
Kurn, and A. Vishwanath, Phys. Rev. Lett. 110, 125301
(2013).

125128-6

http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.40.677
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1038/nphys2600
http://dx.doi.org/10.1038/nphys2600
http://dx.doi.org/10.1038/nphys2600
http://dx.doi.org/10.1038/nphys2600
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1126/science.235.4793.1196
http://dx.doi.org/10.1103/PhysRevLett.59.2095
http://dx.doi.org/10.1103/PhysRevLett.59.2095
http://dx.doi.org/10.1103/PhysRevLett.59.2095
http://dx.doi.org/10.1103/PhysRevLett.59.2095
http://dx.doi.org/10.1103/PhysRevB.35.8865
http://dx.doi.org/10.1103/PhysRevB.35.8865
http://dx.doi.org/10.1103/PhysRevB.35.8865
http://dx.doi.org/10.1103/PhysRevB.35.8865
http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.40.7387
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://arxiv.org/abs/arXiv:1212.2944
http://dx.doi.org/10.1103/PhysRevLett.110.125301
http://dx.doi.org/10.1103/PhysRevLett.110.125301
http://dx.doi.org/10.1103/PhysRevLett.110.125301
http://dx.doi.org/10.1103/PhysRevLett.110.125301


THEORETICAL PREDICTION OF FRAGILE MOTT . . . PHYSICAL REVIEW B 91, 125128 (2015)

[11] I. Kimchi, S. A. Parameswaran, A. M. Turner, F. Wang, and A.
Vishwanath, Proc. Natl. Acad. Sci. USA 110, 16378 (2013).

[12] H. Yao, W.-F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104
(2007).

[13] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 105, 166402 (2010).
[14] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[15] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[16] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.

Phys. 77, 1027 (2005).
[17] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev.

Lett. 87, 186401 (2001).
[18] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[19] A. Liebsch, H. Ishida, and J. Merino, Phys. Rev. B 78, 165123

(2008).
[20] A. Liebsch and N.-H. Tong, Phys. Rev. B 80, 165126 (2009).
[21] E. Koch, G. Sangiovanni, and O. Gunnarsson, Phys. Rev. B 78,

115102 (2008).
[22] R.-Q. He and Z.-Y. Lu, Phys. Rev. B 86, 045105 (2012).
[23] T. Satoshi, N. Takashi, Y. Yukio, K. Yoshiaki, S. Masatoshi, N.

Takashi, K. Masaaki, and S. Kazuhiro, J. Phys. Soc. Jpn. 64,
2758 (1995).

[24] K. Ueda, H. Kontani, M. Sigrist, and P. A. Lee, Phys. Rev. Lett.
76, 4650 (1996).

[25] M. Troyer, H. Kontani, and K. Ueda, Phys. Rev. Lett. 76, 3822
(1996).

[26] B. Wei, H. Qing-Zhen, C. Gen-Fu, M. A. Green, W. Du-Ming, H.
Jun-Bao, and Q. Yi-Ming, Chin. Phys. Lett. 28, 086104 (2011).

[27] F. Ye, S. Chi, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D.
Wang, C. H. Dong, and M. Fang, Phys. Rev. Lett. 107, 137003
(2011).

[28] X.-W. Yan, M. Gao, Z.-Y. Lu, and T. Xiang, Phys. Rev. B 83,
233205 (2011).

[29] S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and
A. V. Chubukov, Phys. Rev. Lett. 107, 147002 (2011).

[30] N. Xu, P. Richard, X. Shi, A. van Roekeghem, T. Qian, E.
Razzoli, E. Rienks, G.-F. Chen, E. Ieki, K. Nakayama, T. Sato,
T. Takahashi, M. Shi, and H. Ding, Phys. Rev. B 88, 220508
(2013).

[31] Y. Yanagi and K. Ueda, Phys. Rev. B 90, 085113 (2014).
[32] E. Khatami, R. R. P. Singh, W. E. Pickett, and R. T. Scalettar,

Phys. Rev. Lett. 113, 106402 (2014).
[33] A. Yamada, Phys. Rev. B 90, 245139 (2014).
[34] W.-F. Tsai and S. A. Kivelson, Phys. Rev. B 73, 214510

(2006).
[35] S. Wenzel and W. Janke, Phys. Rev. B 79, 014410 (2009).
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