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Mesoscopic conductance fluctuations at subdiffusion scales
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We study the conductance fluctuations in the crossover between ballistic and diffusive regimes of phase coherent
transport. Within a diagrammatic approach, the conductance variance for a quasi-one-dimensional disordered
system is calculated beyond the diffusion approximation. The result obtained establishes the interrelation between
conductance fluctuations in the crossover regime and the inhomogeneity characteristics of the disordered system.
In the case of highly forward scattering by large inhomogeneities, we find the enhancement of conductance
fluctuations at subdiffusion length scales.
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I. INTRODUCTION

One of the most striking phenomenon accompanying phase
coherent transport in disordered systems is the “universal”
conductance fluctuations (UCF) [1]. The variance of the
dimensionless conductance proves to be of the order of unity
and, under certain conditions [2], does not depend on the
sample size. The UCF phenomenon pertains equally to both
quantum electronic transport [1] and propagation of light [3]
or microwaves [4] through a random medium. In the latter
case, UCF have been observed in sample-specific fluctuations
of speckle patterns [3,4].

Previous studies of mesoscopic conductance fluctuations
(see, e.g., Refs. [2,5–14]) were mostly focused on the diffusive
regime of wave transport where the length L of the sample
is much larger than transport mean-free path ltr. In this
regime, the effect of UCF is observed. Not much is known
as regards the crossover from the ballistic to diffusive regime
and, correspondingly, the fluctuations at subdiffusion length
scales, L � ltr. At the same time, the effects originating
from the specific features of disorder are expected to reveal
themselves just in the crossover regime. This is suggested, in
particular, by the recent results of numerical modeling of the
conductance fluctuations in disordered graphene [15,16] where
the enhanced fluctuations and their sensitivity to the spatial
correlations of disorder were found. The currently available
results concerned with the crossover regime are based only
on direct numerical modeling [15–20], and any theoretical
treatment has not been done yet. The calculations of the
conductance variance with the random matrix theory (RMT)
presented in Refs. [21–24] rest on the isotropy hypothesis [25]
where the mean-free path l is the only characteristic of
disorder and therefore do not enable one to describe the
dependence of the crossover regime on the specific features of
disorder.

In this paper we present an analytical result for the
conductance variance of a quasi-one-dimensional (quasi-1D)
system (a waveguide with bulk disorder). The diagrammatic
calculations are carried out without resorting to the diffusion
approximation. The variance is expressed explicitly in terms
of the cross section of scattering by inhomogeneities of
the medium and the propagators that obey the conventional
transport equation. In the large-length limit, our result trans-
forms with no divergencies to the well-known diffusion

formula [5,8]. The crossover between the quasiballistic and
diffusive regimes is studied for systems with point-like and
large (as compared to wavelength λ) inhomogeneities. In the
first case, our calculations within the two-stream version of
the discrete-ordinate method are shown to be coincident with
the RMT results [6,10,21–24]. These results, as follow from
the direct calculations in the quasiballistic limit L � l, have
a logarithmic accuracy at relatively small L and become
qualitatively inapplicable as the size of inhomogeneities
increases. For the system with large inhomogeneities, we find
that the conductance variance in the crossover regime reaches
its maximum, which can exceed the UCF value.

II. DIAGRAMMATIC CALCULATIONS

We consider transmission of monochromatic waves through
a disordered waveguide of length L. The dimensionless
conductance (or transmittance) of the waveguide can be
defined as the sum of transmission coefficients Tab connecting
incoming and outgoing modes a and b, respectively (see, e.g.,
Refs. [5–8,10]),

G =
∑
a,b

Tab. (1)

The transmission coefficients Tab depend on spatial configura-
tion of the scattering centers and vary from sample to sample.

Under conditions of weak localization (G � 1), the value
of 〈G〉 averaged over an ensemble of disordered samples
is governed by the so-called diffuson which, within the
standard impurity technique, is the sum of ladder diagrams.
The variance of conductance 〈(δG)2〉 can be expressed in
terms of the ensemble-average fourth moment of a wave
field and represented as expansion in orders of interference
between ladders. Each interference event between the ladders
contains the Hikami vertex [26]. The variance of conductance
fluctuations is governed by diagrams containing two vertices
(see Fig. 1). In the presence of time-reversal symmetry, the
diagrams shown explicitly in Fig. 1 should be supplemented
by those that are obtained by interchanging initial i and final
f states in one pair of conjugated wave fields. These diagrams
correspond to the time-reversed paths of wave propagation and
contain the maximally crossed internal graphs (or cooperons)
instead of the ladders (or diffusons).
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FIG. 1. Diagrams contributing to conductance variance. The
paired lines correspond to diffusons. The shaded boxes are the Hikami
vertices [26].

For great number N of propagating modes [N = k2
0A/(4π ),

where k0 is the wave number and A is the area of the waveguide
cross section], the summation over modes can be replaced by
integration over directions � of wave propagation (see, e.g.,
Ref. [8]),

∑
a

· · · =
∫

Adqa

(2π )2 · · · = k2
0A

(2π )2

∫
d�a|μa| · · · , (2)

where qa is the transverse momentum (qa < k0), μa = �az,
and the z axis is directed along the waveguide. Hemispheres
�az > 0 and �az < 0 correspond to the waves that propagate
in the forward and backward directions, respectively.
The average conductance is expressed in terms of the
average transmission coefficient 〈Tab〉 which is equal to
(see Appendix A)

〈Tab〉 = (2π )2

k2
0A

Iab(zf = L|zi = 0), (3)

where propagator Iab(z|z′) = I (z,�a|z′,�b) denotes the
intensity at depth z in direction �a from a source placed at
depth z′ and emitting waves in direction �b. Intensity Iab is

subject to the transport equation [27](
μa

∂

∂z
+ nσtot

)
Iab(z|z′) = δ(z − z′)δ (�a − �b)

+
∫

d�cσacIcb(z|z′), (4)

where σac = ndσ (�a�c)/d�, n is the number of scattering
centers per unit volume, dσ/d� is the differential scattering
cross section, σtot = σ + σa is the total cross section of
interaction, and σ and σa are the cross sections of elastic
scattering and absorption, respectively. In a continuous random
medium, Eq. (4) remains unchanged with the only difference
being that σac means the differential scattering coefficient
which is expressed via the correlation function of disorder.

The diagrams shown in Fig. 1 can be evaluated in a
straightforward manner (see Appendix B). In what follows,
we take into account the ladders incorporating an arbitrary
number of scattering events; among them the graphs without
any scattering. These latter describe nonscattered waves.
Contrary to calculations performed within the diffusion ap-
proximation [5,8], we need not introduce particular diagrams
containing only one internal ladder propagator and the six-
point Hikami vertex. Such diagrams are already contained
among the diagrams depicted in Fig. 1. They correspond to the
pair of nonscattered waves in either of two internal ladders.

Our diagrammatic calculations are similar to those of
Ref. [28], where the contribution from the Hikami vertex
with four attached ladders was found without the diffusion
approximation. The result [28] is based on the coordinate-
direction representation for the Hikami vertex and the transport
equation for the ladder propagators. Extending the method [28]
to the case of the waveguide geometry, we derive the following
expression for the conductance variance (see Appendix B):

〈(δG)2〉 =
∫∫ L

0
dzdz′

∫∫∫∫
d�ad�bd�cd�dσabσcd

×
{(

I f
a − I

f

b

)2
IacIbd

(
I i
c − I i

d

)2 + (
I f
a −I

f

b

)(
I i
−a−I i

−b

)
IacIbd

(
I

f
−c−I

f

−d

)(
I i
c−I i

d

)

+ [(
I f
a − I

f

b

)
I i
b + I

f

−b

(
I i
−a − I i

−b

)]
(Iac − Iad )(I−a−c − I−b−c)

[(
I f
c − I

f

d

)
I i
d + I

f

−d

(
I i
−c − I i

−d

)]}

+
∫ L

0
dz

∫∫
d�ad�bσab

[(
I f
a − I

f

b

)
I i
b + I

f

−b

(
I i
−a − I i

−b

)]2
Iab(z|z), (5)

where internal propagators Iab = Iab(z|z′) obey Eq. (4), and
the incoming and outgoing propagators are defined as

I i
a(z) =

∫
d�b|μb|Iab (z|zi = 0) , (6)

I f
a (z) =

∫
d�b|μb|Iba(zf = L|z). (7)

The change of sign in a subscript of any propagator entering
into Eq. (5) implies reversing the direction (i.e., substitution of
−�a for �a into the propagator). The incoming and outgoing
propagators appearing in Eq. (5) with subscripts ±a, ±b

are functions of z, while those with subscripts ±c, ±d are
functions of z′.

The terms that contain products of the incoming and outgo-
ing propagators with subscripts of opposite sign [e.g., [(I f

a −
I

f

b )I i
b][· · · ][I f

−d (I i
−c − I i

−d )] ] correspond to the cooperon con-
tribution. The cooperon contribution includes the maximally
crossed internal graphs and, in the low-order-scattering limit,
the internal graphs that describe the waves propagating in
opposite directions [see Appendix B, e.g., Eq. (B15)]. All these
diagrams generate the products of the scattering amplitudes
of the form fabf−b−a , i.e., the amplitudes of the direct and
time-reversed processes. Equation (5) has the presented form
provided that time-reversal symmetry is not violated.

Expressions similar to Eqs. (1), (3), and (5) are also valid
for the reflection geometry. The average reflection coefficient
〈Rab〉 and the reflectance variance 〈(δR)2〉 differ from Eqs. (3)
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and (5) only by substitution of zf = 0 for zf = L in all
outgoing propagators.

Equation (5) is the principal result of our work. This equa-
tion generalizes the result of the diffusion approximation [5,8],
much as the transport equation generalizes the equation of
diffusion. Equation (5) establishes the interrelation between
the conductance variance and the characteristics of scattering
centers of the disordered system and enables us to study
evolution of the fluctuations in going from the quasiballistic
propagation to the diffusive regime.

Equation (5) can be extended to include the difference of
the incident waves in frequency. In this case, Eq. (5) is the
correlation function of conductance fluctuations of the form
〈δG(ω0 + 	ω/2)δG(ω0 − 	ω/2)〉. The frequency shift 	ω

appears only in the internal propagators entering into Eq. (5).
In the first two terms, the product of the internal propagators
takes the form

IacIbd = Iac (	ω) Ibd (−	ω) .

In the last two terms, the internal propagators look like

IadI−b−c = Re {Iad (	ω) I−b−c (	ω)} ,

Iab = Re {Iab (	ω)} .

The propagator Iab(	ω) = I (z,�a|z′,�b,	ω) obeys the
transport equation that is obtained from Eq. (4) by substituting
the complex absorption coefficient (nσa + i	ω/c) for nσa (c
is the wave velocity).

III. DIFFUSIVE LIMIT

The results obtained previously within the diffusion approx-
imation [5,8] can be derived from Eq. (5) by substitution of the
corresponding approximate expressions for the propagators.

For a long waveguide, L � ltr, the main contribution to
the integrals over z and z′ is governed by the distances that
are far away from the input and output waveguide boundaries.
Therefore, low-order-scattering contributions to Eq. (5) should
be neglected. In this case, the propagators turn out to depend
only slightly on the directions and can be expanded in terms
of the spherical harmonics. The first terms of such expansion
for the internal propagator have the form

Iab = 1

(4π )2
[
(z|z′) + 3μaJ (z|z′) − 3μbJ (z′|z) + · · · ],

(8)

where “density” 
 and “current” J are defined as


(z|z′) =
∫∫

d�ad�bIab(z|z′), (9)

J (z|z′) =
∫∫

d�ad�bμaIab(z|z′). (10)

Analogous expansions are also valid for the incoming and
outgoing propagators,

I i,f
a = 1

4π
[
i,f (z) + 3μaJi,f (z) + · · · ], (11)

where


i,f =
∫

d�aI
i,f
a , Ji,f =

∫
d�aμaI

i,f
a . (12)

Substituting these expansions into Eq. (5) and performing
integration over all directions, we arrive at the diffusion
formula for the conductance variance:

〈(δG)2〉 =
(

3

32π3ltr

)2 ∫∫ L

0
dzdz′

{
J 2

f (z)
2(z|z′)J 2
i (z′) + Jf (z)Ji(z)
2(z|z′)Jf (z′)Ji(z

′)

+ [Jf (z)
i(z) − Ji(z)
f (z)]

[
J (z|z′)J (z′|z) + 2πltr

3
δ(z − z′)
(z|z)

]
[Jf (z′)
i(z

′) − Ji(z
′)
f (z′)]

}
, (13)

where transport mean-free path ltr is defined as

l−1
tr =

∫
d�a (1 − �a�b) σab. (14)

Within the diffusion approximation (see, e.g. Ref. [27]), the
current J is expressed in terms of the z derivative of the
density 
:

J (z|z′) = − ltr

3

∂
(z|z′)
∂z

, Ji,f (z) = ∓ ltr

3

∂
i,f (z)

∂z
, (15)

and Eq. (13) can be transformed into the same form as in
Refs. [5,8]. For a waveguide with no absorption, Eq. (13)
gives the well-known result [6,8,10] 〈(δG)2〉 = 2/15.

It should be emphasized that any divergent terms do
not arise in Eq. (5) in going to the diffusive limit. As is
known [5,8], the straightforward diagrammatic calculations
within the diffusion approximation result in the divergent
terms. To cancel them, an additional treatment is required [5,8].

IV. TWO-STREAM MODEL

As an illustration of the application of Eq. (5) to calculating
the conductance variance beyond the diffusion approximation,
we find 〈(δG)2〉 within the two-stream version of the discrete-
ordinate method [27,29]. This simplest model enables us to
perform integration in Eq. (5) explicitly and to derive an
analytical formula for 〈(δG)2〉 which describes the crossover
between the quasiballistic and diffusive regimes.

Within this approach, each integral over � is supposed to
be equal to the sum of the values of an integrand quantity at
�z = ±μ0,

∫
d�aI (z,�a) = 2πI+(z) + 2πI−(z), (16)

where I±(z) = I (z,�z = ±μ0), and ±μ0 are the discrete
ordinates [27].

125125-3



V. V. MARINYUK AND D. B. ROGOZKIN PHYSICAL REVIEW B 91, 125125 (2015)

FIG. 2. (Color online) Variance of conductance fluctuations as a
function of the waveguide length (absorption length la = 103l). The
diffuson (D) and cooperon (C) contributions to 〈(δG)2〉 are shown by
dotted lines. Crosses are the RMT results for the diffusive regime [10].
The inset compares the cooperon-to-diffuson ratio for different
absorption lengths (from upper to lower curves, l/ la = 0.001, 0.01,
and 0.1).

For a widely used model of point-like centers, the quan-
tity σab in Eqs. (4) and (5) is independent of direction;

FIG. 3. (Color online) Reflectance (upper curve) and conduc-
tance (lower curve) fluctuations as functions of the absorption length.
The dimensionless waveguide length sL = 100. The RMT results for
the diffusive regime [10] are shown by crosses.

σab = nσ/(4π ), and the disorder is characterized only by the
mean-free path l = (nσ )−1. In this case, Eq. (5) is expressed
in terms of the values of intensity propagators at ±μ0 as
follows:

〈(δG)2〉 =
(

π

l

)2 ∫∫ L

0
dzdz′

{
2(I++I−− + I+−I−+)[(I f

+ − I
f
− )2(I i

+ − I i
−)′2 + (I f

+ − I
f
− )(I i

+ − I i
−)(I f

+ − I
f
− )′(I i

+ − I i
−)′]

+ [h+(I++ − I+−) + h−(I−− − I−+)][h′
+(I−− − I+−) + h′

−(I++ − I−+)]
}

+ π

l

∫ L

0
dz[h2

+I+−(z|z) + h2
−I−+(z|z)],

(17)

where

h± = [±(I f
+ − I

f
− )I i

∓ ∓ (I i
+ − I i

−)I f
± ],

and the propagators I±± = I±±(z|z′) and I
i,f
± = I

i,f
± (z) enter-

ing into Eq. (17) are determined analytically from the transport
equation and given in Appendix C. In Eq. (17), the incoming
and outgoing propagators marked by primes are functions of
z′; otherwise they are functions of z.

For a waveguide with no absorption, Eq. (17) results in

〈(δG)2〉 = 2

15

(
1 − 1 + 6sL

(1 + sL)6

)
, (18)

where sL = (1/2μ0)(L/l). Equation (18) coincides with the
result of RMT calculations [21,23].

For purely elastic scattering, the reflectance variance
coincides with the conductance variance: 〈(δR)2〉 = 〈(δG)2〉.
As applied to the reflection geometry, Eq. (18) gives the
relation N2〈(δR)2〉/〈R〉2 = 2 at sL � 1. In this limit, only
single-scattered waves contribute to reflectance fluctuations.
The factor “two” arises from two scattering processes which
differ from each other by interchanging the final and initial
states. This agrees with RMT treatment [6,21,24].

Analytical formulas that extend Eq. (18) to a waveguide
with absorption are too cumbersome to be presented here
and, therefore, we illustrate the length dependence of the

conductance variance in graphical form [see Fig. 2; absorption
length la is defined as la = (nσa)−1]. As follows from the
calculations, the difference between the diffuson and cooperon
contributions manifests itself at large L and increases with
increasing absorption. A decrease in the cooperon contribution
to conductance fluctuations results from suppression of loop
trajectories [10]. In the presence of absorption, 〈(δG)2〉
is no longer equal to 〈(δR)2〉. While relative conductance
fluctuations fall off with absorption, the relative fluctuations
of reflectance increase (see Fig. 3). In the diffusive limit (large
L, L � l, and weak absorption, la � l) our results are in
agreement with analytical RMT calculations [10] for both
the transmission and reflection geometries [30]. Our results
coincide also with numerical integration of the RMT equations
for the reflectance variance [22] (see Fig. 4).

The results obtained above could be extended to the case of
anisotropic scattering by the relation∫

d�aσ±,aI (z,�a) = nσ (pI±(z) + (1 − p)I∓(z)), (19)

where the factor p governs the single-scattering anisotropy (for
isotropic scattering p = 1/2, for highly forward scattering by
large inhomogeneities, the factor p tends to unity: 1–p � 1).
In this approximation, the conductance variance 〈(δG)2〉 is
obtained from Eq. (18) by substitution of l/2(1 − p) for

125125-4



MESOSCOPIC CONDUCTANCE FLUCTUATIONS AT . . . PHYSICAL REVIEW B 91, 125125 (2015)

FIG. 4. (Color online) Reflectance variance as a function of the
waveguide length (from upper to lower curves, the absorption length
la/ l = 2 × 104, 103, 102, and 10). Crosses are the results of numerical
integration of the RMT equations [22].

l. The quantity l/2(1 − p) is an analog of the transport
mean-free path ltr. Transformation to the UCF regime occurs
at L � l/2(1 − p). This qualitatively agrees with the diffusive
transport condition, L � ltr. However, such an approach
proves to be too rough to describe conductance fluctuations
at subdiffusion lengths. At L < l/2(1 − p), it gives

〈(δG)2〉 = 8 (1 − p)2 s2
L. (20)

As shown below, for isotropic scattering, Eq. (20) is applicable
at L < l with logarithmic accuracy. For a disordered system
with large inhomogeneities, accurate calculations, contrary to
Eq. (20), point out that conductance fluctuations are enhanced
and not suppressed at L < ltr.

V. QUASIBALLISTIC REGIME

In transmission through a short waveguide, L � l, con-
ductance variance 〈(δG)2〉 can be calculated by expanding the
propagators that enter into Eq. (5) in orders of wave scattering.
The single-scattering contributions to 〈(δG)2〉 cancel each
other (see, e.g., Ref. [5]). Thus, 〈(δG)2〉 is governed by the
second-order scattering contributions,

〈(δG)2〉 =
∫∫ L

0
dzdz′

∫∫∫∫
d�ad�bd�cd�dσabσcd

× {(
I f
a − I

f

b

)2
IacIbd

(
I i
c − I i

d

)2

+ IadI−b−c

[
I

f

−bI
i
−bI

f

d I i
d + I

f

b I i
bI

f

−dI
i
−d

]}(0)

+
∫ L

0
dz

∫∫
d�ad�b

{(
I

f

b I i
b

)2 + (
I f
a I i

a

)2}(0)

× σabI
(1)
ab (z|z), (21)

where {I · · · I }(0) = I (0) · · · I (0), I (0) is the nonscattered inten-
sity, and I (1) is the single-scattered intensity [see Appendix A,
Eq. (A11) and the text below it]. For the reflection geometry,
a similar expansion in Eq. (5) gives the more compact result

〈(δR)2〉 =
∫ L

0
dz

∫∫
d�ad�bσab

× {(
I f
a I i

b + I
f

−bI
i
−a

)2}(0)
I

(1)
ab (z|z). (22)

Substituting the explicit expressions for I (0) and I (1) into
Eqs. (21) or (22) we arrive at the results below.

In the case of the above-mentioned model of point-like
centers, we have at L � l

〈(δG)2〉 = 〈
(δR)2〉 = 1

2

(
L

l

)2

ln2 l

L
. (23)

This result is a counterpart of Eq. (20) at p = 1/2. Thus,
Eq. (23) indicates a logarithmical accuracy of the two-stream
approximation and, correspondingly, the RMT calculations at
subdiffusion lengths.

A striking effect arises in wave transport through a system
with large (as compared with wavelength λ) inhomogeneities.
To model the differential cross section of scattering by large
inhomogeneities we take advantage of Gaussian parametriza-
tion:

dσ

d�
(ϑ) = σ

πϑ2
0

exp
[−4 sin2 (ϑ/2) /ϑ2

0

]
, (24)

and a power-law parametrization:

dσ

d�
(ϑ) = σ

(α − 2) ϑα−2
0

2π
[
ϑ2

0 + 4 sin2 (ϑ/2)
]α/2 , (25)

where ϑ0 = 1/(k0a) is the characteristic angle of single scatter-
ing by an inhomogeneity of size a. For large inhomogeneities,
angle ϑ0 � 1 and the highly forward scattering dominates.

The first model can be thought as corresponding to Gaussian
correlations between inhomogeneities of a refractive index (or
of a random potential in the case of electronic transport).

The power-law cross section unifies numerous models of
scattering. For α = 4, Eq. (25) describes scattering of waves
by weakly refracting discrete inhomogeneities of a given
radius [31] as well as by a continuous medium with the
Booker–Gordon correlation function [27]. For α = 3, Eq. (25)
coincides with the Henyey–Greenstein cross section, which
is used very widely to model scattering of waves in random
media [27]. Parametrization (25) corresponds also to the model
of scattering by a fractal [32,33] with the spatial correlation
function of the form (r/a)(α−3)/2K(α−3)/2(r/a), where Kν(x)
denotes the modified Bessel function of second kind, a is
the disorder correlation distance. Exponent α is related to the
fractal dimension [32,33].

From Eq. (21) it follows that the second-order scattering
contribution to the conductance variance, excluding factor
1/ϑ0, proves to be a universal function of ratio L/(lϑ0)
in the limit ϑ0 � 1. For the different models of scattering
the corresponding dependence is illustrated in Fig. 5. With
increasing L the conductance variance first increases as〈

(δG)2
〉 ∼ (1/ϑ0) (L/lϑ0)2 ln2 (L/lϑ0) , (26)

and then peaks at L ∼ 0.25lϑ0. For rather small ϑ0, the peak
value of the conductance variance can exceed the UCF value
(see the inset in Fig. 5).

VI. FLUCTUATIONS IN A SYSTEM WITH
LARGE INHOMOGENEITIES

According to Eq. (1) a decrease in conductance G with
increasing L and an appearance of conductance fluctuations
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FIG. 5. (Color online) Conductance variance within the second-
order-scattering approximation as a function of the waveguide length
(from upper to lower curves, the Gaussian and power law, α = 4 and
α = 3, models). The inset shows the peak value of the conductance
variance as a function of parameter 1/ϑ0. The horizontal dotted line is
the UCF value. In the limit of point-like centers, k0a → 0, the curves
converge to a single point.

are due to the wave trajectories reflected from the sample
(there are no fluctuations without reflection). For a relatively
short waveguide, L < ltr, multiple wave scattering occurs
predominantly through small angles. Therefore, only the
waves incoming nearly parallel to the input cross section of
the sample (i.e., the highest modes) can be reflected from it.
These are just the waves which contribute to the variance of
conductance fluctuations. Such an idea was previously used to
explain [34] the destruction of conductance quantization in the
quasiballistic transport of electrons through quantum wires.

Mathematically, a distinctive role of the trajectories that
are nearly parallel to the input (or output) cross section of
the sample follows directly from Eq. (5). Quantity σab(Ia −
Ib) entering into Eq. (5) differs from zero only for directions
|�az|, |�bz| � 1.

For L < ltr we can find propagators entering into Eq. (5)
within the small-angle approximation, putting �az = sin ζa ≈
ζa � 1. Then the transport equation (4) for a waveguide with
no absorbtion can be presented in the following form [35]:

ζa

∂

∂z
Iab = δ(z − z′)δ (ζa − ζb) δ (ϕa − ϕb) + (α − 2) ϑα−2

0

2πl

×
∫∫ ∞

−∞

dζcdϕc (Icb − Iab)[
ϑ2

0 + (ζc − ζa)2 + (ϕc − ϕa)2
]α/2 ,

(27)

where the differential cross section (25) is used, and ϕa is the
azimuth of direction �a . A solution to Eq. (27) is expressed in
terms of a function of dimensionless variables and parameter
L/lϑ0:

Iab(z|z′) = 1

ϑ3
0

f

(
ζa

ϑ0
,
z

L
,
ζb

ϑ0
,
z′

L
,
ϕa − ϕb

ϑ0
;

L

lϑ0

)
. (28)

The fact that propagator Iab within the small-angle approxi-
mation can be presented in the form of Eq. (28) enables us to
draw a conclusion regarding the length dependence of variance
〈(δG)2〉. Substituting Eq. (28) into the general formula for

〈(δG)2〉 [see Eq. (5)], we arrive at the following equation:

〈(δG)2〉 = 1

ϑ0
Fα

(
L

lϑ0

)
, (29)

where Fα(x) is a function of dimensionless parameter L/lϑ0.
The form of function Fα(x) is governed only by exponent α

appearing in the angular dependence of the differential cross
section. The x dependence of this function is given by

Fα (x) ∼
{
x2 ln2(1/x), x � 1
x−1/(α−1), x � 1,

(30)

and can be obtained as described below.
For rather small values of the waveguide length, x =

L/lϑ0 � 1, the variance of conductance fluctuations 〈(δG)2〉
can be calculated within the second-order-scattering approx-
imation [see Eq. (26)]. Comparing the result of calculations
with Eq. (29), we find Fα(x) at x � 1.

For rather great values x = L/lϑ0 � 1, wave propagation
in the sample presents multiple scattering through small
angles. In this case the characteristic angular spread of multiply
scattered waves exceeds essentially the single-scattering angle
ϑ0. Therefore, quantity ϑ0 can be neglected in the denominator
of the differential cross section entering into the collision in-
tegral of the transport equation (27). For α < 4, no divergency
appears in Eq. (27) because the singularity in the denominator
at ζc = ζa and ϕc = ϕa is canceled from the difference
Icb − Iab in the numerator [35]. Within this approximation
a solution to the transport equation can be presented in the
self-similar form as a function of dimensionless variables

Iab(z|z′) = 1

ζ 3
L

f̃

(
ζa

ζL

,
z

L
,
ζb

ζL

,
z′

L
,
ϕa − ϕb

ζL

)
, (31)

where

ζL = (L/ltr)
1/(α−1) (32)

is the characteristic multiple-scattering angle for the sample
of length L, the transport mean-free path is equal to ltr =
cαl/ϑα−2

0 , and cα = 2α−3(4 − α)/(α − 2).
The origin of ζL can be clarified as follows: Consider a

wave incident on the sample at angle ζ . For a power-law
differential cross section with 2 < α < 4 the angular spread of
multiply scattered waves that is gained over path L/ζ can be
estimated as [27,33,36] (L/ζ ltr)1/(α−2). Wave reflection occurs
only if the angular spread of waves is of order or exceeds the
angle of incidence ζ . From condition (L/ζ ltr)1/(α−2) ∼ ζ we
find the characteristic angle ζL = (L/ltr)1/(α−1). Physically,
angle ζL separates the transmission through the sample
from the reflection by it. The waves are mainly reflected from
the sample and the total reflection coefficient tends to unity if
the angle of incidence on the sample is less than ζL; otherwise,
ζ > ζL, the waves are transmitted through the sample.

Substitution of the propagators in the form of Eq. (31) into
Eq. (5) results in the following relation:

〈(δG)2〉 ∼ 1

ζL

. (33)

Comparison of Eqs. (33) and (32) with Eq. (29) gives the
asymptotic formula for function Fα(x) at x � 1.
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Equation (32) is applicable provided that 2 < α < 4. For
α = 4, this result has a logarithmic accuracy. In the case of
the differential cross sections decreasing with angle ϑ more
rapidly (by the power law with α > 4 or by the Gaussian law),
Eq. (32) is generalized as follows: For α > 4, the characteristic
angle ϑ0 appearing in Eq. (27) cannot be neglected in the
denominator. Instead of that, the propagator Icb can be
expanded in angles of single-scattering deflection ζc − ζa and
ϕc − ϕa , resulting in the Fokker–Planck approximation in
Eq. (27) [35–37]. Then, in going to dimensionless variables,
we obtain ζL in the form of Eq. (32), with the only difference
being that the exponent α should be α = 4. So, for rapidly
decreasing cross sections, the multiple-scattering angle ζL

takes the universal form [37] ζL = (L/ltr)1/3.
According to Eqs. (29) and (30), the variance of the

conductance fluctuations is inversely proportional to the
single-scattering angle ϑ0 for short samples, L < lϑ0 or to the
multiple-scattering angle ζL for the samples of length lϑ0 <

L < ltr. The appearance of these factors can be explained by
the following circumstances.

For a given incoming mode the azimuth spread of tra-
jectories of wave propagation over directions is relatively
small: 	ϕeff � 1. The value of 	ϕeff is estimated as 	ϕeff ∼
ϑ0 at L < lϑ0 and 	ϕeff ∼ ζL at L > lϑ0. The four-fold
integration over the azimuth variables [see Eq. (5)] can be
presented as the three-fold integration with respect to the
differential azimuth variables (	ϕ = ϕa − ϕb, etc.) and one
integration with respect to the cumulative azimuth variable
[ϕ+ = (ϕa + ϕb + ϕc + ϕd )/4]. Within the small-angle ap-
proximation each integral with respect to differential azimuth
variable 	ϕ is extended to infinite limits (from −∞ to
+∞] and gives the contribution proportional to 	ϕeff . The
result of integration over all differential azimuth variables is
already independent of the azimuth variable ϕ+. Therefore,
integration over ϕ+ gives the factor 2π . As a result, the
four-fold integration over all azimuth variables turns out to
be proportional to 	ϕ3

eff . With allowance for the form of the
propagator Iab(z|z′) [see Eqs. (28) and (31)] and the differential
cross section (25), the rest of the integrals over the ζ angles
and coordinates z and z′ give a factor which can be written
as 1/	ϕ4

eff . Thus, one factor 1/	ϕeff remains in the final
result.

Physically, this means that the variance of conductance
fluctuations can be presented as a sum of partial contributions,
each being governed by a set of interfering trajectories lying
within a narrow azimuth sector of width 	ϕeff . Each partial
contribution to 〈(δG)2〉 is a dimensionless quantity of the
order of unity. The number of such partial contributions
is proportional to 2π/	ϕeff and therefore the conductance
variance 〈(δG)2〉 proves to be of the order of 1/	ϕeff .

In all calculations presented above we have assumed that the
number of modes Neff contributing to the conductance variance
should not be small. In the case of small-angle scattering
by large inhomogeneities, the number of modes Neff can be
estimated as Neff ∼ N max{ϑ2

0 ,ζ 2
L} � A/a2, where a is the

characteristic size of the inhomogeneities. Thus, we suppose
that the width of the waveguide is greater than the size of a
single inhomogeneity,

√
A > a. This restriction is compatible

with the inequality
√

A < l. The latter is a sufficient condition
for a disordered system to be considered as quasi-1D at

any length L, including the quasiballistic limit (see, e.g.,
Refs. [11,38,39]).

VII. CONCLUSIONS

In conclusion, we have developed a theoretical approach
to calculating the conductance fluctuations in a quasi-1D
system, paying special attention to the subdiffusion length
scales. We have presented an analytical result which relates
the conductance variance to the inhomogeneity characteristics
of the disordered system. The conductance fluctuations in the
crossover regime have been shown to depend on the kind of
disorder. For point-like centers, 〈(δG)2〉 grows monotonically
with increasing waveguide length L and tends to the UCF value
in the diffusive limit. Our calculations within the two-stream
version of the discrete-ordinate method coincide with the
RMT results [10,21–24] for the weak-localization regime (the
sample length is much less than the localization length). For
a waveguide with large inhomogeneities, the effect of the
conductance fluctuation enhancement has been found in the
crossover regime. The conductance variance is governed by the
trajectories that are nearly perpendicular to the waveguide axis.
The regions of second-order scattering (L < lϑ0, where ϑ0 is
the characteristic single-scattering angle) and diffusive trans-
port (L > ltr) are separated by an intermediate region where
the small-angle multiple scattering dominates. The value of
〈(δG)2〉 has been shown to peak at L ∼ lϑ0 and then falls off as

〈(δG)2〉 ∼ (ltr/L)ν ,

where the value of the exponent ν depends on the specific form
of the single-scattering law and lies in range 1/3 < ν < 1.
The peak value of the conductance variance proves to be
proportional to 1/ϑ0, thus exceeding the UCF value at ϑ0 � 1.

The results obtained above bridge the gap between the
ballistic and diffusive regimes of wave propagation and present
a theoretical groundwork for studies of the sensitivity of
conductance fluctuations to the specific features of disorder
(e.g., the effect of long-range inhomogeneity correlations on
the enhancement of fluctuations).
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APPENDIX A

In the quasi-1D geometry, a wave field can be expanded in
terms of a complete set of transverse modes of the waveguide.
For periodic boundary conditions [40], such an expansion has
the form

ψ(r) = 1√
A

∑
a

ψa(z)eiqaρ, (qa)x,y = 2π√
A

nx,y, (A1)

where ρ is the transverse component of vector r, A is the area
of the waveguide cross section, and nx,y = 0,±1,±2, . . .. The
wave function ψa(z) describes a field in the ath mode. The
propagating modes correspond to the values of the transverse
momentum |qa| < k0.

In propagation through a disordered waveguide the wave
incoming in the bth mode can be scattered to the ath outgoing
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mode. Transmission coefficient Tab connecting incoming b

and outgoing a modes is defined as flux density through the
output cross section of the waveguide:

Tab = i

2k0

(
∂

∂z
− ∂

∂z′

)
ψab(z′)ψ∗

ab(z)

∣∣∣∣
z′=z=L

, (A2)

where ψab describes the wave field in the ath mode induced
by the incident wave in the bth mode. The average coefficient
〈Tab〉 can be expressed in terms of the ensemble-average
second moment 〈ψab(z)ψ∗

ab(z′)〉 of a wave field and is governed
by the sum of ladder diagrams [8].

We define the ladder propagator as

�ab(z,z′) = 〈Gab(z,z′)G∗
ab(z,z′)〉, (A3)

where Gab(z,z′) is the matrix element of the retarded Green
function [40].

Under periodic boundary conditions the ensemble-average
Green function can be written in the form

〈Gab(z,z′)〉 = Ga(z − z′)δqa,qb
,

(A4)

Ga(z − z′) = 1

2i|kaz| exp

[(
i|kaz| − k0nσtot

2|kaz|
)

|z − z′|
]

,

where k2
az = k2

0 − q2
a , σtot = σ + σa is the total cross section of

interaction, σ and σa are the cross sections of elastic scattering
and absorption, respectively, and n is the number of scattering
centers per unit volume.

The ensemble-average wave field 〈ψab(z)〉 is given by

〈ψab(z)〉 = 2i
√

k0|kbz|〈Gab(z,z′ = 0)〉 (A5)

and describes the nonscattered (reduced) incident wave.
The field 〈ψab(z)〉 is normalized to unit z component of the
incident flux.

The propagator �ab obeys the Bethe–Salpeter equation
which, in the ladder approximation, is reduced to the ordinary
transport equation (see, e.g., Refs. [27,41]). Diagrammatically,
this equation is illustrated in Fig. 6. In particular, the first
term of the ladder series is proportional to the product
of the ensemble-average Green functions and describes the
nonscattered incident waves. The second term corresponds to
a single scattering and can be written as [see Fig. 6(b)]

n

∫
dzsGa(z − zs)G

∗
c (z1 − zs)

(4π )2

A
fabf

∗
cd

×Gb(zs − z′)G∗
d (zs − z′

1)δqa−qc,qb−qd
, (A6)

== + +

zs

d

b

c

a

z'1

z'z  

z1  

+   ...(a)

(b)

FIG. 6. (a) Diagram series for a ladder propagator. Solid lines
denote the average Green function or its complex conjugate. Dotted
lines connect identical scatterers. (b) Diagram corresponding to a
single-scattering event.

where fab is the amplitude of scattering from the bth mode to
the ath mode. According to definition (A3), this term appears in
the transport equation at qa = qc, qb = qd and z = z1, z′ = z′

1.
As a result, the transport equation takes the form

�ab(z,z′) = |Ga(z − z′)|2δqa ,qb
+

∫
dz′′ (4π )2

A

×
∑

c

|Ga(z − z′′)|2σac�cb(z′′,z′), (A7)

where σac = n|fac|2.
For the great number of propagating modes, summation

over modes can be replaced by integration over directions of
wave propagation [see Eq. (2)]. In this case, it is convenient
to go from propagator �ab to intensity propagator Iab with the
relation

Iab(z|z′) = 4|kazkbz| k2
0A

(2π )2
�ab(z,z′), (A8)

where the quantity Iab(z|z′) ≡ I (z,�a|z′,�b) describes the
average intensity in the disordered system from a source
emitting waves in direction �b at depth z′. The ensemble-
average transmission coefficient is related to Iab(z|z′)
by Eq. (3).

As applied to the intensity propagators, the rule of
“connection” of two ladder diagrams takes the form

∑
c

Iac(z|z′′)Icb(z′′|z′) = k2
0A

(2π )2

∫
d�c|μc|Iac(z|z′′)Icb(z′′|z′)

= k2
0A

(2π )2
Iab(z|z′). (A9)

With allowance for Eq. (A8), Eq. (A7) can be rewritten as
the ordinary transport equation in the integral form:

Iab(z|z′) = I
(0)
ab (z|z′) + 1

|μa|
∫ L

0
dz′′ exp

{
−nσtot(z − z′′)

μa

}

× η

(
z − z′′

μa

)∫
d�cσacIcb(z′′|z′), (A10)

where η(x) is the Heaviside step function, and I
(0)
ab (z|z′) is the

nonscattered intensity,

I
(0)
ab (z|z′) = 1

|μa|δ (�a − �b) exp

{
−nσtot(z − z′)

μa

}

× η

(
z − z′

μa

)
. (A11)

By substituting Eq. (A11) into the integral term in the right-
hand side of Eq. (A10), we obtain the single-scattering con-
tribution to the intensity propagator. Continuing the iterative
procedure in Eq. (A10), we can derive all terms of expansion
of the intensity propagator in the orders of scattering.

Acting on Eq. (A10) by the operator μa(∂/∂z) + nσtot,
we bring the transport equation into the standard integro-
differential form [see Eq. (4)].
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APPENDIX B

The variance of conductance fluctuations

〈(δG)2〉 =
∑
a b c d

〈δTabδTcd〉 (B1)

can be expressed in terms of the ensemble-average fourth mo-
ment of a wave field and represented as an expansion in orders
of interference between ladder graphs. Each interference event
between the ladders contains the Hikami vertex [26] (see also
Refs. [5,7,8]).

First we consider the diagram that involves a single Hikami
vertex with four attached ladder propagators [see Fig. 7(a)].
This diagram can be thought of as a building block appearing in
diagrams shown in Fig. 1. The contribution from the “empty”
Hikami box can be calculated as follows: For k0l � 1, the
product of the Green functions appearing in the empty box
is nonzero as long as the phases of the Green functions
compensate for each other [28]. With allowance for the
transverse-momentum conservation [see Eq. (A6)] in the
ladder propagators attached to the box, the Green functions
entering into the box must be identical in mode:

Ga(z − z2)G∗
a(z2 − z′)Ga(z′ − z1)G∗

a(z1 − z). (B2)

The phases of the Green functions entering into Eq. (B2)
compensate for each other provided that points z, z′, z1, z2

are ordered in the same manner as shown in the first two
graphs of Fig. 7(b). The alignment of these points in the
product of the Green functions can be found by evaluating the
corresponding integral with the stationary-phase method [27].
Points z, z′, z1, z2 are grouped in pairs as (z, z′) and (z1, z2).
The mutual arrangement of these pairs as well as the point
positions in each pair can be arbitrary. If point z′ and pair
(z1, z2) lie on opposite sides with respect to z, the difference
|z1,2 − z′| can be presented as |z1,2 − z′| = |z1,2 − z| + |z − z′|.
Then the Green function Ga(z′ − z1) is equal to

Ga(z′ − z1) = 2i|kaz|Ga(z − z1)Ga(z′ − z). (B3)

A similar equality can also be written for G∗
a(z2 − z′). In this

case Eq. (B2) takes the following form:

4k2
az|Ga(z − z′)|2|Ga(z1 − z)|2|Ga(z2 − z)|2. (B4)

If point z′ lies between point z and pair (z1,z2), the
arguments z and z′ in Eq. (B4) should be interchanged.

+
z1 

z2 
z'

z 

z1 
z2 

z'
z 

z2

zs
z1z

z'

z2 

zs
z1 

z
z'(b) 

z

z'

z1 z2b'
zs zs

= + + 

c'

d'

(a) 

a'

+
z1

z2

z'
z

z1

z2

z'
z 

z2

zs
z1z

z'

z2

zs
z1

z
z'(b)

z

z'

z1 z2b'
zs zs

=== +++ +

c'

d'

(a)

a'

FIG. 7. (a) Hikami vertex with four attached ladder propagators.
(b) Arrangement of scattering events in the Hikami vertex.

f i 

f 

a'

b'

a' i

ib'

f a'

(e)(d)

b'

(a)

f 

a'

i

b'

(b) a'

f

b'

(c)

i 

FIG. 8. Single-Hikami-vertex blocks appearing in the diagrams
for the conductance variance. Converging solid lines to a point denotes
summation over all outgoing (or incoming) modes.

Taking advantage of the transport equation [see Eqs. (A7)
and (A10)] and rule (A9), we can attach the propagators to the
empty box to give(

π

N

)3 ∫
dz

∫∫
d�ad�bσabI

sc
a′a (· · · |z) I sc

b′a (· · · |z)

× [
I sc
bc′ (z| · · · ) I sc

ad ′ (z| · · · )+I sc
ac′ (z| · · · ) I sc

bd ′ (z| · · · )
]
, (B5)

where N = k2
0A/(4π ) is the number of modes, and a

“scattered” propagator is defined as I sc = I − I (0).
The contribution from the diagrams involving the Hikami

box with one extra scattering can be calculated in a similar
way. The mutual arrangement of points z, z′, z1, z2, and zs that
results in compensating the Green function phases are depicted
in the second two graphs of Fig. 7(b). In one case the product of
the Green functions appearing in the Hikami box takes the form

4|kazkbz| (4π )2 σab

A
|Ga (z − zs) |2|Gb(z′ − zs)|2

× |Ga(zs − z1)|2|Gb(zs − z2)|2. (B6)

For the other diagram with one extra scattering, the product
of the Green functions is obtained from Eq. (B6) by
interchanging z1 and z2. Then, attaching the propagators to
the Hikami box, we find

−
(

π

N

)3 ∫
dz

∫∫
d�ad�bσab

[
I sc
a′a(· · · |z)I sc

b′b(· · · |z)

+ I sc
a′b(· · · |z)I sc

b′a(· · · |z)
]
I sc
ac′ (z| · · · )I sc

bd ′ (z| · · · ). (B7)

By combining Eqs. (B5) and (B7), we arrive at the following
expression for the single-Hikami-vertex contribution:(

π

N

)3 ∫
dz

∫∫
d�ad�bσab

[
I sc
a′a (· · · |z) − I sc

a′b (· · · |z)
]

× [
I sc
b′a(· · · |z) − I sc

b′b(· · · |z)
]
I sc
ac′ (z| · · · )I sc

bd ′ (z| · · · ). (B8)

The propagators entering into Eq. (B8) can also be “read” in
the reverse order [i.e., propagators I sc

a′a(. . . |z) and I sc
bd ′ (z| . . .)

are replaced by I sc
aa′ (z| . . .) and I sc

d ′b(. . . |z), respectively]. In
addition, Eq. (B8) can be rewritten in the form that is obtained
by interchanging pairs a′, b′ and c′, d ′. All these representations
are equivalent to each other and applied below to evaluating
the second-order diagrams in the Hikami vertex.

The different single-Hikami-vertex blocks appearing in
the diagrammatic rendering of the conductance variance are
illustrated in Fig. 8. The incoming and outgoing propagators
are shown as the ladder graphs with the solid lines converging
to a point. This corresponds to summation over all incoming
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(or outgoing) modes in the source (or in the receiver). The
incoming and outgoing propagators are thought of as incor-
porating an arbitrary number of scattering events (including
no one event). The diagrams with one or two “nonscattered”
incoming (or outgoing) propagators are calculated much as it
has been done above with the only difference being that one or
two points involved in the Hikami box turn out to be coincident
with position zi (or zf ) of the input (or output) waveguide cross
section, and not with the position of the first (last) scattering
event in the attached propagator.

The first diagram of Fig. 1 consists of the blocks shown
in Figs. 8(a) and 8(b). The contributions of these blocks are
obtained from Eq. (B8) by summation over modes a′ and b′.
In particular, the diagram in Fig. 8(a) gives

π

N

∫
dz

∫∫
d�ad�bσab

[
I f
a (z) − I

f

b (z)
]2

× I sc
aa′ (z| · · · )I sc

bb′ (z| · · · ), (B9)

where

I f
a (z) = π

N

∑
b

Iba(zf |z). (B10)

A similar expression can be written for the diagram 8(b) [the
difference between the incoming propagators I i

a(z) − I i
b(z)

should be substituted for I
f
a (z) − I

f

b (z) into Eq. (B9)]. By
combining the expressions for diagrams 8(a) and 8(b), we
obtain the following contribution to the conductance variance:

〈(δG)2〉 =
∫∫

dzdz′
∫∫∫∫

d�ad�bd�cd�dσabσcd

× [
I f
a (z) − I

f

b (z)
]2

I (�2)
ac (z|z′)I (�2)

bd (z|z′)

× [
I i
c (z′) − I i

d (z′)
]2

, (B11)

where the internal propagators are supposed to include no
less than two scattering events [regarding low-order-scattering
terms in Iac(z|z′)Ibd (z|z′); see below].

In the presence of time-reversal symmetry, Eq. (B11) should
be supplemented by the contribution of the diagram which
is obtained from that discussed above by interchanging the
initial zi and final zf points in one pair of conjugated wave
fields. This latter diagram consists of two identical blocks
similar to the diagram in Fig. 8(c) and is responsible for
the second term of Eq. (5). The corresponding contribution
to the conductance variance differs from Eq. (B11) only by
substitution of multipliers [I f

a (z) − I
f

b (z)][I i
−a(z) − I i

−b(z)]

and [I f
−c(z′) − I

f

−d (z′)][I i
c (z′) − I i

d (z′)] for [I f
a (z) − I

f

b (z)]2

and [I i
c (z′) − I i

d (z′)]2, respectively. Propagators I
i,f
−a differ

from I
i,f
a by substitution of −qa for qa (or −�a for �a).

The reciprocity relation Iab(z|z′) = I−b−a(z′|z) should also be
taken into account.

The second diagram of Fig. 1 can be represented as
combination of the two single-Hikami-vertex blocks depicted
in Figs. 8(d) and 8(e). According to the rules derived above,
the diagram in Fig. 8(d) gives

π

N

∫
dz

∫∫
d�ad�bσab

[
I f
a (z) − I

f

b (z)
]

× [
I sc
−a−a′ (z| · · · ) − I sc

−b−a′ (z| · · · )
]
I sc
ab′ (z| · · · )I i

b(z). (B12)

The contribution from the diagram in Fig. 8(e) can be written in
a similar way by interchanging the corresponding propagators.
Combining these results we obtain

〈(δG)2〉 =
∫∫

dzdz′
∫∫∫∫

d�ad�bd�cd�dσabσcd

× [
I f
a (z) − I

f

b (z)
]
I i
b(z)

[
I (�2)
ac (z|z′) − I

(�2)
ad (z|z′)

]
× [

I
(�2)
−a−c(z|z′)−I

(�2)
−b−c(z|z′)

]
I i
d (z′)

[
I f
c (z′)−I

f

d (z′)
]
.

(B13)

The second diagram shown in Fig. 1 is supposed to include two
contributions which are related to each other by complex con-
jugation. The conjugated contribution can be derived similarly
to Eq. (B13). To symmetrize the final result, we interchange
the propagators attached to the opposite ends of the Hikami
vertex. Then multipliers [I f

a (z) − I
f

b (z)]I i
b(z) and [I f

c (z′) −
I

f

d (z′)]I i
d (z′) are replaced by [I i

−a(z) − I i
−b(z)]I f

−b(z) and

[I i
−c(z′) − I i

−d (z′)]I f

−d (z′), respectively.
The contribution from the time-reversed counterpart of

the second diagram shown in Fig. 1 differs from Eq. (B13)
by interchanging the incoming and outgoing propagators in
one of the products [either [I f

a (z) − I
f

b (z)]I i
b(z) or [I f

c (z′) −
I

f

d (z′)]I i
d (z′) should be replaced by [I i

−a(z) − I i
−b(z)]I f

−b(z) or

[I i
−c(z′) − I i

−d (z′)]I f

−d (z′), respectively]. Combining these four
contributions we obtain the third term in Eq. (5).

The diagrams shown in Fig. 1 can be evaluated by
combining two single-Hikami-vertex blocks provided that
each internal propagator includes no less than two scattering
events. Otherwise, these diagrams cannot be presented as
combination of two blocks. The “irreducible” diagrams can be
exemplified by the diagram with two empty Hikami boxes and
one nonscattered internal propagator [see Fig. 9(a)]. The other
internal propagator is supposed to include no less than two
scattering events. In this case, the central part of the diagram
contains six Green functions. Due to the transverse momentum
conservation, these Green functions relate to identical modes.
The phases of the Green functions compensate for each other
provided that the scattering events are ordered in the same
manner as shown in Fig. 9(b). By using relations similar to
Eq. (B3) and attaching the ladders to the central part, we obtain
the following result:

〈(δG)2〉 =
∫∫

dz...dz...

∫∫∫∫
d�ad�bd�cd�dσabσcd

{[
I f
a (z)

]2
I (0)
ac (z|z′)Ibd (z|z′)

[
I i
c (z′)

]2

+ I f
a (z1)I i

b(z1)I (0)
ad (z1|z)I sc

−a−c(z1|z)I f

d (z)I i
d (z) + I

f

b (z)I i
b(z)I sc

ac (z|z2)I (0)
−b−c(z|z2)I f

c (z2)I i
d (z2)

+ I f
a (z1)I i

b(z1)
[
I (0)
ac (z1|z2)I (�2)

−a−c(z1|z2) + I (�2)
ac (z1|z2)I (0)

−a−c(z1|z2)
]
I f
c (z2)I i

d (z2)
}

+
∫

dz

∫∫
d�ad�bσab

[
I

f

b (z)
]2

I sc
ab(z|z)

[
I i
b(z)

]2
. (B14)
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FIG. 9. (a) Diagram with two empty Hikami boxes and one empty internal propagator. (b) Variants of the mutual arrangement of
scattering events.

The terms appearing in the first three lines of Eq. (B14) can be
considered as low-order-scattering contributions from the both
diagrams depicted in Fig. 1. This terms can be combined with
the “multiple-scattering” contributions to 〈(δG)2〉, to result in
partial removing the restrictions on the number of scattering
events included in the internal propagators.

The last alignment of scattering events shown in Fig. 9(b)
is responsible for the “local” term appearing in the last line
of Eq. (B14). This contribution includes only one internal
propagator that describes propagation of waves along a
loop trajectory. Such local terms appear also in evaluating
diagrams which include an additional single-scattering event
either in the Hikami boxes or in the internal propagator
(previously supposed to be empty). All such contributions
are combined to give the corresponding local term entering
into Eq. (5).

To remove finally the restrictions on the number of scatter-
ing events in the internal propagators, the results obtained
above should be supplemented by the contribution from
low-order scattering graphs between incoming and outgoing
propagators (these diagrams are exemplified in Fig. 10).
All contributions from single-scattering events between the
propagators cancel each other (see, e.g., Ref. [5]). Depend-
ing on the mutual arrangement of the low-order scattering
events along the z axis, these diagrams contribute to one or
another terms of Eq. (5) [the “mushroom-shaped” graphs
shown in Fig. 10 contribute only to the third term of
Eq. (5); these graphs are originated from the second diagram
of Fig. 1].

As an example, we present the result of calculations of
the first diagram shown in Fig. 10. There are two different
contributions to 〈(δG)2〉 from this diagram. One term contains
the factor σab. The other corresponds to the waves propagating
towards each other and gives the product of the scattering am-
plitudes of the form fabf−b−a . The sum of these contributions

+ ... + c.c.+ ... +++ ... + i

i
+ + +

f

f

FIG. 10. Examples of diagrams containing low-order scattering
between incoming and outgoing propagators. These diagrams should
also be supplemented by their conjugated counterparts and by the
diagrams that differ from those presented by interchanging initial i

and final f states in one or two pairs of propagators.

to 〈(δG)2〉 can be written as

〈(δG)2〉 =
∫∫ L

0
dzdz′

∫∫∫∫
d�ad�bd�cd�d

× I (0)
ac I

(0)
bd

{
σ 2

ab

[(
I f
a

)2(
I i
d

)2 + (
I

f

b

)2(
I i
c

)2]
+ (

fabf−b−a

)2[
I f
a I i

−aI
f

−dI
i
d + I

f

b I i
−bI

f
−cI

i
c

]}

+
∫ L

0
dz

∫∫
d�ad�b

× {
σabI

(1)
ab

[(
I f
a I i

b

)2 + (
I

f

−bI
i
−a

)2]
+ fabf−b−aĨ

(1)
ab

[
I f
a I i

bI
f

−bI
i
−a + I

f

−bI
i
−aI

f
a I i

b

]}
,

(B15)

where Ĩ
(1)
ab is obtained from I

(1)
ab by substitution of fabf−b−a

for σab. Equation (B15) contributes to the first two terms as
well as to the local term of Eq. (5).

Taking into account all diagrams that include low-order-
scattering events between incoming and outgoing propagators,
we gather step by step low-order-scattering contributions to
the internal propagators appearing in Eq. (5) and remove the
restrictions imposed on the number of scattering events in
Eqs. (B11) and (B13).

APPENDIX C

According to the method of discrete ordinates [27,29], a
solution of the transport equation (4) is sought on the grid
of the angular variable values μk , k = 1, . . . ,K . Within such
an approach, all integrals over directions are replaced by the
corresponding sums and the transport equation transforms to a
set of K coupled differential equations. The simplest version
of the discrete-ordinate method can be implemented at K = 2.
This corresponds to the “two-stream” approximation.

Within the two-stream approximation Eq. (4) transforms
to a set of two ordinary differential equations for the forward
and backward fluxes [27,29]. For point-like scattering centers,
these equations take the form(

μ0
∂

∂z
+ nσtot

)
I+ = nσ

2
(I+ + I−) ,

(C1)(
−μ0

∂

∂z
+ nσtot

)
I− = nσ

2
(I− + I+) ,

where I±(z) = I (z,�z = ±μ0), and ±μ0 are the discrete
ordinates.
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The internal propagators I±,+(z|z′) and I±,−(z|z′) appearing
in Eq. (17) are the solutions to these equations for a source
placed at z′ and emitting waves in directions +μ0 and −μ0 (see
the second sign in the subscripts). In the case of a nonabsorbing
medium, the propagators I±,+(z|z′) can be written as

I++(z|z′) = 1

2πμ0 (sL + 1)

{
s(sL − s ′), z < z′

(s ′ + 1)(sL − s + 1), z > z′,

(C2)

I−+(z|z′) = 1

2πμ0 (sL + 1)

{
(s + 1)(sL − s ′), z < z′

(sL − s)(s ′ + 1), z > z′,

(C3)

where sL = L/(2μ0l), s = z/(2μ0l), and l = (nσ )−1 is the
mean-free path. For a source emitting waves in direction −μ0,
the corresponding solution is expressed in terms of Eqs. (C2)
and (C3) as follows:

I−−(z|z′) = I++(z′|z), I+−(z|z′) = I−+(L − z|L − z′).

(C4)

The incoming and outgoing propagators are described by the
relations

I i
±(z) = 2πμ0I±+ (z|zi = 0) ,

(C5)

I
f
± (z) = 2πμ0

{
I+±

(
zf = L|z) for transmission

I−±
(
zf = 0|z) for reflection.

In the presence of absorption, Eqs. (C2) and (C3) are
replaced by

I++(z|z′) = 1

2πμ0 sinh (γ ) sinh (ξL + γ )

×
{

sinh(ξ ) sinh(ξL − ξ ′), z < z′

sinh(ξ ′ + γ ) sinh(ξL − ξ + γ ), z > z′,

(C6)

I−+(z|z′) = 1

2πμ0 sinh (γ ) sinh (ξL + γ )

×
{

sinh(ξ + γ ) sinh(ξL − ξ ′), z < z′

sinh(ξ ′ + γ ) sinh(ξL − ξ ), z > z′,

(C7)

where ξ = s sinh(γ ), ξL = sL sinh(γ ), and sinh(γ ) =
2
√

l(l + la)/la , la = (nσa)−1 is the absorption length. Rela-
tions (C4) and (C5) remain unchanged.

The average conductance and reflectance can be expressed
in terms of the propagator values at the output and input
boundaries:

〈G〉 = 2πμ0NI++(zf = L|zi = 0),
(C8)〈R〉 = 2πμ0NI−+(zf = 0|zi = 0),

where N is the total number of modes. For samples with
no absorption, from Eqs. (C2), (C3), and (C8), it follows
that

〈G〉 = N
1

sL + 1
, 〈R〉 = N

sL

sL + 1
. (C9)

In the presence of absorption, Eqs. (C6)–(C8) result in

〈G〉 = N
sinh (γ )

sinh (ξL + γ )
, 〈R〉 = N

sinh (ξL)

sinh (ξL + γ )
. (C10)

With allowance for the rule of correspondence [30],
Eqs. (C9) and (C10) are in agreement with RMT re-
sults [10,21,23,24]. Relations (C9) coincide with those of
Refs. [21,23,24]. Relations (C10) transforms to the corre-
sponding results of Ref. [10] in the diffusive limit (large
lengths, L � l, and weak absorption, la � l).
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