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We implement the universal wave-function overlap (UWFO) method to extract modular S and 7 matrices
for topological orders in Gutzwiller-projected parton wave functions (GPWFs). The modular S and 7" matrices
generate a projective representation of SL(2,7Z) on the degenerate-ground-state Hilbert space on a torus and may
fully characterize the 2+ 1D topological orders, i.e., the quasiparticle statistics and chiral central charge (up to Eg
bosonic quantum Hall states). We use the variational Monte Carlo method to computed the S and T matrices of
the chiral spin liquid (CSL) constructed by the GPWF on the square lattice, and we confirm that the CSL carries
the same topological order as the v = % bosonic Laughlin state. We find that the nonuniversal exponents in the
UWEFO can be small, and direct numerical computation can be applied on relatively large systems. The UWFO
may be a powerful method to calculate the topological order in GPWFs.
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Topological order [1-3] connotes the pattern of long-
range entanglement in gapped many-body wave functions
[4-6]. It describes gapped quantum phases of matter that lie
beyond the Landau symmetry breaking paradigm [7]. Local
unitary transformations on many-body wave functions can
remove local entanglement, however they preserve long-range
topological entanglement. Therefore, a topological ordered
state is not smoothly connected to a trivial (direct product) state
by local unitary transformations [6]. Physically, topological
order is described through topological quantum numbers, such
as nontrivial ground-state structures and fractional excitations
[1-3,8-10]. These topological properties are fully character-
ized by the quasiparticle (anyon in the bulk) statistics [8—10]
and the chiral central charge, which encodes information about
chiral gapless edge states [11,12].

Both the fusion rule and the topological spin of quasipar-
ticles as well as the chiral central charge are characterized in
the non-Abelian geometric phases encoded in the degenerate
ground states [1-3,13—17], and vice versa. The non-Abelian
geometric phases form a representation of SL(2,Z) that is
generated by 90° rotation and Dehn twist on a torus; they
are called modular S and T matrices, respectively [13,14].
The element of the modular § matrix determines the mutual
statistics of quasiparticles, while the element of the 7" matrix
determines the topological spin 6, € U(1) and the chiral
central charge [1,13,14].

Given the fusion coefficients N°® and the topological spin
6., we can write down the modular S and 7 matrices as

the following expressions: S,, = % Zc Nfb 993,, d. and T,, =

8’5%9,18(,,;) [18]. Here d, (called the quantum dimension
of quasiparticle a) is the largest eigenvalue of matrix N,,
which is defined as (N,),. = N fb , and D is the total quantum
dimension, D* = )" d?. We see that S, = %“.

From the Verlinde formula [19], we can reconstruct the
fusion coefficients, N5, =", % Therefore, S and T
provide a complete description and can be taken as the order
parameter of topological orders [14—17]. The modular S and T
matrices satisfy the relations (ST)? = C and §? = C, where C
is a so-called charge conjugation matrix that satisfies C? = 1.
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The central charge ¢ determines the thermal current of the edge
state, I = %Tz, at temperature 7' [20] and is fixed up to Eg
bosonic quantum Hall states.

To fully characterize topological order, various numerical
methods are proposed to access the modular S and 7 matrices
from ground-state wave functions [21-26]. By braiding quasi-
holes, the modular S and T can be extracted from the Berry
matrices [27-29]. Recently, one of us proposed the universal
wave-function overlap (UWFO) method to calculate modular
matrices [16,30]. For a given set {|¢a>}ff:1 of degenerate
ground-state wave functions, it provides us with a practical
method to extract the modular S and 7 matrices,

Sup = (WalSlyy) = e~ s+,
(1)
Tup = (Wal T1Wp) = e+ IOT,

where S and 7 are the operators that generate the 90°
rotation and Dehn twist, respectively, on a torus with the
L? lattice size. The exponentially small prefactor makes
it difficult to numerically calculate the UWFO in (1). To
avoid the exponential smallness, a gauge-symmetry preserved
tensor renormalization method has been developed for the
tensor-network wave functions [16,17], where the system size
is effectively reduced as zero after the tensor renormalization.

Actually, in this paper, we will show that the nonuniversal
exponent oy s can be small such that the UWFO can be directly
numerically calculated on relatively large systems. We will
take a chiral spin liquid (CSL) wave function on the square
lattice [31] as an explicit example to extract the modular S
and T matrices from the UWFO. We construct the set of
ground states for a CSL by using Gutzwiller-projected parton
wave functions (GPWF) [21,31-34]. We use the variational
Monte Carlo method to calculate the UWFO for the CSL wave
functions. The hopping parameters are set as |t /ty| = 0.5 for
the CSL on the 7 -flux square lattice, where 7y and ¢#; for nearest-
neighbor and next-nearest-neighbor links, respectively. Due to
C,4 symmetry, the overlap S in Eq. (1) has a vanishing exponent
s =0. T in Eq. (1) has the relatively small nonuniversal
complex exponent oy = 0.04208 + 0.4809i, and the direct
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FIG. 1. (Color online) The lattice system can be put on a torus by
imposing the equivalence conditions z ~ z + 1 and z ~ z + t, where
T = 1, + ity is a complex number. The principal region of a torus is
bounded by the four points z = %(:I:] =+ 7). Here the top and bottom
and left and right sides are identified, respectively.

numeric computation is carried out on relatively large systems
up to a 12 x 12 lattice size in this paper. The CSL is the
lattice analogy of the v = % bosonic Laughlin state [31,32].
The parent Hamiltonians for CSL are also proposed in
Refs. [35,36]. Our numerical results confirm the analogy by
directly extracting the modular S and 7 matrices from the
UWFO.

In the parton construction, the S :% spin operator is
written in terms of fermionic parton operators, S%(z;) =
1 fi@)ol,, fo(zi). Here 0 (a = x,y,z) is the Pauli matrices
and f;, (0 = 1/J) is the fermionic parton operator. We take
the complex variables for the i-site coordinate, z; = x; + iy;,
on a lattice. We have to impose the one-particle-per-site
constraint for the partons, f;r(Zi)fT(Zi) + ff(Zi)ﬁ(Zi) =1,
such that the fermionic partons have the same Hilbert space
on the i-site as the spin operators S(z;). The GPWF for the
spin system can be read as

W) = " PeW(iz] .o Dz, )
{zi}

where |{z;}) is the spin configuration and Py is the Gutzwiller
projection operator to impose the one-particle-per-site con-
straint for the fermionic partons.

The GPWF can be put on a torus by implying the
equivalence conditions z ~ z 4+ 1 and z ~ z + 7, as shown in
Fig. 1. The principal region of a torus is bounded by the four
points z = %(il =+ 7). The torus is defined by two primitive
vectors @) = 1 and &y =7, + i 7,. The shape of the torus

is invariant under the SL(2,7Z) transformations (g; ) =M (g;)
with M € SL(2,7Z), and the generators (3’ and f") have the

expressions
N 0 -1 A 1 1
s:(l O), T:(O 1). )
Two different constructions of GPWF for a CSL in the
lattice analogy of the v = % bosonic Laughlin state can be
found in Refs. [31,32]. In Ref. [32], the parton wave functions
are discretized integer quantum Hall states and we call it the
ideal GPWF for a CSL. On a torus, we can explicitly write
down the ideal GPWF in terms the Laughlin-Jastrow wave

PHYSICAL REVIEW B 91, 125123 (2015)

functions [37],
Pew(iz! .2l

kT gl
555 21-2h

=e (2 = 2|0y, (2 - A
Nt NV
x Pg 1_[15‘%7%(11-T - z}lt)nﬁ%,%(z,f —z/l0), @)
i<j k<l

where 6,,(z|t) is the theta function and Z7 =), z7 is
the center-of-mass coordinate. Different ground states are
specified by the different zeros, Z7, in the center-of-mass wave
functions. The zeros are determined by the general boundary
conditions [37,38]. The modular S and T matrices for the ideal
GPWF in Eq. (4) can be analytically calculated by deformation
of the mass matrix [14],

1 1 1 _j e 1 0
D ren ) e

with the central charge ¢ = 1, the same as those for the v = 1

2
bosonic Laughlin state.
In Ref. [31], the generic GPWF for a CSL is written as
PoW(iz].2/}) = Po detgi(z]) det gi(z)). (6)

where det <p[(z;/ l) is the determinate wave function for the
fermionic partons filling the valence bands of the tight-binding
model,

Hyr = — Y 1(zi,2) f1(z) f(z)) + Hee., (7)
ij,o

on the m-flux square lattice with both nearest-neighbor and
next-nearest-neighbor hopping amplitude [31]. There are 7
fluxes in every triangle in the plaquette, e.g., A3 in o3
inFig. 1, ®(A123) = arg(t;,., 1,25 1:52,) = 5. Different ground-
state wave functions can be obtained by different general
boundary conditions. For the spin operator, the boundary

condition is
STz 4+ 1) =St (@), STz +1) =857 (2).

Due to fractionalization in the GPWF [39,40], the parton has
the boundary condition

fl@+1)=e2%flz), fl@+1)=e2"fl(z),

witho = %1 for fTT/L' When we increase @1 , from 0 to 27, the
spin operators are invariant, however the parton wave functions
do not go back to themselves and lead to another ground state
for the GPWF. Therefore, we have different ground states for a
CSL labeled by the spin fluxes in the holes of a torus |®],®3),

{IWa)} = {10,0),10,27),127,0), |27, 277)}, ®)

with a = 1,2,3,4. Actually only two of them are linearly
independent.

For the generic GPWF in Eq. (6), we use the UWFO in
Eq. (1) to exact the modular matrices S and T. To carry out
the UWFO, we need calculate the following overlaps:

Pap = (WalWs),  Sap = (Wa|W)),  Top = (Wa| W) ), (9

where |W,) is the state in Eq. (8) and |lI/lf) = S|W), |\Ile) =
T|Ww,), where § and T are the 90° rotation and Dehn twist
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transformations in Eq. (3) on a torus. The P matrix has rank 2
with the numerical tolerance less than 10~ implying twofold
ground-state degeneracy.

Given GPWFs, we implement the
calculate the overlap,

“sign trick” [41] to

(WalWp) = >~ yr((ziDvn(izi})
{zi}
= (Vo |Wh)amp (Wal W) sen, (10)

where ¥,({z;}) is the amplitude wave function of the spin
configuration {z;} in |W,), and the sign term
Z'O , v, ({ziDvn({zi}

ez Dz
is calculated using the Monte Carlo method according to the

weight p,p = [V.({ziDV¥s({z;})]. The amplitude term is the
normalization factor for weight pp,

= Wa(zhvn . (12)
{zi}

("Ija|\pb>sgn = (11)

(\Il |qu amp —

Actually, we are only interested in the ratios of amplitudes.
For example, for the P matrix in Eq. (9), we evaluate the
matrix-element amplitude ratios

YalziD¥s(zi})
_ 2ty Pabtiy 1|

)
<"Ilu|qu>amp )
)
)

U, | W - Vi (z v (z
(W) amp 2oten) Pabit iy ey e |

according to the Monte Carlo sampling weight pgp.11 =
VIvaUzihs(zi Dy {z Hhvn(z DI

We set the mean-field hopping parameters as #;/#) = 0.5,
where 7y and #; are for nearest-neighbor and next-nearest-
neighbor links, respectively. The overlap calculations are
carried out on the systems with L x L lattice sizes, L =
6,8,10,12. From the overlaps in Eq. (9), we follow the steps
below to extract the modular S and T matrices. We first
diagonalize the P matrix,

P=U'PU U=

13)

(u1,uz,u3,us). (14)

Only two eigenvectors (e.g., u3 and u4) have nonzero
eigenvalues around 2. These two states (13 and u4) are the
llnearly independent ground sates. In terms of the normalized

= (u3,u4), the overlaps for Sand T in Eq. (9) turn out to be
2 X 2 square matrices,

S21><2 = l‘]TS‘4><40» Tzlxz = 0TT4><4U. (15)

Generally, T! is not diagonal since u3 and u4 are not the
minimum entangled states or eigenstates of the Wilson loop
operators [21]. We then diagonalize 7 to obtain the minimum
entangled states v; and v»,

T'=viT'V, S'=VISV, V=@,vn), 16)

where T’ is diagonal and the phases of V are fixed according
to the conditions S|, = S5, and S}, > 0.

Since the CSL wave function has 90° rotation symmetry, the
exponentin S’ in Eq. (16) vanishes, g = 0, which is confirmed
in the numerical calculations. The UWFO of the T matrix has
a complex exponent a7 in the prefactor. The real part of the
exponent Re(ar) is easily obtained from the amplitude of the
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FIG. 2. (Color online) L2-dependent of amplitude and phase
of T’ in Eq. (16) are shown in (a) and (b), respectively. Here
Log(Amp) = log(|7{,]) and % = % + k with k = 3,5,8,11 for
L =68,10,12. In (c), we plot —£ = “&I) 4 Imer) 72 poq |
with different % = 0.07632,0.07654,0.07664,0.07676. The red
dashed line is for ¢ = 1. In (¢), the numerical error bars are included
and smaller than the symbols’ sizes.

T’ in Eq. (16) by fitting log(amp) = log(| T}, |) with respect to
L?, Re(ar) = 0.04208, as shown in Fig. 2(a). The phase 6

is defined up to 27, 2;1 = ‘Hgg“) thk=-eny? o with
k € Z.For L = 6,8,10,12, the corresponding integers are k =
3,5,8,11. From the fitting in Fig. 2(b), we obtain Im(x7) =

0.4809. The central charge is sensitive to the exact value of
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FIG. 3. (Color online) The kagome lattice is mapped onto a
square lattice with three orbitals per site.

Im(a7) as shown in Fig. 2(c). The final result for the modular
S and T matrices is

0714 0.707 w10
SZ( —0.698)’ T=e"= <0 eio.som), a7

0.707
with the central charge ¢ >~ 1.25 £ 0.5, very close to the exact
result for the ideal GPWF in Eq. (5).

Above we apply the UWFO method on the square lattice.
For a general Bravais lattice, we can first map it onto an
equivalent square lattice. We take the kagome lattice as an
example. We map the unit cell of the kagome lattice onto the
one with square unit cell. Different sites within the unit cell are
mapped onto different orbitals on the square lattice, as shown
in Fig. 3. Then we can make the modular transformations §
and T on the square lattice torus. For systems without 90°
rotation symmetry, the exponents og 7 in Eq. (1) are both
finite. On the square lattice, we can also use the Kadanoff block
renormalization procedure to reduce the system size L> — L2.
Then the exponents in the prefactors of the UWFO can be
significantly reduced. Many local unitary transformations on
the lattice can potentially reduce the exponents in the UWFO.
If different ground-state sectors have the same topological
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spins, we can follow Ref. [15] to identify the minimum
entangled states to diagonalize the modular 7 matrix. The
UWFO method is easily generalized to the 3+ 1D topological
orders in the GPWFs. The GPWF for quantum dimer models in
three dimensions has already been constructed in Ref. [42]. In
three dimensions, the modular group of the 3-torus is SL(3,7Z)
generated by

o1 0y (100
s=lo o 1|, 7=|1 1 of. (18)
1 0 0 0 0 1

We can use the UWFO to directly study the topological
information in 341D [16].

In conclusion, we use the universal wave-function overlap
method to exact the modular S and 7 matrices for the
topological order in the Gutzwiller-projected parton wave
function for the chiral spin liquid state on the square lattice. The
chiral spin liquid is the lattice analogy of the v = % bosonic
Laughlin state, and the analogy is directly confirmed by the
modular S and 7" matrices from the universal wave-function
overlap. The exponents in the prefactors of the wave-function
overlaps are found to be small, and the variational Monte
Carlo calculations are carried out on relatively large systems.
The Monte Carlo calculations of the universal wave-function
overlap can be easily generalized to other Bravais lattices and
3+1D topological orders.
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