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Spin-orbit-induced exotic insulators in a three-orbital Hubbard model with (t2g)5 electrons
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On the basis of the multiorbital dynamical mean-field theory, a three-orbital Hubbard model with relativistic
spin-orbit coupling (SOC) is studied at five electrons per site. The numerical calculations are performed by
employing the continuous-time quantum Monte Carlo (CTQMC) method based on the strong-coupling expansion.
We find that appropriately choosing bases, i.e., the maximally spin-orbit-entangled bases, drastically improves
the sign problem in the CTQMC calculations, which enables us to treat exactly the full Hund’s coupling and
pair-hopping terms. This improvement is also essential to reach at low temperatures for a large SOC region
where the SOC most significantly affects the electronic structure. We show that a metal-insulator transition is
induced by the SOC for fixed Coulomb interactions. The insulating state for smaller Coulomb interactions is
antiferromagnetically ordered with the local effective total angular momentum j = 1/2, in which the (j = 1/2)-
based band is essentially half filled, while the (j = 3/2)-based bands are completely occupied. More interestingly,
for larger Coulomb interactions, we find that an excitonic insulating state emerges, where the condensation of an
electron-hole pair in the (j = 1/2)- and (j = 3/2)-based bands occurs. The origin of the excitonic insulator as
well as the experimental implication is discussed.
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I. INTRODUCTION

Recent experiments have reported interesting observations
for 5d transition-metal Ir oxides in the layered perovskite
structure such as Sr2IrO4 and Ba2IrO4 [1–5]. In these materials,
along with moderate electron correlations [6,7], there exists
a strong relativistic spin-orbit coupling (SOC), which splits
t2g orbitals, already separated from eg orbitals due to a
large crystal field, into the effective total angular momentum
j = 1/2 doublet and j = 3/2 quartet orbitals in the atomic
limit [8]. Since there are nominally five 5d electrons per Ir ion,
the j = 1/2 orbital is half filled, while the j = 3/2 orbitals
are fully occupied.

As opposed to simple expectation from strongly correlated
3d and 4d transition-metal oxides [9–13], the experiments
have revealed that the ground state of these Ir oxides is a j =
1/2 antiferromagnetic (AF) insulator [14–17]. The theoretical
understanding of the j = 1/2 AF insulator has been also
reported [14,18–24]. Moreover, even possible unconventional
superconductivity was proposed once mobile carriers were
introduced into the insulating state [25–28]. However, the
electronic structure in multiorbital systems with competition
between the electron correlations and the SOC has not been
thoroughly understood. When the SOC is significantly large,
the (j = 1/2)-based band is completely separated from the
(j = 3/2)-based bands, and thus, a single-orbital description
of the (j = 1/2)-based band is expected to be valid. On the
other hand, when the SOC is small, this picture breaks down
and the electronic structure should be largely affected not only
by Coulomb interactions but also by the multiorbital nature.
Therefore, a question naturally arises: what is the ground state
of multiorbital systems with the competition between the elec-
tron correlations and the SOC? This is precisely the main issue
of this paper, and we will demonstrate the emergence of exotic
insulators in a three-orbital Hubbard model with the SOC.

Here, on the basis of the multiorbital dynamical mean-field
theory (DMFT) [29], we numerically study a three-orbital

Hubbard model with the SOC at five electrons per site,
corresponding to the (t2g)5 electronic configuration. The
continuous-time quantum Monte Carlo (CTQMC) method
based on the strong-coupling expansion is employed as a
multiorbital impurity solver [30]. We find that the sign
problem is significantly improved by appropriately choosing
the maximally spin-orbit-entangled bases, which allows us
to treat exactly the full Hund’s coupling and pair-hopping
terms. This improvement is crucial also for the calculations
at low temperature and in strong SOC regions where the
metal-insulator transition (MIT) occurs. We find that for fixed
Coulomb interactions the MIT is induced by increasing the
SOC. The insulating phases include the j = 1/2 antiferromag-
netically ordered phase as well as a multiorbital AF insulating
(AFI) phase. In addition, we find an excitonic insulating (EXI)
phase, where an electron-hole pair in the (j = 1/2)- and
(j = 3/2)-based bands is condensed.

II. MODEL AND METHOD

The three-orbital Hubbard model studied here is described
by the following Hamiltonian: H = H0 + HI, where

H0 =
∑
〈i,i ′〉

∑
γ,σ

tγ c
†
iγ σ ci ′γ σ − μ

∑
i,γ,σ

n
γ

iσ

+ λ
∑

i,γ,δ,σ,σ ′
〈γ |Li |δ〉 · 〈σ |Si |σ ′〉c†iγ σ ciδσ ′ (1)

represents the noninteracting part of the model, and

HI = U
∑
i,γ

n
γ

i↑n
γ

i↓ + U ′ − J

2

∑
i,γ �=δ,σ

n
γ

iσ nδ
iσ

+ U ′

2

∑
i,γ �=δ,σ

n
γ

iσ nδ
iσ̄ − J

∑
i,γ �=δ

c
†
iγ↑ciγ↓c

†
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+ J ′ ∑
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c
†
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†
iγ↓ciδ↓ciδ↑ (2)
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FIG. 1. (Color online) (a) λ dependence of the average sign 〈sgn〉
for U = 8 at T = 0.08. (b) T dependence of 〈sgn〉 for U = 8 at
λ = 0.24. For both t2g and j bases in the CTQMC calculations, the
paramagnetic and orbital disordered solutions are assumed.

describes the local Coulomb interactions. Here, tγ sets
the nearest-neighbor-hopping amplitude for t2g orbitals γ =
(dyz,dzx,dxy) on the Bethe lattice with coordination number
Z [31]. We adopt a semielliptic density of states for Z → ∞
assuming the same bandwidth for the three orbitals (tγ =
t/

√
Z), where the DMFT is exact [31,32]. c

†
iγ σ (ciγ σ ) is an

electron creation (annihilation) operator with spin σ (=↑,↓)
and orbital γ at site i and n

γ

iσ = c
†
iγ σ ciγ σ . λ is the SOC,

and Li (Si) is the orbital (spin) angular momentum operator
at site i. The chemical potential μ is tuned to be at five
electrons per site. σ̄ denotes the opposite spin of σ . HI

includes the intraorbital (interorbital) Coulomb interaction
U (U ′), the Hund’s coupling J , and the pair hopping J ′.
We set U = U ′ + 2J and J = J ′ = 0.15U [33]. Employing
the CTQMC method as an impurity solver [30] to calculate
the imaginary-time Green’s functions at the impurity site,
Gδ,σ ′

γ,σ (i,τ ) ≡ −〈Tτ ciγ σ (τ )c†iδσ ′(0)〉, we can exactly solve the
model numerically. In what follows, U , λ, temperature T , and
frequency ω are in units of t . We also omit the site index in
the Green’s function, Gδ,σ ′

γ,σ (τ ) = Gδ,σ ′
γ,σ (i,τ ), unless Gδ,σ ′

γ,σ (i,τ )
is site dependent.

Let us first examine the numerical accuracy of the CTQMC
calculations. Generally, a negative sign problem is one of
the most serious issues in QMC calculations. Particularly,
when QMC methods are employed for the multiorbital DMFT
calculations, the sign problem seriously prevents us from
simulating at low temperatures, which often forces us to
approximate the Hund’s coupling and pair-hopping terms [34].
Indeed, for our model, we find that the sign problem becomes
destructively serious at low temperatures, especially when the
SOC is large (see Fig. 1).

It is now important to recall that the sign problem in
QMC calculations is a basis-dependent problem, and it can be
improved by appropriately choosing bases [35]. Although we
encounter a serious sign problem when the original t2g bases
ciγ σ are used, we find that the maximally spin-orbit-entangled
j bases aijm improve the sign problem significantly. These j

bases are the eigenstates of H0 in the atomic limit and are
related to the t2g bases,
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FIG. 2. (Color online) (a) Single-particle excitation spectrum
Aj,m(ω) and (b) electron density nj,m = ∑

m′=±m〈a†
ijm′aijm′ 〉 for U =

8 at T = 0.06 with varying λ. Paramagnetic and orbital disorder states
are assumed. (c) Schematic density of states for the noninteracting
limit with λ = 0 and λ �= 0. The Fermi level is at ω = 0. The
(j = 3/2)-based bands are completely filled when λ � 4/3.

where s = 1(−1) for σ = ↑(↓). In the j bases representation,
the number of off-diagonal elements in Gδ,σ ′

γ,σ (τ ) is reduced,
and as a result the sign problem can be alleviated.

Figure 1 shows typical results of the average sign 〈sgn〉
(see Ref. [35] for the definition) for U = 8 calculated for
the paramagnetic and orbital disordered solutions. The λ

dependence of 〈sgn〉 at T = 0.08 in Fig. 1(a) clearly shows
that 〈sgn〉 ≈ 1 for the j bases, much larger than 〈sgn〉 for the
t2g bases, particularly for large λ. Similarly, the T dependence
of 〈sgn〉 at λ = 0.24 in Fig. 1(b) demonstrates the remarkable
improvement of 〈sgn〉 for low T when the j bases are used.
These improvements of 〈sgn〉 guarantee higher accuracy of our
CTQMC calculations with less computational cost for a wide
range of λ even at very low T .

III. NUMERICAL RESULTS

First, we shall briefly examine the MIT induced by the
SOC in paramagnetic and orbital disordered states. A typical
example of the evolution of the single-particle excitation
spectrum

Aj,m(ω) = −1/π ImG
j,m

j,m(ω + i0+) (4)

in the real frequency ω with increasing λ is shown in Fig. 2(a).
Here, 0+ is positive infinitesimal. The maximum entropy
method is employed to calculate Aj,m(ω) from G

j,m

j,m(τ ) [36].
As shown in Fig. 2(a) for U = 8, the SOC induces the transi-
tion from the metallic to insulating state at λ ∼ 0.31, where the
quasiparticle peak near the Fermi level vanishes and the single-
particle excitation gap starts to open. The insulating state for
λ � 0.31 is the j = 1/2 Mott insulator, where the (j = 1/2)-
based band is half filled, while the (j = 3/2)-based bands
are fully occupied [see Fig. 2(b)]. Figure 2(b) also indicates
that the (j = 1/2)-based band, which is degenerate with the
(j = 3/2)-based bands at λ = 0, gradually separates from the
(j = 3/2)-based bands with increasing λ [see also Fig. 2(c)].
This is essential for the SOC-induced Mott transition because
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FIG. 3. (Color online) (a) and (c) λ dependence of staggered
magnetization Mj,m (top), excitonic order parameter 	

j,′m′
j,m (center),

and electron density nj,m (bottom). (b) and (d) Single-particle
excitations spectrum Aj,m(ω) for two λ’s. Other parameters used
are T = 0.06 and U = 8 [(a) and (b)] and 9.25 [(c) and (d)]. The
anomalous excitation spectrum F

3/2,±1/2
1/2,±1/2 (ω) is also shown in (d).

the critical U for the MIT decreases as the orbital degeneracy is
degraded [37].

Now, we shall consider possible ordered states. To this end,
we introduce magnetic order parameters,

Mj,m(l) = 1

2

∑
m′=±m

sgn(m′)〈a†
ljm′aljm′ 〉, (5)

where l (=A,B) indicates two sublattices [38] and aljm is
defined in Eq. (3), with site i being on sublattice l. In addition,
we investigate excitonic orders formed by an electron-hole pair
in different (j,m) bands with excitonic order parameters,

	
j ′,m′
j,m (l) = 〈a†

ljmalj ′m′ 〉, (6)

where (j,m) �= (j ′,m′). We also calculate the electron density

nj,m(l) =
∑

m′=±m

〈a†
ljm′aljm′ 〉, Aj,m(l,ω), (7)

and the anomalous excitation spectrum

F
j ′,m′
j,m (l,ω) = −1/π ImG

j ′,m′
j,m (l,ω + i0+) (8)

[39,40]. Since we have found that these order parameters
satisfy Mj,m(A) = −Mj,m(B) and 	

j ′,m′
j,m (A) = 	

j ′,−m′
j,−m (B), as

well as nj,m(A) = nj,m(B), Aj,m(A,ω) = Aj,−m(B,ω), and

F
j ′,m′
j,m (A,ω) = F

j ′,−m

j,−m (B,ω), we will drop the sublattice index
l in these quantities hereafter.

Let us first explore a case with U = 8. Figure 3(a) shows
the λ dependence of Mj,m, 	

j ′,m′
j,m , and nj,m. First of all, it

is apparent that there is no excitonic order for all values

of λ. Second, for λ � 0.25, only M1/2,1/2 is finite with
n1/2,1/2 ≈ 1 and n3/2,1/2 = n3/2,3/2 ≈ 2, revealing the j = 1/2
AFI state. Third, for λ � 0.25, the magnetic order disappears,
and n3/2,1/2 = n3/2,3/2 starts to decrease from 2 with decreasing
λ, implying the breakdown of the single-orbital description of
the half-filled (j = 1/2)-based band.

Figure 3(b) shows Aj,m(ω) for two λ’s at U = 8. Similar
to the paramagnetic cases (see Fig. 2), for large λ = 0.32 in
the AFI phase, a finite gap is clearly open in the (j = 1/2)-
based band, while the (j = 3/2)-based bands are fully occu-
pied (i.e., band insulators). However, notice that A1/2,1/2(ω)
[A1/2,−1/2(ω)] has more (less) weight in the occupied states
than in the unoccupied states for sublattice A because of the AF
order. For smaller λ = 0.08, besides broad structures around
ω ∼ ±U/2, the sharp quasiparticle peak appears around the
Fermi level for both j -based bands, indicating a metallic state
with strong correlations.

Next, we shall examine a case with larger U = 9.25. As
shown in Fig. 3(c), the j = 1/2 AFI phase is found with
no excitonic order for λ � 0.25, the same phase discussed
above for smaller U . Aj,m(ω) shown in Fig. 3(d) clearly
exhibits a finite gap only in the (j = 1/2)-based band, while
the (j = 3/2)-based bands are fully occupied. The difference
compared to the case with smaller U when λ decreases appears.
For 0.12 � λ � 0.25, all three Mj,m’s are now finite, and
n1/2,1/2 (n3/2,1/2 and n3/2,3/2) increases (decrease) from 1 (2)
with decreasing λ [seen Fig. 3(c)]. We further confirm a
finite gap in Aj,m(ω) for both j -based bands. These results
indicate that this phase is a AFI state but apparently breaks the
single-orbital description of the half-filled (j = 1/2)-based
band.

More remarkably, for λ � 0.12, we find that the excitonic
order parameter 	

3/2,±1/2
1/2,±1/2 is finite with nonzero AF order

[see Fig. 3(c)]. Although the magnetic order eventually
disappears for λ � 0.04, 	

3/2,±1/2
1/2,±1/2 remains finite. The most

important feature in this phase is that 	3/2,1/2
1/2,1/2 + 	

3/2,−1/2
1/2,−1/2 = 0

but 	
3/2,1/2
1/2,1/2 − 	

3/2,−1/2
1/2,−1/2 is finite [41] and staggered between

the two sublattices, indicating that the excitonic order is
accompanied by translational symmetry breaking. It is also
noticed in Fig. 3(c) that n3/2,1/2 �= n3/2,3/2 in this phase because
of the presence of nonzero excitonic order. Moreover, we find
that a single-particle excitation gap is always finite in both
j -based bands, including the phase where only the excitonic
order parameter is nonzero, as shown in Fig. 3(d). In addition,
in the EXI phase, F

3/2,±1/2
1/2,±1/2 (ω) are found to be nonzero. This

is strong evidence for the existence of a stable EXI state
formed by an electron-hole pair between the (j = 1/2)- and
(j = 3/2)-based bands with m = ±1/2. In the limit of λ = 0,
this EXI state is replaced by the orbital-ordered insulating state
in the t2g orbitals reported previously [42].

We shall now argue that there are two important ingredients
for the emergence of the EXI state. First, λ is strongly renor-
malized by the Coulomb interactions, and the renormalized λ

becomes sizably large even for small λ in the metallic phase
in the vicinity of the EXI phase. To show this, we calculate the
first moment of Aj,m(ω), defined as Wj,m = ∫

dω ωAj,m(ω),
and evaluate the effective SOC λ∗ = W1/2,1/2 − W3/2,1/2 [43].
The U dependence of λ∗ for the metallic phase is shown
in Fig. 4(a). Indeed, λ∗/λ is strongly renormalized with
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FIG. 4. (Color online) (a) U dependence of the effective SOC
λ∗ (see the text for definition) for λ = 0.02 at T = 0.06. For
comparison, the results for λ = 0.08 and 0.16 are also shown. (b)
U -λ phase diagram at T = 0.06. (MO)AFI, EXI, and OOI stand for
(multiorbital) antiferromagnetic insulating, excitonic insulating, and
orbital-ordered insulating phases, respectively. A plus mark indicates
a set of U and λ where the effect of a tetragonal crystal field is
examined.

increasing U and can be significantly large, as large as ∼9
at U = 8.75 near the transition to the excitonic insulator.

The other key factors are the Hund’s coupling J and the
pair hopping J ′. We have performed the static mean-filed
analysis and found that the EXI state emerges only for
a small λ region with nonzero magnetic order. We have
also found that the excitonic order is never stabilized when
J = J ′ = 0. This implies that the particle number fluctuations
are essential for the EXI state since the particle number of each
(j = 1/2)- and (j = 3/2)-based band is conserved separately
when J = J ′ = 0. These results suggest that not only the SOC
but also the full Hund’s coupling and the pair hopping play an
important role in stabilizing the EXI state. A similar tendency
is found in the DMFT calculations.

Finally, we have also examined the stability of the EXI
state [see Fig. 4(b)] in the case where the degeneracy of the t2g

orbitals is lifted due to a tetragonal crystal field, causing a finite
splitting δ between the dxy orbital and the other two orbitals.
We have considered both magnetic and excitonic orders in the
DMFT calculations [44]. Although the crystal-field splitting
reduces the exciton order parameter when it is compared with
the one at δ = 0, we have found that the EXI state is robust
against the crystal-field splitting as long as |δ| is smaller than
the single-particle excitation gap at δ = 0.

IV. SUMMARY

In summary, we have studied the three-orbital Hubbard
model with the SOC using the multiorbital DMFT. We have
employed the CTQMC method based on the strong-coupling
expansion and found that the sign problem is significantly

improved by using the maximally spin-orbit-entangled j bases.
The improvement is essential for treating exactly the full
Hund’s coupling and pair-hopping terms and also for reaching
low enough temperatures for large SOC.

We have applied this method to determine the
finite-temperature phase diagram on the U -λ plane at
five electron per site. The U -λ phase diagram at the lowest
temperature T = 0.06 is summarized in Fig. 4(b). For small
U (�8), we have demonstrated that the SOC induces the
transition from the metallic to the j = 1/2 AFI state, in
good agreement with the previous numerical study [20].
For large U (�8), the multiorbital AFI phase appears for
intermediate values of λ, where the single-orbital description
breaks down. Moreover, we have found that further overlap
of the noninteracting (j = 1/2)- and (j = 3/2)-based bands
favors the EXI phase, either with or without magnetic order,
which dominates the phase diagram for small λ (�0.1). The
EXI state is formed by an electron-hole pair in the (j = 1/2)-
and (j = 3/2)-based bands with the same m = ±1/2. We
have argued that the strong renormalization of the SOC near
the MIT as well as the full Hund’s coupling and pair hopping
are essential for the emergence of the EXI state.

Many experimental and theoretical studies support the idea
that the 5d transition-metal Ir oxides such as Sr2IrO4 and
Ba2IrO4 are the j = 1/2 AF insulators [14–24]. These materi-
als are characterized by large SOC and moderate Coulomb
interactions and are thus in good qualitative accordance
with our phase diagram. Possible materials for the excitonic
insulator found here should be characterized by (i) larger
Coulomb interactions, (ii) relatively small SOC, and (iii) a
low-spin configuration with no eg orbitals involved. For 4d

electron systems, relatively large Coulomb interactions and
relatively small SOC are expected, while 3d electron systems
exhibit large Coulomb interactions and very small SOC with
the high- or intermediate-spin configuration. We expect that
the ideal systems for the stable excitonic insulator would be
somewhere between 3d and 4d electron systems. This can be
achieved in experiments by, for example, 3d and 4d transition-
metal intermixed oxides or 4d transition-metal-oxide thin films
grown on a compressive substrate with large distortion of
the oxygen octahedra. Further experimental studies in this
direction are highly desired.
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