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Quasiparticle self-consistent (QS) GW calculations are performed for bulk and monolayer V2O5. The orbital
character of the bands and the bulk monolayer difference at the LDA level are discussed first. We find that the
QSGW self-energy overestimates the gap by an unusually large amount. The main reason for this is identified
to be the lattice polarization effect: The large LO-TO splittings in this polar material enhance the screening
and reduce the screened Coulomb interaction affecting the gap. The effect is estimated to reduce the screened
Coulomb interaction and hence the self-energy by a factor 0.38 (for bulk) and brings the calculated optical
response functions in fairly good agreement with experiment. For monolayer V2O5 we find that the QSGW

gap varies as 1/L with L the size of the spacing between the monolayers in a supercell. This results from the
long-range nature of the self-energy � = iGW and the similar 1/L behavior of the dielectric screening.
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I. INTRODUCTION

Since the Nobel prize winning work of Novoselov and
Geim [1], two-dimensional materials such as graphene and
transition metal dichalcogenides (TMDC) have attracted a
great deal of attention because of their unique electronic,
optical, and transport properties. The exfoliation technique
applied first to graphene has opened a path to the investigation
of other materials in ultrathin monolayer or few monolayer
form. Other techniques for deposition of ultrathin layers over
larger areas have subsequently been developed. In spite of
the already weak bonding between the layers in their bulk
form of these materials, surprisingly different properties were
discovered for the few-layer forms of these materials. Most of
these materials currently studied share a hexagonal network
structure.

Vanadium pentoxide (V2O5) is another and rather different
layered material. Its crystal structure also consists of weakly
bonded layers but has orthorhombic symmetry, and, in addi-
tion, it has certain one-dimensional (1D) structural aspects [2].
It consists of zigzag double chains bonded together with bridge
oxygens. The crystal structure is shown in Fig. 1. The structure
can be viewed as consisting of chains of square-based pyramids
of five oxygens surrounding each V, which point alternately
up and down and share an edge along the chain direction.
These double chains are connected via a corner shared bridge
oxygen. There are hence three structurally different types of
oxygen in this structure: the vanadyl oxygen (Ov) is bonded
to a single vanadium and forms the apex of the pyramids; the
bridge oxygen (Ob) is bonded to two vanadiums and couples
the chains together, while the chain oxygen (Oc) binds to
three vanadiums, two along the chain direction and one in
the adjacent chain. They form the shared edge between the
pyramids in the double chain. It is thus of interest how this 1D
character will manifest itself in the electronic and transport
properties of the material.

Electronically, V2O5 appears at first sight simple because it
has a filled oxygen valence band and empty vanadium d-like

conduction bands and should thus be a wide gap insulator.
However, already in the early band-structure calculations [3,4]
it was found that there is a split-off conduction band, resulting
from the dxy orbitals. More precisely, the four V dxy orbitals
per cell form four bands, two of which are antisymmetric with
respect to the mirror plane passing through the bridge oxygen.
This prevents π -like interaction with the bridge oxygen py

orbital (along the chain direction) and hence separates this
band from the higher lying V d orbitals which all have some
π - or σ -antibonding character with O p. This split-off band
has significant dispersion only along the chain direction and
thus manifests the 1D character of the material. Tight-binding
parametrizations of these bands are discussed for example in
Smolinski et al. [5]. The orbital character of the bands will be
reviewed in the present paper in Sec. III A.

This separated narrow d band with 1D dispersion has
important consequences in doped V2O5. Doping can for
instance result from oxygen vacancies. In fact, the vanadyl
oxygen, which is singly bonded to V, can easily be removed
in reducing chemical environments and leads to a series of
(ordered) lower oxides, V4O9, V6O13, etc. [6]. On the other
hand, it is responsible for the catalytic activity of V2O5 in
oxidation reactions, which forms one of the main industrial
applications of this material [7]. Besides influencing the
conductivity of the material, which shows a variable range
hopping conductivity [8], this type of doping also leads to
optical transitions in the infrared between the split-off band
and the higher conduction bands [9].

Another route to doping this split-off band is via inter-
calation. This leads to the so-called V2O5 bronzes. These
have attracted significant attention because of their interesting
1D magnetic properties. The intercalates reside in between
the layers in the large interstitial site in between the bridge
oxygens. For a monovalent dopant of one atom per V2O5 unit,
as in Na2O5, the split-off band is exactly half-filled. Because
of the strong Coulomb interaction in a narrow band, this cor-
responds to a 1D half-filled Hubbard model. Actually, viewed
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FIG. 1. (Color online) Crystal structure of V2O5: large red
spheres inside the nearest neighbor coordination pyramids represent
V, small blue ones represent O.

with respect to the four bands formed from the dxy orbitals
it corresponds to one quarter filling. A spin-Peierls transition
was observed for this material by Isobe and Ueda [10] in 1996
and has since then attracted great attention [5,11–14]. At that
time it was believed that there was a charge disproportional
between the V in the up and down pointing pyramids, leading to
alternating V4+ and V5+ chains with the spin-Peierls transition
taking place in the V4+ chain. Later it was found [5] that the
V atoms in this structure all stay equivalent and should be
viewed as V4.5. The states in the lowest band can be viewed
as V-V bonding molecular states in the V-Ob-V units. These
are then viewed as rungs in a ladder and these materials
are hence called ladder compounds. Although the band made
from the bonding states in the rung is half-filled, the overall
system of the ladder compound including the corresponding
antibonding states (higher band) is quarter-filled. The nature
of the transition at low temperature is still controversial and
may be a charge-ordering rather than a spin-Peierls transition
or two transitions very close to each other.

Antiferromagnetic ordering of the spins along the y

direction would lead to a doubling of the periodicity along
the chain. However, for 1D systems, strict ordering is not
expected and, instead, the possibility of separated charge and
spin excitations has been predicted [15]. The weak coupling
between these chains makes this system intriguing because
they are in between strict 1D and two-dimensional (2D)
systems. It is these features which have generated the interest
in such systems from a many-body theory point of view. It
is believed to be the origin of the above mentioned phase
transition although the exact nature of the structure below
the critical temperature has not yet been determined, to the
best of our knowledge. For example, it is not clear if it is
accompanied by a structural bond-length alternation. Band
structure calculations [13,14] in LDA + U predict formation
of magnetic moments and a gap opening in the split-off band in
an antiferromagnetically ordered state. Meanwhile, in divalent
atom intercalated bronzes, such as MgV2O5, interesting spin
wave excitations have also been observed [16].

Our renewed interest in this material results from the obser-
vation that for ultrathin few monolayer systems, the possibility
exists of injecting electrons in this split-off band by means of
gating. Therefore, monolayer or few-layer versions of V2O5

could provide a more systematic control of the doping of this
1D band. Another interesting possibility is that by removing

rows of bridge oxygens, one could form nanoribbons of
monolayer V2O5. The edges of these would present additional
modifications of the orbital character of the split-off bands but
would also essentially dope the system with electrons. A vari-
ety of nanoforms of V2O5 have already been observed [17–22],
but a systematic understanding of their electronic properties is
still lacking. In a previous paper [23] we studied the differences
between bulk and monolayer on the phonons in V2O5 and
found important changes due to the differences in screening.

As discussed above, interesting strongly correlated physics
has already been studied extensively in bulk forms of this mate-
rial and has focused on the correlation effects within the doped
1D split-off band. However, until now the many-body effects
on the band gap and overall electronic structure have received
little attention and also the monolayer versus bulk changes in
the electronic structure have not been systematically studied.

While several previous first-principles band structure stud-
ies have been performed [24–27] of this material in the local
density approximation (LDA) or generalized gradient approx-
imation (GGA), these methods suffer from underestimates of
the band gap. We are aware of only one previous study of
V2O5 band structure at the GW level [28]. A few studies also
considered monolayers or surfaces [25,27], but no dramatic
changes were found. For example, the gap stayed indirect
and modest changes in the band gap were found. It has been
found, in previous work on transition metal dichalcogenides,
that much stronger effects result from the 2D character in GW

calculations because of the important changes in 2D screening
and the long-range effects in GW [29]. Reduced screening
effects were already manifested in monolayer V2O5 to have
an effect on the phonons [23].

Here we present quasiparticle self-consistent (QS) GW

calculations [30] of the pure and undoped V2O5 band structure
to test how well this method describes a strongly correlated
2D material. A study of doped V2O5 is postponed for future
work. We find that the band gap in bulk is significantly
overestimated by this method. The QSGW is known to
systematically overestimate the gap in most materials and
this is usually attributed to the underscreening of the random
phase approximation in the GW method. In other words, W is
overestimated by the lack of electron-hole interactions. In the
present material, the overestimate is found to be unusually
large and thus we need to look for additional effects. We
analyze the optical data on the band gap and conclude that
the reason for the discrepancy is not simply because of the
omission of excitons in the GW calculation. In view of the
large LO-TO splittings in this polar material, we estimate the
effects of lattice polarization on the dielectric constant and
hence indirectly on the electron-electron interaction screening
and the gap [31,32]. We find this to be the major reason for
the discrepancy. An additional correction of W due to missing
electron-hole interactions may be expected.

We then apply the same approach to monolayer V2O5. After
analyzing the changes at the LDA level, we show that at the
QSGW level the gap changes depend significantly on the
size of the vacuum region used to separate the layers. This
observation is similar to what was found earlier in TMDC
compounds and reflects the long-range nature of the GW

self-energy and the importance of screening in the latter. To
show this we demonstrate a 1/L dependence of both the gap
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and the dielectric constant on the size of the cell in the direction
perpendicular to the layers. The lattice polarization reduction
factor needs to be included also for the monolayer but it also
depends on the layer separation.

The paper is organized as follows. Section II provides the
necessary details on the computational approach and Sec. III
presents our results. In Sec. III A we first present the LDA
bulk and monolayer band differences and explain some of the
features already mentioned in this Introduction. In Sec. III B
we discuss the bulk QSGW results and their shortcomings.
As part of this we discuss the optical data. In Sec. III C we
discuss the monolayer band gaps dependence on the interlayer
spacing and its relation to the reduced screening.

II. COMPUTATIONAL METHOD

The full-potential linearized muffin-tin orbital method
[33,34] was used to solve the density functional Kohn-Sham
equations in the local density approximation (LDA) [35,36]
and the quasiparticle self-consistent GW equations. The
LMTO and GW codes used are available in Refs. [37,38].
The lattice constants were set to the experimental ones to
avoid the typical underestimate of the unit cell volume by
LDA and the additional problem here of determining the
optimal interplanar spacing for a system with weak van
der Waals interactions. The internal positions of the atoms,
however, were relaxed in the LDA using a conjugate gradient
method. They were found to be in good agreement with
experiments as can be seen in Table I. No significant changes
in the bond lengths were found for the monolayer. The
monolayer is studied in a periodic cell simply by increasing
the layer separation. The convergence of the monolayer GW

calculations with layer separation distance will be discussed
in Sec. III C. The monolayer unit cell lattice constant in the
direction perpendicular to the layer is denoted by L.

Convergence tests were carried out for the k-point
Brillouin-zone sampling for the self-consistent calculations as
well as for the QSGW self-energy calculations. An unshifted
mesh of 2 × 6 × 6 for bulk and 2 × 6 × 1 for the monolayer
were found to be adequate for both purposes. The ratios of
the number of divisions along the crystallographic directions
was chosen roughly in proportion to their size in the reciprocal
lattice. The LMTO basis set includes two sets of κ,Rsm values,
representing the smoothed Hankel function envelope functions
decay length (κ2 = ε − vmtz) and smoothing radii (Rsm),
which modify the orbital curvature of the radial basis function
near the muffin-tin radius. For vanadium we used an (spd,spd)
and for oxygen an (spd,sp) spherical harmonic basis set.
Augmentation of the orbitals inside the muffin-tin spheres
includes spherical harmonics times solutions of the radial
Schrödinger equation, φ and φ̇ (energy derivative) functions
up to lmax = 4. In addition, we added V-3p local orbitals.

TABLE I. Bond lengths of GW in Å.

V-Ov V-Ob V-Ocy V-Ocx

Calc. 1.55 1.77 1.87 1.97
Expt. 1.585 1.77 1.88 2.02

The QSGW method has been described in detail in
Refs. [30,39,40]. Briefly the noninteracting Hamiltonian H 0

for the GW self-energy calculation [41], i.e., the Hamiltonian
from which the Green’s function G0 and W 0 = (1 − v�0)−1v

with v the bare Coulomb interaction and �0 = −iG0G0 the
bare polarization propagator are constructed, includes a nonlo-
cal but energy independent Hermitian exchange correlation po-
tential [V QSGW

xc ]ij = Re{�ij (ωi) + �ij (ωj )}/2 extracted from
the previous self-energy (� = iG0W 0) in an iterative proce-
dure, starting with the LDA potential. The equations above are
only written schematically, omitting the coordinate and energy
dependencies and integral equation nature of the equations.
These quantities are represented in the basis of the H 0

eigenstates labeled i,j . The noninteracting Hamiltonian is thus
chosen optimally in the sense that the perturbation becomes
as small as possible and the real parts of the quasiparticle
eigenvalues converge to the Kohn-Sham eigenvalues of the
H 0. Adding the V QSGW

xc off-diagonal elements allows mixing
between different H 0 eigenstates. Above a certain energy, cho-
sen here to be 2.5 Ry, the [V QSGW

xc − V LDA
xc ]ij ≈ δij (a + εib) is

restricted to be diagonal and its orbital dependence is assumed
to be linear in the orbital energy [40]. A mixed interstitial plane
wave plus LMTO product basis set is used [42] as an auxiliary
basis set to represent all two-point quantities v, W , �0, ε. An
important characteristic of this GW implementation is that the
self-energy, or rather the V QSGW

xc , can be expressed in the basis
set of real-space muffin-tin orbitals. It can then be determined
by Bloch summation for any arbitrary k point and hence
eigenvalues of the converged H 0−QSGW can be obtained along
symmetry lines from knowledge of the �(k,ω) on a small
k-point mesh set. This constitutes an effective interpolation
scheme in k space. For clarity, the band structures presented
below are the real Kohn-Sham eigenvalues of H 0−QSGW rather
than the complex quasiparticle energies, although the latter
can in principle also be obtained.

To compare with optical properties and study the screening
aspects, we have also calculated the macroscopic dielectric
function ε(ω). The latter can be obtained in two ways. First,
the dielectric response function matrix element

εGG′ (q,ω) =
∑
IJ

〈q + G|MI 〉[1 − v�0(q,ω)]IJ 〈MJ |q + G′〉,
(1)

in a plane wave basis set,

〈r|q + G〉 = 1√
�

ei(q+G)·r, (2)

can be obtained from the mixed basis set |MI 〉 matrix
representation of �0(q,ω). Without local-field effects, we then
have

εNLF(ω) = lim
q→0

ε00(q,ω) (3)

while, with local field effects,

εLF(ω) = lim
q→0

1

ε−1
00 (q,ω)

. (4)

Note that these quantities can be obtained for the LDA
Hamiltonian as well as the QSGW Hamiltonian. To determine
the limit for q → 0, we simply take a finite small q value.
However, care must be taken here not to take q too small
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because the latter exhibits unphysical poles at high energy
which influence the real part at lower energies by Kramers-
Kronig transformation.

Second, one can take the limit of q → 0 analytically by
transforming to the Adler-Wiser form:

ε2(ω) = 8π2e2

�ω2

∑
n

∑
n′

∑
k∈BZ

fnk(1 − fn′k)

× |〈ψnk|[H,r]|ψn′k〉|2δ(ω − εn′k + εnk). (5)

Here we give the expression for the imaginary part ε2(ω) and
the matrix elements entering the equation are strictly speaking
those of the velocity operator ṙ = (i/�)[H,r] but are usually
transformed to those of the momentum operator v = p/m.
This however is no longer correct when a nonlocal potential is
present. To correct for this we use the approximation proposed
by Levine and Allan [43], which consists of rescaling the
matrix elements by a factor (εn′k − εnk)/(εLDA

n′k − εLDA
nk ). The

advantage of this formulation is that the separate contributions
of each band pair and k point can be determined and secondly,
the difficulty with taking the q → 0 limit are avoided.

The optical matrix elements of the momentum operator in
the FP-LMTO method are calculated using the same “threefold
representation” as used for the kinetic energy, potential, etc.
The integral is determined first using the smooth envelope
function part of the muffin-tin orbitals over the unit cell using
a fast Fourier transform (FFT) method. Then the spherical
harmonic expansion in each sphere of the envelope functions
is subtracted and replaced by the integrals with the augmented
functions. Actually the threefold procedure is applied to the
symmetrized and already modulo-squared contributions of the
matrix element. Explicitly we can write

|〈χi |pα|χj 〉|2

= |〈χ̃i |pα|χ̃j 〉|2 +
∑

R,LL′kk′
C

(i)∗
RLkC

(i)
RL′k′

×[|〈PRLk|pα|PRL′k′ 〉|2 − |〈P̃RLk|pα|P̃RL′k′ 〉|2] (6)

in which pα is the αth Cartesian component of the momentum
operator, χ̃i is the ith envelope function, and χi its aug-
mented muffin-tin orbital. Likewise, P̃RLk is the polynomial
times spherical harmonic expansion [P̃RLk = pkl(rR)YL(r̂R)]
of angular momentum L = l,m and polynomial order k of the
envelope function in site R and the corresponding function
without a tilde is the augmentation inside that sphere in terms
of φ and φ̇ that matches each polynomial in value and slope.
The expansion coefficients C

(i)
RLk provide the amount of each

augmentation channel in each sphere present in the envelope
function. Because of the imperfect cancellation between the
smooth part calculated on a mesh and its spherical harmonic
expansion, this can artificially lead to small negative values of
the matrix element squared, which is unphysical but has no
great consequences as long as we keep the augmentation in
the spheres sufficiently well converged.

III. RESULTS

A. Bulk and monolayer band structures in the LDA

In this subsection we first revisit the basic electronic
band structure of V2O5 at the LDA level, and, in particular,
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FIG. 2. (Color online) Overview band structure of V2O5 in LDA.
Left: Bands along symmetry lines defined in Fig. 3. Right: Density
of states decomposed various partial densities of states. Top panel
(a): main O-2p valence and V-3d derived conduction bands. Bottom
panel (b): lower O-2s derived bands.

discuss the orbital character of the bands. Figure 2 shows an
overview of the energy bands of V2O5 along symmetry lines
in the standard Brillouin zone as defined in Ref. [44] for the
orthorhombic Bravais lattice. The Brillouin zone nomenclature
is shown in Fig. 3. Figure 2 also shows the corresponding
density of states decomposed in various partial contributions.
The zero is placed at the valence band maximum (VBM).

FIG. 3. Brillouin zone labeling of high-symmetry points.
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FIG. 4. (Color online) Energy bands in monolayer V2O5 in LDA
for a monolayer spacing of L = 18.66 Å.

The bands between −18 and −15.5 eV are the O-2s derived
bands, the bands between −6 an 0 eV are the mainly O-2p

derived valence bands. The V-3p semicore states are not shown
but lie at about −22 eV below the VBM. The highest set of
valence bands also contain some V-3d contribution as they are
bonding states of O-2p and V-3d. The lower conduction bands
are mainly V-3d derived and show the split-off band mentioned
already in the Introduction. The V-3d band extends till about
7 eV above the VBM. At higher energies we find the V-4s

derived bands. The gap is seen to be indirect between a valence
band maximum (VBM) near the point T and the conduction

FIG. 5. (Color online) Valence bands weighted by (a) Ob-pz and
(b) Ov-px . See text for explanation of the color scheme.

band minimum (CBM) at �. The indirect minimum gap is
1.74 eV (at T -�) while the lowest direct gap at (at �) is 2.30 eV.
We note the degeneracies at the Brillouin zone edges which are
related to the nonsymmorphic nature of the space group Pnma .

We can see that in spite of the layered nature of the material,
there is a substantial dispersion of the bands in the z direction
near the top of the VBM. See, e.g., the bands along �-Z. In the
monolayer, as shown in Fig. 4, the bands along �-Z become
flat and the VBM becomes the same near Y as near R or T .
This reduces the valence bandwidth by about 0.6 eV and opens
the band gap correspondingly. This is evidence that there is
some hopping between the layers in bulk. In fact, the shortest
distances between O atoms in different layers occur between
up-pointing Ov and the Ob in the layer on top. We find that both
the Ov-px and Ob-pz have strong contributions to the bands
near T at the VBM and thus we conclude it is the hopping
between these orbitals that is responsible for this dispersion.
This can be seen in Fig. 5. In Fig. 5 and other similar figures, the
thin red lines are the bands, the color represents the intensity
of a “spectral function” Ai(k,ε) = ∑

n |〈χk
i |ψk

n 〉|2δ(ε − εnk)
with basis-set orbital i summed over all (κ,Rsm) for a given
angular momentum and site. The δ function is broadened by a
Gaussian. Our reason for presenting the orbital character in this
manner is that it allows us to visualize even small orbital contri-
butions to each band, not only the dominant orbital character.

Now we address the orbital character in the conduction
bands in more detail. We can see from the V-dxy weighted band
structure in Fig. 6 that the split-off band and the lowest two

FIG. 6. (Color online) Lowest conduction bands of V2O5

weighted by (a) V-dxy and (b) Ob-py .
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FIG. 7. (Color online) Vanadium 3d-derived conduction bands weighted by various d orbitals: (a) dyz, (b) dxz, (c) dx2−y2 , and (d) d3z2−r2 .

bands connected to the main set of conduction bands have dxy

character. Further analysis shows that the split-off band has no
Ob-py character while the next two do. The split-off bands, in
fact, are antisymmetric with respect to the mirror plane passing
through Ob and thus cannot couple to the O-py . This confirms
the nature of the split-off conduction band as discussed already
in the Introduction and well known since Refs. [4,5].

Projections on other V-3d orbitals show their weight
throughout the conduction band range. See Fig. 7. As expected,
the t2g-like yz and zx orbitals, which have π antibonding
character with the O-2p lie near the bottom of the main set of
conduction bands (not counting the split-off band), while the
eg-like orbitals x2 − y2 and 3z2 − r2 contribute more to the
bands at higher energy because of their stronger σ -antibonding
character. In particular the highest bands correspond to
3z2 − r2 which points toward the closest Ov in the z direction.

B. Bulk band structure and optical properties in QSGW

In this subsection we discuss the QSGW bands of bulk
V2O5. In Fig. 8 we show the band structure of V2O5 calculated
using the QSGW method and with the zero placed at the VBM
as usual.

The band gaps, bandwidths, and other band structure
overview properties are summarized in Table II compared
to LDA and experiment. We can see that the O-2s derived

bands shift down by 1.75 compared to the VBM. The O-2p

valence bandwidth is increased by 0.67 eV. Thus we find
that the further we shift down from the VBM, the larger
the self-energy correction. The lowest indirect and direct gap
shift by 2.26 and 2.53 eV, respectively, showing some k
dependence of the gap correction. The split-off band separation
from the main conduction bands changes by only 0.1 eV. The
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FIG. 8. (Color online) Energy bands of bulk V2O5 in the QSGW

method.
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TABLE II. Various V2O5 band structure characteristics in differ-
ent models and experiment.

LDA QSGW Expt. 0.38��

Indirect gap (T -�) 1.74 4.0 1.98
Lowest direct gap at � 2.30 4.83 2.35 ± 0.01a 2.60
Split-off band separation 0.76 0.86 0.88
O-2p valence bandwidth 5.39 6.06 5.5 ± 0.5b 5.79
DOS peak of O-2s bands −15.7 −18.5 −17.6c −16.84

from VBM
V-3d bandwidth 5.80 5.80 4.75

aReference [45].
bReference [46].
cIn Ref. [47] the O-2s measured by XPS is found at 20 eV below the
Fermi level, which in turn we estimate is 2.4 eV above the VBM near
the CBM.

most notable feature in the table is that the QSGW strongly
overestimates both the direct and indirect gaps. QSGW is
known to overestimate gaps systematically. However, for most
tetrahedral semiconductors the overestimate is only by about
20% and is ascribed to the random phase approximation (RPA)
underestimate of the screening in calculating W .

Before we discuss the comparison of the calculated gap
with experiment, it is necessary to discuss the experimental
data. The optical absorption spectra measured by Hevesi [48]
and Kenny et al. [45] both show an exponential onset or
Urbach tail. This is associated with defect states below the
gap. Kenny et al. [45] showed a good fit of the absorption
edge in the region above the absorption tail to an equation of
the form Khν ∝ (hν − Eg)3/2, which was interpreted as direct
forbidden transitions. The gap extracted this way is 2.36 eV
for E ‖ a and 2.34 eV for E ‖ b. (Note that they interchange
b and c axes from ours.) We thus can place the smallest direct
gap to be compared with our gap at � at 2.35 ± 0.01 eV. This is
remarkably close to our LDA gap, indicating that the QSGW

gap is significantly overestimated. While a slight overestimate
(of order a few 0.1 eV) of the gaps by QSGW is typically
observed in semiconductors, the overestimate here is much
larger, 2.5 eV.

To further scrutinize this interpretation as a direct forbidden
transition, we have determined the symmetry of the states near
the VBM and CBM at � by inspecting the eigenvectors. The
VBM at � has symmetry A1g , the VBM − 1 has symmetry
B2u, the CBM at � has symmetry B3u, and the CBM + 1 has
symmetry B1g using the D2h point group and the notation
of Tinkham [49]. This means the lowest direct transition
is actually allowed for E ‖ a. If we insist on using K ∝
(hν − Eg)1/2 as expected for direct allowed transitions, then
the plots of Kenny et al. [45] show a less good fit, which may
just mean that the Urbach tail extends to higher energies and
extrapolating the higher part of these curves we obtain a gap
of about 2.45 eV for E ‖ a. So, perhaps, we rather should say
the direct gap is at 2.40 ± 0.05 eV.

Instead of just comparing with the quoted gap values, we
also compare our calculated optical dielectric function directly
with experimental data from spectroscopic ellipsometry by
Parker et al. [26]. In Fig. 9 we compare the measured dielectric
function ε2(ω) with calculations for LDA and 0.38��. The
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FIG. 9. (Color online) Comparison of calculated ε2(ω) in various
approximations with experiment. From top to bottom, xx, yy, and zz

components. In each case we compare Expt., LDA, and 0.38��.

origin of the reduction factor is discussed below. We note that
our LDA results differ somewhat from the LDA calculations
presented by Parker et al. [26] because of the use of different
band structure methods. Because of the anisotropy we need
to distinguish the εxx , εyy , and εzz components. (Again, note
that our b and c are switched from theirs.) These dielectric
functions were calculated using the Adler-Wiser approach.

We can see that the first peak matches rather well in both x

and y direction although the onset or minimum gap seems to be
a bit overestimated. The experimental result seems to strongly
overestimate the z polarized ε2(ω). This was also the case for
the LDA results of Parker et al. [26]. This may be related to
experimental difficulties in measuring the E ‖ c component.
In fact, Parker et al. [26] mention that all measurements are
done on ab planes, so the latter are obtained from differences
between two incident angles which however were chosen
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rather close to each other instead of using nearly normal and
nearly glancing incidence.

Before addressing the overestimate of the QSGW gap
we must make sure that this does not simply arise from a
confusion between the fundamental quasiparticle gap and the
optical gap. The fundamental gap is defined as the difference
between ionization potential and electron affinity as measured,
respectively, by photoemission and inverse photoemission.
Remarkably, such data are in fact available [50] for V2O5 and
give a gap of 2.8 eV. This is about 0.4 eV higher than the optical
gaps but there is unfortunately a larger uncertainty on these
data because of the limited resolution of these spectroscopies
and the uncertainties on the position of the Fermi level in
oxygen deficient V2O5 which could have its Fermi energy
in the split-off band or below it in oxygen vacancy derived
levels. Thus we do not consider this as evidence for a 0.4 eV
exciton binding energy. In fact, the optical spectra shown
in Fig. 9 do not feature a prominent sharp exciton, nor a
Rydberg series of excited states of the exciton, but rather a
straightforward absorption edge representative of interband
transitions. It clearly shows, however, that a fundamental direct
gap Eg > 4 eV as obtained in QSGW is incompatible with
photoemission and inverse photoemission data.

Another approach to this question is by comparing photoe-
mission in V2O5 with that in reduced oxides, such as V6O13.
Essentially in V6O13 one expects the lowest conduction band
of V2O5 to be partially filled in addition to having oxygen
vacancy related states. Such measurements [46] indeed show
an additional feature in photoemission related to the V-3d

occupied bands with a well defined Fermi edge. The V2O5 like
O-2p dominated valence band edge lies indeed about 2.5 eV
below the Fermi edge in V6O13. Unfortunately the resolution of
photoemission is not sufficient to determine the gap precisely.
However, it does show these measurements are compatible
with a fundamental gap of about 2.5 eV rather than >4 eV
as predicted by QSGW . Even if one were to interpret these
shifts between the fundamental gap between one-particle states
and the optical gap as evidence of excitonic or electron-hole
interaction effects, they are seen to be only of order 0.3–0.4 eV.
This also suggests that the electron-hole interaction effects on
W are of the same order of magnitude and cannot explain the
main discrepancy with the QSGW result.

Our QSGW results are consistent with the findings by
Lany [28] although he used a different GWRPA approach. He
started from GGA + U (generalized gradient approximation
with Hubbard-U correction) calculations and iterated only the
eigenvalues in the G in his GWRPA approach while keeping W

fixed at the initial RPA level calculation. The gap reported in
his paper is 4.69 eV, in fact, rather close to our 4.83 eV for the
direct gap at � in QSGW although it was not specified whether
his result refers to the direct or indirect gap. To overcome
this discrepancy, he suggested adding an additional downward
shift of the V-3d states for both occupied and empty states
by means of an external potential. This approach, however,
lacks first-principles justification. Instead we propose to reduce
the �� by a correction factor representing the increase in
screening for reasons explained below.

We now address the reason for the large required reduction
of ��. It has recently been pointed out that for ionic
materials, the lattice contribution to the polarization entering

GW calculations can be substantial [31,32,51]. The general
effect is known since early work of Fowler [52] and Kunz [53].
Recently its implications have been revisited in the context of
GW calculations [31]. It is important to distinguish this macro-
scopic “polaronic” contribution to the polarizability from the
usual gap correction from the electron-phonon interaction,
whose effect is generally small. While Bechstedt [31] already
laid out the frequency dependent formalism for including the
lattice polarization effect in GW calculations, in the end he
took into account that the lattice polarization effect should die
out at frequencies substantially above the LO frequencies and
hence took into account only the static modification of the
long-range macroscopic dielectric constant for the statically
screened contributions to the self-energy. The same approach
was followed by Vidal et al. [51]. Botti and Marquez [32] were
the first to fully include the frequency dependent modifications.

More specifically, for a polar material, the lattice LO
phonon modes lead to an increase in the dielectric constant
even at finite frequencies,

εα
tot(q → 0,ω) = εα

el(q → 0,ω)
∏

i

ω2
LOi − ω2

ω2
TOi − (ω + i0+)2

, (7)

where the product is over all modes i corresponding to the
Cartesian direction α. This effect is expected to be significant
in V2O5 because the ratio of the static (including phonon
contributions) to high-frequency (i.e., electronic screening
only) dielectric constants εα

0 /εα
∞ at zero frequency are as

large as 4.00, 3.62, and 1.25 for α ‖ a, b, c, respectively [23].
Including the anisotropy and frequency dependence properly
in the QSGW calculation is beyond the scope of this paper.
Since we currently do not have an easy way to split the � into
a static and dynamic part, we simply assume the static part
is dominant. This is justified somewhat by the success of the
statically screened exchange approximation. For simplicity we
then apply the correction factor due to the lattice polarization
to the whole � rather than the static part only. A simple way
to average over the directions is

�tot

�el
= Wtot

Wel
≈

(
εa
∞εb

∞εc
∞

εa
0εb

0ε
c
0

)1/3

. (8)

This will clearly overestimate the effect because in reality
the correction factor of ε(ω) should have died out for ω 
ωLO. Thus our approach ignores the details of the frequency
dependence and anisotropy averaging near q → 0 but still
allows us to roughly estimate the degree of reduction by lattice
polarization. Using the data for the static and high-frequency
dielectric constants calculated in our previous paper [23], we
obtain �tot = 0.38�el. Using 0.38�� we obtain a direct gap
of 2.6 eV.1 We expect our estimate to be an overestimate of the
effect so the gap after modification by the lattice polarization
effect should still be larger than 2.6 eV. The remainder might
then be attributed to the orbital dependent electron-hole ladder
diagrams affecting the screening mentioned earlier.

The origin of the large ε0/ε∞ factors in V2O5 can further
be traced to specific phonons using the generalized Lyddane-

1By scaling �� = � − vLDA
xc by a correction factor instead of only

�, the overestimate of the effect is somewhat reduced.
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Sachs-Teller relation. As can be seen in Ref. [23], Table I,
the modes primarily contributing to this factor for the the x

component along a are the B
(3)
3u , B

(4)
3u , and B

(5)
3u modes which

give (ωLO/ωTO)2 factors of 1.52, 1.94, and 1.28, respectively.
These correspond to the broad Reststrahlen bands seen in Fig. 2
of Ref. [23]. Similarly for the b direction, there is only one
mode B

(3)
2u with a large (ωLO/ωTO)2 of 2.77. We note further

that this corresponds to a vibrational motion along the chain
direction in which the V-Ob-V rungs move against the Oc and
hence lead to a strong bond stretch of the V-Oc along the
chain and corresponding dipole. The B3u modes leading to
the enhancement of εa correspond to V-Ob stretch modes or
motions of one chain with respect to the other. We note that the
in-plane enhancement of ε is much stronger than perpendicular
to the plane, where mostly the B

(6)
1u mode corresponding to the

V-Ov stretch provides a (ωLO/ωTO)2 factor of 1.15.

C. Monolayer band structure and dielectric constants in QSGW

Having understood the limitations of QSGW for the bulk of
V2O5 we now move on to the monolayer. The band structures
of the monolayer were determined at the QSGW level for
different interlayer spacings L. More precisely L is defined
as the size of the unit cell in the c direction perpendicular
to the layers. First of all, we show the band structure of the
monolayer in QSGW for the layer spacing L = 11.512 Å in
Fig. 10.

We can see that the location of the VBM is different from
bulk. Although the VBM is rather flat between RT SY we find
the VBM to occur about halfway between Y and �. The fact
that the bands along �-Z are flat and the bands in the ZRT U

plane are almost indistinguishable from those in the �YSX

indicates that the layer separation is sufficient to avoid band
dispersion.

Second, we find that the gap converges very slowly with L.
As can be seen in Fig. 11 the QSGW gap correction beyond
LDA varies linearly as a function of 1/L. The extrapolated gap
for L → ∞ is as large as 7.66 eV with full QSGW . Clearly
the 1/L dependence of the gap is a result of the long-range
terms in �, that is the screened exchange term.
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FIG. 10. (Color online) Band structure of monolayer V2O5 with
interlayer spacing L = 11.512 Å in the QSGW method.
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FIG. 11. (Color online) Direct band gap of V2O5 monolayer as a
function of 1/L with L the interlayer spacing. The circles and blue
line give the QSGW results without lattice polarization correction,
the diamonds and red lines give the results including the lattice
polarization correction, assuming α = ε∞/ε0 also vary as 1/L. Here
α = 0.38 for bulk and 0.49, 0.51, and 0.52 for monolayer with
increasing L, respectively. The numbers in parentheses give the
extrapolated gap for L → ∞.

The electronic dielectric constants were also calculated as
a function of L. In Table III we give dielectric constants cal-
culated using the Adler-Wiser approach and Kramers-Kronig
transformation based on the LDA bands as well as those with
the 0.38�� model for bulk and compare them to experimental
results and our previous calculation using the linear response
approach with a plane wave method [23]. We found the finite
q approach to be less accurate because of the problem of
avoiding high-frequency pole contributions while at the same
time approaching q → 0 sufficiently closely. We note that
with full QSGW , the dielectric constants are significantly
underestimated as expected because of the gap overestimate.
We note that the closest agreement with experiment occurs for
the reduced � model.

TABLE III. High-frequency dielectric constant in V2O5 as a
function of layer spacing.

L (Å) εxx εyy εzz

4.38 5.48a 5.25a 4.63a

Bulk 4.35b 4.13b 3.49b

6.54c 6.08c 3.87c

4.28d 4.49d 3.88d

7.29e 6.00e 4.28e

11.512 2.60a 2.54a 2.24a

2.97c 2.75c 1.43c

15.084 2.23 2.17 1.95
18.656 2.00 1.95 1.77

aThis work, LDA using Adler-Wiser formula and Kramers-Kronig
transformation.
bThis work, 0.38�� using Adler-Wiser formula and Kramers-Kronig
transformation.
cUsing ab initio LDA plane wave pseudopotential calculation by
Bhandari et al. [23].
dFrom refractive index in the wavelength range (0.6708–0.5893 μm)
extrapolated to λ → ∞ of V2O5 single crystal by Kenny et al. [45].
eFrom refractive index at λ = 0.671 μm, Clauws et al. [54].
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FIG. 12. (Color online) Real part of the electronic dielectric
constant ε1(ω = 0) (the values inside the bracketed are for L = ∞)
of V2O5 as a function of 1/L with L the layer spacing calculated in
LDA.

The dielectric constants are shown in Fig. 12 plotted as
a function of 1/L. Clearly these also behave linearly in 1/L

as predicted by Cudazzo et al. [55]. This is a result of the
strongly modified screening in a 2D system. All components
extrapolate essentially to ε → 1 for L → ∞. The slope is
opposite in sign to that of the gap as expected because the gap
correction is proportional to � which in turn is proportional to
W and hence to ε−1.

In the previous section we have shown that QSGW

overestimates the gap for the bulk and thus we expect this
also to be the case for the monolayer. We apply the lattice
polarization effect in the same approximate way as in Eq. (7)
by a simple reduction factor. However, the εα

∞/εα
0 factors are

different for the monolayer and for the bulk. We assume that
they also vary linearly as 1/L and use the results of Ref. [23]
to find the correction factor for each L. The gaps obtained in
this way are shown in Fig. 11. Because both the QSGW and
the lattice polarization factor have the form of a constant plus
a 1/L term, the final result is fitted to a quadratic equation
A + B/L + C/L2, giving the full-line interpolation through
the points and leading to a final predicted fundamental gap
for the monolayer of 4.91 eV. We emphasize that this is the
fundamental quasiparticle gap because excitonic effects may
also be expected to be stronger in the monolayer and could
reduce the optical gap. We note that if instead, as Lany [28]
suggested, we had applied a simple d band shift, the QSGW

results without lattice effect would have simply shifted down
by 3.4 eV but with the same slope. This would have given a
significantly larger gap of 5.57 eV.

Another interesting point is that from the monolayer calcu-
lation we can extract an ionization potential or work function.
In fact, we can plot the smooth part of the electrostatic potential
relative to the internal zero used in the calculation and place
the VBM relative to this same zero. This is shown in Fig. 13.
This gives us a calculated work function of 9.7 eV in LDA
and including the absolute QSGW shift, 10.9 eV in QSGW ,
or after including the lattice polarization effect (reduction
factor 0.49 for a monolayer), 10.1 eV. Experimentally the
work function of a V2O5 (001) surface was measured by
Grymonprez et al. [56]. It was found to be 6.71 eV for a
freshly cleaved surface. The question, however, is whether

FIG. 13. (Color online) Smooth electrostatic potential (VS) for
monolayer V2O5 as a function of z, the distance normal to the layer
and valence band maximum (dashed line) obtained within LDA,
QSGW , and 0.49��, giving ionization potentials of 9.7, 10.9, and
10.1 eV, respectively. The flat region corresponds to the vacuum
reference level.

this corresponds to the VBM which is nominally the highest
occupied state or to the CBM, which one might assume to
be slightly filled if there is some doping present from oxygen
vacancies or impurities. In Ref. [56] it was also found that
after electron bombardment, the ionization potential shifted
down by about 0.6 eV. This would correspond to further filling
of the conduction band. This shift certainly is much smaller
than the gap and thus indicates that even on a fresh surface,
the work function measured already determines a Fermi level
close to the conduction band edge rather than the valence band
edge. With this interpretation, the VBM would correspond to
an ionization potential of about 9.0 eV assuming a gap of about
2.3 eV. Recently a very high ionization potential of 9.5 eV was
reported for V2O5 along with a high work function of 7 eV
and a Fermi level close to the conduction band minimum [50].

This seems to indicate that QSGW (10.9 eV) overestimates
the ionization potential by about 1.5–2.0 eV which is some-
what larger than what is found for most semiconductors by
Grüneis et al. [57]. We note that the size quantization effects
in a monolayer are expected to shift up the electron states and
hence reduce the ionization potential compared to that near a
surface of a bulk crystal. Thus the discrepancy may be even
larger. The result including lattice polarization or LDA appear
to be closer to experiment.

IV. CONCLUSIONS

In this paper we first discussed some reasons why it is of
interest to study the monolayer V2O5 electronic band structure.
We summarized the interesting features of the band structure at
the LDA level. Band structures calculated at the QSGW level
were presented. After a careful review of the experimental liter-
ature data, the QSGW was shown to overestimate the band gap
significantly more than is usual for sp-bonded semiconductors.
We identified the lattice polarization as the major missing
ingredient responsible for this discrepancy. A rough estimate
of this effect in the form of an overall reduction factor of ��

based on the previously calculated dielectric constants with
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and without the lattice polarization, led to a reduction factor of
0.38. Including this factor, we obtain fair agreement between
our calculated imaginary part of the dielectric function with
spectroscopic ellipsometry data. We expect our lattice polar-
ization effect to be slightly overestimated by our simplified
static approximation and hence part of the discrepancy on
the gap must still result from other not included effects, such
as missing electron-hole diagrams in the calculation of W .
In any case, it was found that the gap overestimate is not
due to a large bound exciton effect but rather already affects
the quasiparticle fundamental gap. This is confirmed by the
comparison of IPES-PES data with optical absorption and
spectroscopic ellipsometry data in the literature.

The band gaps of the monolayer at the QSGW level were
found to depend inversely on the layer spacing as 1/L and this
was shown to originate from the long-range screened exchange
term as the corresponding ε also shows a 1/L behavior. The
latter also must be corrected by a different lattice polarization
factor because the ratio of lattice to electronic screening itself
is different in the monolayer from the bulk. In the end, our

extrapolated results still predicts a significant increase of the
fundamental quasiparticle gap of the free-standing monolayer
from the bulk.

We also determined the ionization potential of the mono-
layer and found it to agree qualitatively with the reported high
value of 9–10 eV and to be overestimated by QSGW by at
least 1 eV as has also been observed for other materials in
recent work.
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[25] V. Brázdová, M. V. Ganduglia-Pirovano, and J. Sauer, Phys.

Rev. B 69, 165420 (2004).
[26] J. C. Parker, D. J. Lam, Y.-N. Xu, and W. Y. Ching, Phys. Rev.

B 42, 5289 (1990).
[27] A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner,

and M. Petersen, Phys. Rev. B 59, 10583 (1999).
[28] S. Lany, Phys. Rev. B 87, 085112 (2013).
[29] H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 86, 241201

(2012).
[30] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett.

96, 226402 (2006).
[31] F. Bechstedt, K. Seino, P. H. Hahn, and W. G. Schmidt, Phys.

Rev. B 72, 245114 (2005).
[32] S. Botti and M. A. L. Marques, Phys. Rev. Lett. 110, 226404

(2013).
[33] M. Methfessel, M. van Schilfgaarde, and R. A. Casali, in

Electronic Structure and Physical Properties of Solids. The Use
of the LMTO Method, Lecture Notes in Physics Vol. 535, edited
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