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Monogamy of entanglement and improved mean-field ansatz for spin lattices
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We consider rather general spin-1/2 lattices with large coordination numbers Z. Based on the monogamy of
entanglement and other properties of the concurrence C, we derive rigorous bounds for the entanglement between
neighboring spins, such as C � 1/

√
Z, which show that C decreases for large Z. In addition, we demonstrate

that the concurrence C measures the deviation from mean-field behavior and can only vanish if the mean-field
ansatz yields an exact ground state of the Hamiltonian. Motivated by these findings, we propose an improved
mean-field ansatz by adding entanglement.
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I. INTRODUCTION

Quantum information theory is not only interesting in
view of quantum computers and quantum cryptography but
offers important insights into other branches of physics as
well. For instance, a deeper understanding of entanglement—
which is one of the major differences between classical
and quantum physics—can help us to grasp the complexity
of quantum many-body problems better. This strategy has
already lead to very successful developments, for example,
matrix-product states, which have been shown to efficiently
approximate ground states of suitable one-dimensional lattice
Hamiltonians. For a recent review, see [1]. Unfortunately,
transferring this concept to higher-dimensional lattices with
a consequently larger coordination number Z is a nontrivial
task. Besides tensor-network states [2–4], a step into this
direction is the quantum de Finetti theorem [5–7]. In one
version, this theorem implies the following statement: If a
given state ρ̂(n) of n � 1 qubits is invariant under permutation
of any two of those qubits, then the reduced density matrix
of two qubits ρ̂(2) can be approximated by a separable
(i.e., nonentangled) state plus O(1/n) corrections. However,
ground states of lattice Hamiltonians typically do not obey the
full permutational invariance required for this theorem to hold
(unless we have a fully connected lattice where all sites are
equally interacting neighbors [8]. In the following, we replace
this full permutational invariance by a much smaller subgroup,
the lattice isotropy, and derive a similar statement based on the
monogamy of entanglement [10,11] and certain properties of
the concurrence [12–14].

II. SPIN LATTICE

We consider a general regular, isotropic, and bipartite lattice
of spins 1/2 (i.e., qubits) described by the Hamiltonian

Ĥ = 1

Z

∑
〈μ,ν〉

σ̂μ · J · σ̂ ν +
∑

μ

B · σ̂μ, (1)

where σ̂μ = (σ̂ x
μ,σ̂

y
μ,σ̂ z

μ) are the usual Pauli matrices acting on
the spin at the lattice site μ and B = (Bx,By,Bz) denotes the
local field while J is a 3 × 3 matrix (tensor) describing the
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interactions between neighboring sites μ and ν (denoted by
〈μ,ν〉). Finally, Z is the coordination number (i.e., it counts the
number of neighbors ν for each given lattice site μ), and we
consider the limit of large Z. The 1/Z scaling in front of the
J term is chosen such that the energy per lattice site remains
well defined in this limit Z → ∞.

In general, obtaining the ground state of a Hamiltonian
of the form of Eq. (1) can be rather complicated. Here,
we shall exploit the properties of entanglement in order to
understand the features of this ground state better. Obviously,
the knowledge of the reduced density matrices ρ̂〈μν〉 of
neighboring spins μ,ν suffices for calculating the ground-state
energy. The entanglement between these sites μ and ν is also
completely determined by ρ̂〈μν〉 and can be measured by the
concurrence C[ρ̂〈μν〉]. This quantity satisfies the monogamy
of entanglement; i.e., the one-tangle τ1(ρ̂μ) = 4 det(ρ̂μ) of a
given lattice site μ described by the on-site reduced density
matrix ρ̂μ yields an upper bound to its entanglement with all
neighboring sites ν via [10,11]

τ1(ρ̂μ) = 4 det(ρ̂μ) �
∑

ν

C2[ρ̂〈μν〉]. (2)

Assuming that the ground state obeys the same (discrete)
symmetries as the underlying lattice, those matrices ρ̂〈μν〉 have
the same form for all ν. Thus the sum over ν just gives a factor
Z and we get the upper bound for the concurrence:

C[ρ̂〈μν〉] �
√

τ1

Z
�

√
1

Z
, (3)

where we have used τ1 � 1 in the last step. As a result, in the
limit of large coordination numbers, the entanglement between
two spins is suppressed with 1/

√
Z or even stronger (see

below). The entanglement between next-nearest neighbors
C ′ can be bound via similar arguments; for example, in a
hypercubic lattice in D dimensions (where Z = 2D), we get
C ′ � 1/

√
2D(D − 1).

III. GROUND-STATE ENERGY

As our next step, we exploit the high symmetry (degen-
eracy) in the decomposition space for the concurrence (as a
quadratic polynomial), which facilitates the decomposition of
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every two-qubit density matrix [12,13]

ρ̂〈μν〉 =
4∑

I=1

pI

∣∣�I
μν

〉〈
�I

μν

∣∣ (4)

into (at most) four pure states |�I
μν〉 with the corresponding

probabilities pI such that these states |�I
μν〉 have all the same

concurrence C. Then the properties of the concurrence enable
us to split each state |�I

μν〉 into a separable part and an
orthogonal entangled part [14]:∣∣�I

μν

〉 = √
1 − C

∣∣ψI
μ

〉 |ψI
ν 〉 +

√
C ÛI

μÛ I
ν |Bell〉μν, (5)

where |Bell〉 is one of the maximally entangled Bell states
such as |Bell〉 = (|↑↑〉 + |↓↓〉)/√2 = |�+〉 while Û I

μ and
Û I

ν are some local unitary operations which do not change
the entanglement. Combining all these results, we get the
following estimate for the energy per lattice site:

〈Ĥ 〉
N

=
4∑

I=1

pI

2

[〈
σ̂ I

μ

〉 · J · 〈
σ̂ I

ν

〉 + B · (〈
σ̂ I

μ

〉 + 〈
σ̂ I

ν

〉)]
+O(

√
C), (6)

where 〈σ̂ I
μ〉 = 〈ψI

μ|σ̂μ

∣∣ψI
μ

〉
denote local (mean-field) expec-

tation values. The magnitude of the O(
√

C) corrections
can be estimated by the matrix elements of the operators
σ̂μ · J · σ̂ ν and B · σ̂μ between the separable 〈ψI

μ| 〈ψI
ν | and

fully entangled states Û I
μÛ I

ν |Bell〉μν . Via a global SU(2)
rotation ⊗μV̂μ, we may diagonalize the matrix J such that
σ̂μ · J · σ̂ ν becomes Jxxσ

x
μσ x

ν + Jyyσ
y
μσ

y
ν + Jzzσ

z
μσ z

ν . Then
we get terms like Jxx〈ψI

μ| 〈ψI
ν |V̂ †

μV̂ †
ν σ x

μσ x
ν V̂μV̂νÛ

I
μÛ I

ν |Bell〉μν

and analogously for Jyy and Jzz. Since the maximum overlap
between a separable and a Bell state is 1/

√
2, the matrix

elements of σ̂μ · J · σ̂ ν can be bounded from above by
(|Jxx | + |Jyy | + |Jzz|)/

√
2. Similarly, the matrix elements of

B · σ̂μ can be bounded from above by |B|/√2.
Consequently, in the limit of large Z and therefore small C,

we may estimate the ground-state energy (per lattice site) by
the variational mean-field ansatz:

|�mf〉 =
⊗

μ

|ψμ〉. (7)

Inserting this mean-field ansatz and minimizing the energy
thus yields an estimate for the exact ground-state energy up
to O(

√
C) corrections. If this variational procedure yields a

unique solution |ψμ〉 = |ψ0〉, the resulting state |ψ0〉 provides
a good approximation to the local (on-site) properties of the
exact ground state.

IV. ISING MODEL

Let us study this general procedure by means of an explicit
example, the quantum Ising model:

Ĥ = − J

Z

∑
〈μ,ν〉

σ̂ x
μσ̂ x

ν − B
∑

μ

σ̂ z
μ. (8)

Up to an irrelevant global phase, the mean-field ansatz (7) can
be parametrized via

|ψμ〉 = cos
ϑμ

2
|↑〉 + eiϕμ sin

ϑμ

2
|↓〉, (9)

and, after insertion into the Hamiltonian, we get the mean-field
energy per lattice site:

〈Ĥ 〉mf

N
= −1

2
[J sin ϑμ cos ϕμ sin ϑν cos ϕν

+B(cos ϑμ + cos ϑν)]. (10)

Accordingly, for B > |J |, we obtain a unique minimum at
ϑμ = ϑν = 0 corresponding to the paramagnetic state |�mf〉 =
|↑↑↑ . . . 〉.

As stated above, this mean-field ansatz |ψμ〉 = |↑〉 provides
a good approximation to the local properties of the exact
ground state for large Z and thus small C. To make this
statement more precise, let us consider the on-site reduced
density matrix of the exact ground state, which can be cast
into the most general form:

ρ̂μ = (1 − p) |↑〉〈↑| + p|↓〉〈↓| + α|↑〉〈↓| + α∗|↓〉〈↑|.
(11)

By invoking symmetry arguments, one can even show that α

must vanish exactly in the paramagnetic state, but this is not
necessary for our purposes. Using the parametrization (9) for
the states |ψI

μ〉, a Taylor expansion of Eq. (6) for small ϑI
μ,ν

yields a bilinear form of the ϑI
μ,ν to lowest nontrivial order.

Completing the square, we obtain the following inequality:

〈Ĥ 〉
N

� 〈Ĥ 〉mf

N
+ (B − |J |)

4∑
I=1

pI

4

[(
ϑI

μ

)2 + (
ϑI

ν

)2]

+O
(
pI

[
ϑI

μ,ν

]4) + O(
√

C), (12)

where 〈Ĥ 〉mf/N = −B is the mean-field energy per lattice site
[Eq. (10)]. Obviously, the exact ground-state energy 〈Ĥ 〉/N
in the above expression must not exceed that of the mean-
field ansatz 〈Ĥ 〉mf/N , which yields the bound pI (ϑI

μ,ν)2 �
O(

√
C). This implies that the probability p in Eq. (11) scales

with p � O(
√

C). Analogously, one can obtain the bound
α � O( 4

√
C) consistent with the properties of ρ̂μ such as

det(ρ̂μ) � 0 or Tr{ρ̂2
μ} � 1.

As a result, we find that the one-tangle τ1(ρ̂μ) is also
suppressed as τ1 � O(

√
C). Together with our initial bound

C � Z−1/2 from Eq. (3), we thus get τ1 � O(Z−1/4). How-
ever, inserting this estimate back into Eq. (3), we obtain
the improved scaling C �

√
τ1/Z � O(Z−5/8). Repeatedly

iterating this procedure, the scaling exponents eventually
converge to

C � O(Z−2/3), τ1 � O(Z−1/3). (13)

On the other hand, the hierarchy of correlations derived in
[15,16], for example, suggests that the one-tangle as well as all
two-point correlations are suppressed by 1/Z in this situation.

Since the maximum two-point correlation cannot be smaller
than the concurrence C [17], this would imply an even stronger
bound C � O(Z−1), but—to the best of our knowledge—
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there is no rigorous proof, yet. Of course, the concurrence
could be even smaller.

V. IMPROVED MEAN-FIELD ANSATZ

Having found that the concurrence C measures the de-
viation from the mean-field behavior, let us try to use this
insight in order to improve the mean-field ansatz by adding
entanglement. Inspired by Eq. (5), we start with the following
ansatz for two sites

|�μν〉 = N (1 + σ̂μ · ξ · σ̂ν)|↑〉μ|↑〉ν, (14)

where ξ acts as an entangling operation leading to a small
but nonzero concurrence and N is the normalization. For the
paramagnetic state |�mf〉 = |↑↑↑ . . . 〉 of the Ising model, it
is sufficient to keep only the relevant operators ξσ x

μσ x
ν (or

ξσ−
μ σ−

ν ). Applying this procedure to the whole lattice yields
the improved mean-field ansatz [18]:

|�〉imf = N

⎛
⎝ ∏

〈μ,ν〉
exp

{
ξ σ̂ x

μσ̂ x
ν

}⎞⎠ ⊗
μ

|↑〉μ, (15)

where
⊗

μ |↑〉μ = |↑↑↑ . . . 〉 is the original mean-field ansatz
(without entanglement). Here, we apply this entangling opera-
tion to nearest neighbors only, but this can be generalized easily
to ξμνσ̂

x
μσ̂ x

ν . Using the identity exp{ξ σ̂ x
μσ̂ x

ν } = 1 cosh ξ +
σ̂ x

μσ̂ x
ν sinh ξ , we get the single-site reduced density matrix:

ρ̂μ = 1

2

[
1 +

(
cos(2ξ )

cosh(2�ξ )

)Z/2

σ̂ z
μ

]
. (16)

The reduced density matrix for nearest neighbors reads

ρ̂〈μν〉 = 1
4

[
1 + (

σ̂ x
μσ̂ x

ν − χ2(Z−1)σ̂ y
μσ̂ y

ν

)
tanh 2�ξ

+χ2(Z−1)σ̂ z
μσ̂ z

ν + χZ
(
σ̂ z

μ + σ̂ z
ν

)
+ωZ

(
σ̂ x

μσ̂ y
ν + σ̂ y

μσ̂ x
ν

)]
, (17)

where we have used the following abbreviations:

χ = cos(2ξ )

cosh(2�ξ )
, ω = sin(2ξ )

cosh(2�ξ )
, (18)

containing the real �ξ and imaginary part ξ of ξ .
In order to test whether the ansatz (15) is really an

improvement, let us consider the energy which reads

〈Ĥ 〉imf

N
= −J

2
tanh(2�ξ ) − B

(
cos(2ξ )

cosh(2�ξ )

)Z

. (19)

We see that adding entanglement, i.e., increasing ξ , lowers
the interaction energy ∝ J but increases the on-site term
∝ B. Furthermore, we find that only the real part of ξ can
actually lower the energy, while the imaginary part always
leads to an increase. The imaginary part of ξ generates a
unitary transformation Û which cannot lower the energy
〈Ĥ 〉imf . As another way to see this, one can apply this
unitary transformation Û to the Hamiltonian (8) instead of
the state (15). Obviously, the interaction term ∝ J remains
invariant under this unitary transformation and thus still yields
a zero expectation value, while the expectation value of the
local term ∝ B can only increase. Consequently, we choose

ξ to be real such that the operation acting on the mean-
field state in Eq. (15) is nonunitary (thus the normalization
N ). Interestingly, Eq. (15) can then be reinterpreted as an
imaginary time evolution operator if we insert the Hamiltonian
(8) with B = 0 and identify itJ/Z = ξ .

As also expected from stationary perturbation type argu-
ments, the minimum energy is reached for a finite value:

ξmin = J

4BZ
+ O(1/Z2). (20)

Consistent with the previous observations, the entangling
strength ξ decreases for large Z. In addition, because the
energy of the improved mean-field ansatz (15) lies below
the mean-field value, we know that the concurrence must be
nonzero. Let us specify the relevant quantities for this example.
The one-tangle obtained from Eq. (16) reads

τ1 = 1 − 1

[cosh(2ξmin)]2Z
= J 2

4B2Z
+ O(1/Z2). (21)

As a result, the concurrence must be suppressed according to
C � J/(2BZ) + O(1/Z2) in view of Eq. (3). To test this
bound, let us calculate the concurrence of the state (15).
Since the entangling strength ξ scales with 1/Z according to
Eq. (20), we introduce the scaling variable ζ = Z|ξ |. Then,
an expansion into powers of 1/Z (for fixed ζ ) yields the
concurrence [20]:

C = 2
ζ − ζ 2

Z
�(1 − ζ ) + O(1/Z2). (22)

The positive contribution +2ζ/Z is basically the concurrence
of the pure state (14), up to O(1/Z2) corrections. The negative
contribution −2ζ 2/Z, on the other hand, stems from the fact
that ρ̂〈μν〉 is a mixed state due to the entanglement with all
the other neighboring sites λ �= μ,ν which are averaged over
when obtaining ρ̂〈μν〉.

Thus, for small ζ � 1, the concurrence C approximately
saturates the bound C � J/(2BZ) + O(1/Z2) from Eq. (3).
For larger ζ , on the other hand, the concurrence C lies below
this bound, and for ζ � 1 it even vanishes—as indicated by the
Heaviside step function �(1 − ζ ). For a vanishing concurrence
C = 0, the arguments above imply that the ansatz (15) cannot
yield an improvement over the usual mean-field ansatz (7).
However, this does not lead to any inconsistency because this
case ζ � 1 corresponds to |ξ | � 1/Z and therefore |J | � 4B,
which lies already far beyond the (mean-field) critical point at
B = |J |.

VI. XY MODEL

As another example, let us consider the XY model as
described by the Hamiltonian

Ĥ = − J

Z

∑
〈μ,ν〉

(
1 + γ

2
σ̂ x

μσ̂ x
ν + 1 − γ

2
σ̂ y

μσ̂ y
ν

)

−B
∑

μ

σ̂ z
μ, (23)

where γ ∈ [0,1] is the anisotropy parameter. For γ = 1, we
recover the Ising model (8) whereas γ = 0 yields the isotropic
limit. (Away from the isotropic point γ = 0, the XY model
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is in the same universality class as the Ising model.) Using
the same variational ansatz (15), the entangling parameter ξmin

yielding the minimum energy is modified by the anisotropy
parameter γ via

ξmin = γ
J

4BZ
+ O(1/Z2). (24)

The one-tangle and the concurrence are reduced accordingly.
We observe that, for γ > 0, the improved mean-field ansatz
(15) gives an advantage and, consistently, the concurrence is
nonzero. In the isotropic case γ = 0, on the other hand, the
mean-field ansatz actually yields the exact ground state in the
paramagnetic regime—which is consistent with the vanishing
concurrence and ξmin = 0. It has a Berezinskii-Kosterlitz-
Thouless transition at J/B = 1.

VII. DEGENERATE GROUND STATES

Note that the above arguments require a unique mean-field
solution |ψ0〉. Let us briefly discuss the cases where this
solution is not unique. For J > |B|, we are in the symmetry-
breaking ferromagnetic regime (on the mean-field level) where
the mean-field energy (10) has two minima—one at ϕμ =
ϕν = 0 and the other one at ϕμ = ϕν = π . For J � |B|, these
two minima move to ϑμ = ϑν = π/2 corresponding to the
states |�−

mf〉 = | ←←← . . . 〉 and |�+
mf〉 = | →→→ . . . 〉.

Even though the mean-field solution |ψ0〉 is not unique in
this case, we might select one of the two states as our starting
point and carefully proceed in the same way as before. The
incoherent average of the results in the two cases corresponds
to the mixed state ρ̂ = (|�+

mf〉〈�+
mf| + |�−

mf〉〈�−
mf|)/2.

The remaining region of parameter space J < −|B| corre-
sponds to the antiferromagnetic regime (again on the mean-
field level) which also breaks the symmetry. In a bipartite
lattice, where we do not have to deal with frustration, we could
again choose one of the two states as mean-field background
and apply the same procedure. In the case of frustration,
however, things become more complicated and we cannot find
a consistent mean-field background. In this case, the one-tangle
could well be of order 1 and thus the concurrence could be
much larger, possibly C = O(1/

√
Z).

Finally, at the critical points J = ±B, we do find a
consistent mean-field background, but the estimates after
Eq. (12) do not apply anymore, and thus the one-tangle and
concurrence could also be larger than they are well inside the
paramagnetic phase, for example.

VIII. CONCLUSIONS AND OUTLOOK

We have considered a general regular isotropic spin lattice
with local (on-site) terms and nearest-neighbor interactions
of Ising type [Eq. (1)]. Assuming that the ground state
shares the isotropy of the lattice, monogamy of entanglement
[Eq. (2)] implies that the concurrence C between neighboring
spins decreases at least as C � 1/

√
Z for large coordination

numbers Z. Under certain assumptions (such as a unique
mean-field minimum), the bound can be improved to C �
O(Z−2/3). On the other hand, unless the mean-field ansatz
(7) yields an exact ground state of the Hamiltonian (see also
[21,22]), the concurrence C is nonzero for nearest neighbors.

In addition, the difference between the exact ground-state
energy per lattice site and that of the mean-field ansatz is
bounded by O(

√
C),

〈Ĥ 〉mf

N
− 〈Ĥ 〉exact

N
� (||J || + 2|B|)

√
2C + O(C), (25)

where ||J || = Tr{
√

J2} = |Jxx | + |Jyy | + |Jzz|, i.e., the
nearest-neighbor entanglement C serves as a measure for the
deviation from the mean-field solution.

Motivated by these findings, we propose an improved mean-
field ansatz (15) by adding a small amount of entanglement.
For the Ising model (8) in the paramagnetic regime, we show
that this ansatz (15) does indeed yield a better approximation
to the ground state and that the one-tangle and the concurrence
(22) scale with 1/Z in this case, consistent with [15,16]. Even
though this is reminiscent of the quantum de Finetti theorem
[6], where the corrections do also scale with the inverse of
the number n of involved qubits, we would like to stress that
the scaling (22) is obtained in a different way (e.g., without
assuming full permutational invariance).

As an outlook, one might generalize the improved mean-
field ansatz (15) via N exp{∑μν σ̂μ · ξμν · σ̂ ν}|�0〉 to situ-
ations where the range of ξμν is not restricted any more
to nearest neighbors only, such that the ξμν could add a
small amount of long-range entanglement. Also more general
states |�0〉 such as projected entangled pair states could be
considered. As another direction, it would be interesting to
generalize our results to states different from the ground state,
such as the real-time evolution after a quantum quench, or
thermal states, for example. Since thermal states are mixed,
one might replace the one-tangle τ1(ρ̂μ) = 4 det(ρ̂μ) by its
convex-roof extension (which is usually smaller), but this
quantity does also satisfy the monogamy inequality. Note that
the bounds (3) and (6) are only based on the assumption
that the state obeys the lattice symmetries. They thus do
apply to these cases (real-time evolution after a quantum
quench or thermal states) as well. In contrast, the derivation
of subsequent bounds such as Eq. (13) is also based on energy
minimization arguments [see, e.g., Eq. (12)] and thus only
applies to the ground state, but not necessarily to the quantum
quench scenario. Even in those cases where the one-tangle
in the ground state is suppressed as τ1 = O(1/Z), we would
expect that it could increase to τ1 = O(1) during the time
evolution after a quantum quench. Hence, the concurrence C

[being initially suppressed as C � O(1/Z)] could in principle
also grow in this situation—as long as it obeys the bound
C � 1/

√
Z; the precise behavior should be investigated in

future studies.
Furthermore, it would be highly desirable to study and

extend the various properties of the concurrence (such as the
monogamy of entanglement) to further entanglement measures
(for extensions of the monogamy for qubits, see [23]) as, e.g.,
three-particle quantum correlations investigated in [24].
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APPENDIX

In order to illustrate the broad applicability of the improved
mean-field ansatz, we briefly discuss a further generalization to
the Fermi-Hubbard model, where σ̂μ · J · σ̂ ν is replaced by the
hopping term J [ĉ†μ,↑ĉν,↑ + ĉ

†
μ,↓ĉν,↓] with fermionic creation

and annihilation operators while B · σ̂μ corresponds to the
interaction term Un̂μ,↑n̂μ,↓ with n̂μ,↑ = ĉ

†
μ,↑ĉμ,↑ and n̂μ,↓ =

ĉ
†
μ,↓ĉμ,↓. For U � J , the mean-field ground state |�mf〉 in a

bipartite lattice at half filling is the Mott insulator state with
precisely one fermion per site obeying Néel ordering, i.e.,
alternating spins (antiferromagnetic).

In analogy to Eq. (14), the linearized corrections to
this mean-field ansatz read

∑
ij Âμ,i ξμν,ij Âν,j |�mf〉 where

the Âμ,i form a complete set of on-site operators. If we
respect the U (1) symmetry, the term Âμ,i ξμν,ij Âν,j could

contain products of two, four, six, or eight operators out
of ĉμ,↑, ĉν,↑, ĉμ,↓, ĉν,↓, and the corresponding raising
operators.

As terms containing two operators, we obtain the generators
of the well-known particle-hole excitations (which become
the doublon-holon excitations in the Mott-Néel state) ĉ

†
μ,↑ĉν,↑

and ĉ
†
μ,↓ĉν,↓, which correspond to a fermionic Bogoliubov

transformation. The nontrivial terms with four operators
yield the generators for the spin modes ĉ

†
μ,↑ĉ

†
ν,↓ĉν,↑ĉμ,↓ and

ĉ
†
ν,↑ĉ

†
μ,↓ĉμ,↑ĉν,↓ while the remaining terms with six and eight

operators do not give any new generators after acting on the
Mott-Néel state. Thus, the improved mean-field ansatz (15)
can be generalized to this case as well and automatically
reproduces the relevant particle-hole and spin modes known
from other approaches.
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