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Fate of the false Mott-Hubbard transition in two dimensions
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We have studied the impact of nonlocal electronic correlations at all length scales on the Mott-Hubbard
metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex
approximation, lattice quantum Monte Carlo, and variational cluster approximation, we demonstrate that
scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens a spectral gap at weak-to-intermediate
coupling, irrespective of the preformation of localized or short-range magnetic moments. This is the reason why
the two-dimensional Hubbard model has a paramagnetic phase which is insulating at low enough temperatures
for any (finite) interaction and no Mott-Hubbard transition is observed.
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I. INTRODUCTION

The Mott-Hubbard metal-insulator transition (MIT) [1]
is one of the most fundamental hallmarks of the physics
of electronic correlations. Nonetheless, astonishingly little
is known exactly, even for its simplest modeling, i.e., the
single-band Hubbard Hamiltonian [2]: Exact solutions for this
model are available only in the extreme, limiting cases of one
and infinite dimensions.

In one dimension, the Bethe ansatz shows that there is
actually no Mott-Hubbard transition [3–5]; in other words,
it occurs for a vanishingly small Hubbard interaction U .
At any U > 0 the one-dimensional (1D) Hubbard model is
insulating at half filling. One dimension is, however, rather
peculiar: While there is no antiferromagnetic ordering even
at temperature T = 0, antiferromagnetic spin fluctuations are
strong and long ranged, decaying slowly, i.e., algebraically.
Also, the (doped) metallic phase is not a standard Fermi liquid
but a Luttinger liquid.

For the opposite extreme, infinite dimensions, the dy-
namical mean-field theory (DMFT) [6] becomes exact [7],
which allows for a clear-cut and, to a certain extent, almost
“idealized” description of a pure Mott-Hubbard MIT. In
fact, since in D=∞ only local correlations survive [7], the
Mott-Hubbard insulator of DMFT consists of a collection
of localized (but not long-range ordered) magnetic moments.
This way, if antiferromagnetic order is neglected or sufficiently
suppressed, DMFT describes a first-order MIT [6,8], ending
with a critical end point.

As an approximation, DMFT is applicable to the more
realistic cases of the three- and two-dimensional Hubbard
models. However, the DMFT description of the MIT is the
very same here since only the noninteracting density of
states (DOS) and, in particular, its second moment enter.
This is a natural shortcoming of the mean-field nature of
DMFT: antiferromagnetic fluctuations have no effect at all
on the DMFT spectral function or self-energy above the
antiferromagnetic ordering temperature TN .

In three dimensions, antiferromagnetic fluctuations reduce
TN sizably compared to the DMFT (see Fig. 1), although they
are significant only at T � TN . Hence, the reliability of the
DMFT results for the spectral functions is not spoiled in three

dimensions except for the proximity of the antiferromagnetic
transition [9–12], whereas deviations from the DMFT entropy
and susceptibilities can be significant also at higher T [12,13].
With this background, it is maybe not surprising that DMFT
also yields a good description of the MIT even for realistic
material cases, such as the textbook example V2O3 [14].

Much more intriguing, and challenging, is the two-
dimensional (2D) case, which is most relevant for high-
temperature superconductivity and the rapidly emerging field
of oxide thin films and heterostructures. In fact, this issue has
been intensely debated since the 1970s: On the one hand,
several analytical and numerical results [15–20] suggested
that a metallic phase is found at weak coupling, with a
MIT at a finite Uc. At the same time, calculations with the
two-particle self-consistent (TPSC) approach [21–23] showed
a pseudogap in the perturbative regime of small U [24]. Finally,
in Anderson’s view [25] the 2D physics should be considered
fully nonperturbative, similar [5] to that in one dimension,
yielding a Mott gap and the localized physics of the 2D
Heisenberg Hamiltonian for all U > 0.

More recently, most precise numerical studies have shown
unambiguously that the short-range spin fluctuations do
actually reduce the critical interaction Uc for the MIT in
two dimensions compared to DMFT and reverse its slope
(see Fig. 1). (Note that the DMFT insulating phase has the
full entropy of free spins, i.e., ln 2 per site, implying the
positive DMFT slope dUc/dT > 0 of Fig. 1.) Such a 2D
picture has been established by cluster DMFT (CDMFT) [26],
dynamical cluster approximation (DCA) [27,28], and second-
order dual-fermion [29] studies [30], which systematically
include nonlocal correlations beyond DMFT. However, given
the limited cluster sizes of CDMFT and DCA calculations,
only short-range correlations are included.

In this paper, we revisit the MIT in two dimensions and
the effect of antiferromagnetic spin-fluctuations thereupon. To
this end, we employ three methods: (i) the variational cluster
approximation (VCA) [31], which includes short-range corre-
lations, (ii) the dynamical vertex approximation (D�A), which
includes short- and long-range correlations beyond DMFT
on the same footing [32], and (iii) lattice quantum Monte
Carlo (QMC) simulations [33–35] of unprecedented accuracy
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FIG. 1. (Color online) MIT of the Hubbard model on a square
lattice determined by different nonperturbative techniques. The
DMFT transition line (blue [39]) is shifted towards lower inter-
action values due to short-range spatial correlations (violet line:
CDMFT [26]; orange cross at T = 0: VCA). This trend is accompa-
nied by a simultaneous shrinking of the coexistence regions (hatched
regions). The inclusion of long-range fluctuations leads to a vanishing
Uc in the low-temperature regime (crosses and red dashed line:
D�A; solid red box: BSS-QMC). Error bars mark the temperature
range, where the onset of an insulating behavior on the whole Fermi
surface has been found, according to the electronic self-energy of
D�A (see Fig. 3). Also shown are the DMFT [9] and the D�A 3D
Néel temperatures (light gray dotted lines) [11] as well as the D�A
2D one (gray line at T = 0) [40] which fulfills the Mermin-Wagner
theorem [41]; 4t ≡ 1 sets the energy scale.

made possible by the algorithmic progress, increased computer
power, and careful extrapolations (see the Appendix) [36,37].

II. PHASE DIAGRAM IN TWO DIMENSIONS

Let us first summarize the results of our combined com-
parative studies for the half-filled Hubbard model on a square
lattice with nearest-neighbor hopping t ≡ 1/4 using the phase
diagram in Fig. 1; all details on the spectra and the underlying
physics of the different regimes are presented afterwards.

Our VCA data for the MIT at zero temperature (orange
cross in Fig. 1) appear to be consistent with the previous
CDMFT, DCA, and older VCA [38] studies, as well as
with second-order dual-fermion [29] calculations [30]: short-
range antiferromagnetic correlations reduce the critical Uc

(violet line) significantly with respect to DMFT. Moreover,
the width of the coexistence region is considerably reduced
(see the violet hatched area for CDMFT [26]). The VCA
calculations performed on different clusters, however, also
suggest something more definite in this respect: At low
temperatures, the smaller U is, the more important the effect
of longer-range antiferromagnetic fluctuations becomes.

To address this issue in more detail, we include such
long-range correlations by means of D�A. Results are also
compared with lattice Blankenbecler-Scalapino-Sugar (BSS)
QMC calculations [33]. The red dashed line in Fig. 1 marks
the interaction Uc(T ), above which, for a given temperature T ,
a spectral gap is opened because of a strong enhancement of

the electronic scattering rate in the very low frequency regime
(see below).

These D�A data, confirmed by our extrapolated BSS-
QMC data, strongly suggest that at low enough T strong
antiferromagnetic spin fluctuations always open a spectral
gap, even at arbitrarily small values of U (red dashed line
in Fig. 1). Hence, for T → 0, Uc → 0; that is, no MIT can be
identified any longer for the 2D unfrustrated Hubbard model,
similar to what happens in one dimension. As we will elaborate
in the following, the mechanism is, however, rather different
in this case. By increasing U the temperature of the onset of
the insulating behavior is enhanced until the high-temperature
crossover regime of DMFT at intermediate U is reached: Here,
the electron mobility is already suppressed by purely local
correlations.

Our results for the phase diagram indicate that the
“idealized” physical picture of the Mott-Hubbard metal-
insulator transition of DMFT is completely overturned in two
dimensions by strong, spatially extended antiferromagnetic
correlations. In the following, we will discuss explicitly
the most important aspects in terms of spatial correlations
over different length scales and their underlying physics by
analyzing in detail the numerical data used for determining
the phase diagram in two dimensions.

III. SHORT-RANGE CORRELATIONS

The physics of short-range correlations at T = 0 is captured
very well by VCA in the paramagnetic phase. In fact, our
results for a VCA cluster of Nc = 4 sites (plus four bath sites)
show a clear-cut MIT at a finite Uc = 1.4 for T = 0, within
the CDMFT coexistence region of a metallic and an insulating
solution. The local spectral function A(ω) and the self-energy
�(iωn) at the Fermi level of the two coexisting solutions at
U = Uc = 1.4 are reported in Fig. 2. The two solutions differ
qualitatively, showing a correlated metallic behavior with a
quasiparticle weight of ZVCA = 0.37 at k = (π,0) (bottom
panel) and an insulating behavior (top panel) characterized
by a divergence of Im �(iωn) and a corresponding spectral
gap, respectively. The VCA calculation of the grand potential
indicates that for U < Uc = 1.4 the thermodynamically stable
solution is the metallic one, while for U > 1.4 the insulator
is stabilized, with a level crossing at U = Uc. Such a Uc

value is in fairly good agreement with CDMFT [26]; it gets
reduced by slightly increasing the lattice size in the VCA
calculations from Uc = 1.4 for Nc = 4 = 2 × 2 to Uc = 1.325
for Nc = 6 = 2 × 3. This reflects the fact that correlations of
very short range (actually two sites in the case of Nc = 4) are
strong enough to destroy the low-temperature metallic phase
at intermediate coupling but are less effective for lower values
of the interaction. In fact, in the presence of a T =0 (magnetic)
instability, a correct description of the weak-coupling regime
in two dimensions cannot be obtained without the inclusion of
correlations on all length scales, as we show in the following.

IV. LONG-RANGE CORRELATIONS

We include correlations on all length scales by either
extrapolating lattice BSS-QMC results to Nc → ∞ or using
D�A [32] in its ladder version [40], a diagrammatic extension
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FIG. 2. (Color online) Local spectral function of the two coexisting solutions obtained in VCA at the T = 0, U = Uc = 1.4 MIT for a
four-site cluster plus four bath sites. (left) Metallic solution; (right) insulating solution. The insets show the corresponding self-energies at
k = (π,0).

of DMFT (see [29,42,43]) based on the two-particle ver-
tex [44,45]. Certainly, both approaches have their limitations,
either due to the extrapolation procedure of the cluster results
(see the Appendix) or due to the selection of the more
relevant subsets of diagrams. Hence, cross-checking the results
of these complementary approaches, as we do here, is of
utmost importance. In fact, the good agreement observed (top
panels of Fig. 3) validates our results and at the same time
supports the physical interpretation discussed below. The top
panels of Fig. 3 show our D�A and BSS-QMC data of the
imaginary part of the electronic self-energy �(k,iωn) for the
most significant k points at the Fermi surface [i.e., the “nodal”
point k = (π

2 , π
2 ) and the “antinodal” point k = (π,0)] as a

function of Matsubara frequencies for a rather small value
of U = 0.5 at two different temperatures (T = 0.025 and
T = 0.010). Here, one can immediately appreciate how the
one-particle physics changes even qualitatively when reducing
T : AtT =0.025 both D�A (top left panel) and lattice QMC
(left inset) self-energies display a Fermi-liquid behavior for
all k points, not radically different from the DMFT results
(blue squares in Fig. 3). Even the quasiparticle renormalization
Z = (1 − ∂Im�(k,iωn)

∂ωn
|ωn→0)−1 � 0.9 is similar. In contrast, the

scattering rate γ at the Fermi surface is increased from
γDMFT = −Im�DMFT(k,i0+) = 0.002 to (k averaged) γ̄D�A �
0.014, with a moderate k differentiation [46]. By reducing
T , γD�A quickly gets enhanced on the whole Fermi surface,
always displaying its largest value at k = (π,0). At T = 0.010
the self-energy has already changed completely (see Fig. 3,
right): Im�(k,iωn) acquires an evident downturn for all k
points at very low frequencies. This shows that the Fermi
surface is completely destroyed at low T , even at the nodal
momentum k = (π/2,π/2). Such a qualitative change in the
low-frequency self-energy behavior has been exploited for
defining the red dashed line marking the destruction of the
whole Fermi surface and hence insulating behavior in our
phase diagram (Fig. 1).

V. PHYSICAL INTERPRETATION

Our combined numerical analysis shows that there is
no Mott-Hubbard transition at finite U in the unfrustrated

2D Hubbard model, but it also clarifies unambiguously the
physical origin of this result. Evidently, the shift of the
border of the MIT towards U = 0 (Fig. 1) already repre-
sents an indication for rather extended spatial fluctuations,
which emerge from the proximity to the T = 0 long-range
antiferromagnetic order. The important questions still to be
answered are, Can this intuitive picture be confirmed in a
less heuristic and more direct way? What is the exact nature
of these extended antiferromagnetic spin fluctuations? These
questions can be answered by extending our study of the low-T
weak-coupling regime to the D�A spin-correlation function
χs(r,i	n = 0) = ∫ β

0 dτ 〈Sz(r,τ )Sz(0,0)〉 in real space. Our
results for U = 0.5 are reported in the middle panels of Fig. 3,
where we show, as a representative case, the spatial decay
of χs along the x direction, normalized to its r = 0 value at
T = 0.025 (metal) and T = 0.010 (insulator): In both cases,
χs displays an alternating sign, which is the typical hallmark
of predominant antiferromagnetic fluctuations. The spatial
extensions of such fluctuations are quite different, however.
In fact, the long-distance behavior of χs can be approximated

by its asymptotic expression |χs(r →∞)|∝
√

ξ

r
e−r/ξ [47]. But

the correlation length ξ varies from ∼4 in the metallic phase
to values of ξ ≈ 1000 in the low-T insulating phase. A more
quantitative understanding is provided by the study of the
T dependence of ξ in D�A (see bottom panels of Fig. 3).
By reducing T , ξ displays a well-defined crossover to an
exponential behavior, which approximately matches the onset
of the low-T insulating regime at weak coupling. This shows
that the spin fluctuations responsible for the destruction of the
Fermi surface at low T have such a large spatial extension
that it is difficult to capture with (nonextrapolated) cluster
calculations [48,49]. For instance, the corresponding VCA
self-energy at T = 0 (orange curve in Fig. 3) displays a very
clear metallic behavior, similar to that of DMFT.

Insight can also be gained from the potential energy. Our
D�A and BSS-QMC results show that the destruction of the
metallic state upon decreasing T is accompanied by a slight
reduction in potential energy U 〈n↑n↓〉 by about 1% for the
data in Fig. 3. However, this effect occurs in the presence
of strong and very extended (ξ 
 100) spin correlations.
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FIG. 3. (Color online) (top) Imaginary parts of the self-energies for U = 0.5 and T = 0.025 (left) and T = 0.010 (right), comparing DMFT
(blue squares), D�A [red circles: k = (π/2,π/2); red crosses: k = (π,0)], VCA (orange; T = 0), and BSS-QMC (insets; see the Appendix).
Even for the very small interaction U = 0.5 an insulating gap is opened at T ≈ 0.014 in D�A as well as in BSS-QMC. (middle) Real-space
dependence of the D�A spin-correlation function χs(r)/χs(�0) for the same parameters as above. Shown is the cut r = (x,0), where x is given
in units of the lattice spacing a = 1. The solid gray line (guide to the eye) interpolates between the values at different lattice vectors (blue
diamonds). By fitting (see also the dashed lines in the bottom panels) we obtain the correlation lengths ξ ≈ 4 at T =0.025 (left), while ξ ≈ 1000
at T =0.010 (right). (bottom) T dependence of ξ−1 for different interaction values. A crossover to an exponential behavior is observed at T

consistent with the onset of the insulating behavior [pink (green) area for U =0.5 (0.75)].

Therefore, the physics cannot be really different from the truly
long-range ordered phase [50]. This rules out any particular
role of prelocalization of the magnetic moments in destroying
the Fermi-liquid state, as well as the possibility of mapping
the whole low-T physics onto the 2D Heisenberg model, as
proposed by Anderson [25]. Rather, the emerging physics
appears to be more consistent with the description of the TPSC
approach [22,23], at least in the weak-coupling regime, and of
the low-T calculations with the nonlinear sigma model [51],
as well as to the experimental estimates of ξ in electron-doped
cuprates [52]. In fact, the slight decrease in the potential energy
is a clear hallmark [53–55] of the Slater-like nature of the
antiferromagnetic fluctuations as is the large ξ . We can hence

interpret this as “Slater paramagnons.” The corresponding
physical picture is the following: For all U >0, a gap is
opened at low enough T because of the enhanced electronic
scattering with extended antiferromagnetic paramagnons. The
nature of such spin fluctuations, reflecting the behavior of
the T = 0 ordered phase [51,56] from which they originate,
smoothly evolves from Slater (weak to intermediate coupling)
to Heisenberg (strong coupling). In this respect, it is worth
recalling that DCA results [53] on small clusters (Nc = 4)
also suggest the crossover from Slater-like to Heisenberg-like
fluctuations for U larger than (at least) 1.25. Although still
smaller [48], these interaction values are not too far away
from the regime where the crossover to Heisenberg physics
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is predicted to occur in the long-range ordered phase by
DMFT [54].

VI. CONCLUSIONS

We have studied the effects of spatial correlations on
different length scales on the MIT in the 2D half-filled Hubbard
model: for all U > 0, at low enough (but finite) T , we find a
paramagnetic insulator. This is the result of strong scattering at
extended antiferromagnetic fluctuations (paramagnons). The
nature of these fluctuations gradually evolves from Slater-like
to Heisenberg-like, tracking an analogous evolution for
the T = 0 antiferromagnet. This physical picture is quite
different from both state-of-the art DMFT/CDMFT, which
finds a finite Uc for the (metastable) paramagnetic phase,
and the strong-coupling idea of an effective low-T 2D
Heisenberg model, which assumes preformed spins even at
low U . Instead, the 2D Hubbard model has Uc = 0, and the
nature of the most relevant spin fluctuations is Slater-like
in the whole weak- to intermediate-coupling regime. Let us
stress that if we frustrate the 2D square lattice away from
perfect nesting, e.g., by adding a nearest-neighbor hopping,
antiferromagnetism and hence the MIT originating from
antiferromagnetic fluctuations are expected to shift to a finite
Uc > 0, implying a quantum critical point.
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APPENDIX

The numerical results presented in this paper have been
obtained using complementary techniques with quite different
characteristics. Among those, the dynamical vertex approxi-
mation (D�A) yields results directly in the thermodynamic
limit [32]; the variational cluster approximation (VCA), on
the other hand, is good for short-range correlations [31],
and finally, the Blankenbecler-Scalapino-Sugar (BSS) QMC
calculations for the Hubbard model are applicable to clusters
with a finite number N of lattice sites, with N = L2 for square
lattices with linear extent L. In its generic formulation, the
BSS-QMC algorithm introduces a further systematic bias due
to a Trotter discretization of the imaginary time [33]. In this
work, we employ a multigrid approach for obtaining quasicon-
tinuous imaginary-time Green’s functions without significant
Trotter bias [37], which can be reliably Fourier transformed
in order to compute self-energies; similar strategies have
proven successful in the context of DMFT studies using the
Hirsch-Fye QMC algorithm [36,57,58]. As a result, all “raw”
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FIG. 4. (Color online) Self-energy on the imaginary axis at U =
0.5, β = 100. (a) Finite-size BSS-QMC data (open symbols and
colored lines), extrapolated BSS-QMC results in the thermodynamic
limit (circles and thick black solid line), and D�A data (gray
dash-double-dotted line) vs Matsubara frequency ωn at momentum
k = (π,0); also shown are momentum-independent single-site DMFT
results (thin black line). (b) Finite-size BSS-QMC (symbols) data for
the first three Matsubara frequencies vs inverse system size plus
extrapolations in linear order in L−2 (thin lines) and quadratic order
(thick lines). (c) and (d) Analogous analysis at k = (π/2,π/2).

data shown in this appendix should be regarded as numerically
exact for a given cluster size. The BSS-QMC computational
effort scales as N3/T at temperature T , i.e., proportionally
to L6 at fixed T , which limits high-precision calculations (as
we need here for determining the self-energy on the percent
level) to L � 16. The properties of such finite systems will, in
general, depend on the exact system size (and shape as well
as boundary conditions) and may deviate drastically from the
thermodynamic limit.

We will show in the following that reliable extrapolations
to the thermodynamic limit, as shown in Fig. 3, are still
possible in the parameter range of interest based on BSS-QMC
data obtained for quadratic clusters (with periodic boundary
conditions) and linear extents L = 8,10,12,14,16.

In the left column of Fig. 4, estimates of the self-energy
�(k,iωn) at interaction U = 0.5 and inverse temperature
β = 100 are shown versus Matsubara frequency ωn for the two
momenta k = (π,0) [Fig. 4(a)] and k = (π/2,π/2) [Fig. 4(c)];
due to particle-hole symmetry the self-energy is purely
imaginary at these k points. Finite-size (FS) BSS-QMC data
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(open symbols and colored lines) depend strongly on the lattice
size: with decreasing linear extent L, they show increasingly
insulating tendencies, i.e., larger absolute values of Im �(iωn)
at the lowest ωn. However, as demonstrated in Fig. 4(b), for
the lowest three Matsubara frequencies at k = (π,0), this bias
is very systematic: Already linear extrapolations in the inverse
size L−2 (thin solid lines) yield reasonable first estimates of
the thermodynamic limit L−2 → 0. Much better fits can be
obtained at higher orders, e.g., using quadratic fits in L−2 (thick
lines); however, these become increasingly unstable (in the
presence of statistical noise) at higher orders. In order to define
a consistent procedure that is also stable at k = (π/2,π/2),
where fewer system sizes are available (see below), we use the
average of linear and quadratic extrapolation as the final result,
with error bars that coincide with the individual extrapolations,
as illustrated by the black circle with error bars for �(iω0) in
Fig. 4(b):

�∞ = 1
2

(
�∞

lin + �∞
quad

)
, 
�∞ = 1

2

∣∣�∞
lin − �∞

quad

∣∣.

The final result of this extrapolation [black circles in
Fig. 4(a)] shows perfect agreement with D�A (gray dash-
double-dotted line) at almost all Matsubara frequencies. A
minor quantitative deviation is only observed at the smallest
Matsubara frequency, at which the absolute value of Im�(k,ω)
is somewhat smaller in D�A.

Since only lattices with linear dimensions L = 4,8,12, . . .

contain the momentum k = (π/2,π/2) in the Brillouin zone
(for periodic boundary conditions), we have only three system
sizes available for extrapolation in this case [symbols in
Fig. 4(d)]. However, the curvatures of the (here, necessarily
perfect but intrinsically somewhat unstable) quadratic fits
agree well with those obtained at k = (π,0), which supports
their reliability. Again, the D�A prediction (here, a metallic
self-energy with a visible momentum differentiation) agrees
well with the final BSS-QMC results [black circles in
Fig. 4(c)].

At the elevated temperature T = 1/40, the finite-size bias
affects the raw BSS-QMC results even more drastically, as
seen in Fig. 5: at both k points, the smallest systems (8 × 8, red
downward triangles) have clearly insulating character, while
D�A (dash-double-dotted line) yields a metallic solution,
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FIG. 5. (Color online) Self-energy on the imaginary axis at
U = 0.5, β = 40, analogous to Fig. 4.

just like (paramagnetic) DMFT (thin gray line). However,
the 16 × 16 system (squares) is already large enough to
show significant metallic tendencies. Even more importantly,
Figs. 5(b) and 5(d) demonstrate that the dependency of the raw
BSS-QMC data on L−2 is very regular and almost linear again
(even across the FS-induced metal-insulator crossover), so that
the extrapolation L−2 → 0 is still reliable, with even smaller
resulting error bars than at T = 1/100. Interestingly, the final
BSS-QMC results at k = (π/2,π/2) [black circles in Fig. 5(c)]
agree with DMFT within error bars; only at k = (π,0) do
nonlocal antiferromagnetic correlations induce a significantly
more insulating character.
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