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The method of continuous unitary transformations (CUTs) is applied to the Anderson impurity and the Kondo
model aiming at the systematic derivation of convergent effective models. If CUTs are applied in a conventional
way, diverging differential equations occur. Similar to poor man’s scaling, the energy scale, below which the
couplings diverge, corresponds to the Kondo temperature TK . We present a way to apply CUTs to the Kondo
and to the Anderson impurity model so that no divergences occur but a converged effective low-energy model is
derived with small finite parameters at arbitrarily small energies. The ground state corresponds to a bound singlet
with a binding energy given by the Kondo temperature TK .
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I. INTRODUCTION

We want to apply the approach of continuous unitary
transformations (CUT) to two archetypical impurity models
that exhibit the Kondo effect, the Kondo model and the
Anderson impurity model [1–3]. The Kondo effect is one
of the fundamental problems of many-body theory as it
appears in a wide range of correlated electron systems, for
instance, in heavy-fermion systems [3,4], in Mott-Hubbard
metal insulators [5,6], and in nanoscale quantum dots [7]. In
such models, a wide range of energy scales is important [3]:
from the bath electrons’ bandwidth D, which can be of the
order of several eV, down to the exponentially small Kondo
temperature TK .

The challenge to treat the exponentially small Kondo
energy scale reliably has first been solved by the numerical
renormalization group (RG) [8–10]. A Bethe ansatz solution
puts the results on a rigorous foundation [11].

In recent years, the issue has attracted much attention in
the field of renormalization approaches. The functional RG
approach was applied to the Anderson impurity model [12]
yielding good results for small and intermediate interactions,
but failing to reproduce the exponentially small Kondo energy
scale in the strong coupling regime. Subsequently, a series
of papers [13–17] tried different variants of the functional
RG approach to reproduce this small energy scale. While the
successes in the regime of small to intermediate couplings
were very interesting, the strong coupling regime eluded
a description by functional RG. Only recently, Streib and
co-workers provided a functional RG approach with the correct
strong-coupling approach [18]. The additional key element
in their study is to use a large magnetic field as a flow
parameter which is gradually lowered to zero. Furthermore,
Ward identities and partial bosonization of the spin degrees of
freedom are exploited.

The idea to treat the problem first at large magnetic fields
where perturbation theory is perfectly well-controlled and
then reducing the field gradually has been put forward by
Hewson and collaborators in a series of papers [19–21].
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Besides this key idea, they rely on perturbation theory in
the renormalized effective interaction calling their approach
renormalized perturbation theory (RPT). All these intensive
studies performed in the last decade illustrate that the Anderon
impurity model in the strong coupling regime represents a
formidable methodological challenge.

In the present paper, we want to show that continuous
unitary transformations are also able to treat the strong
coupling limit of the Anderson impurity model, i.e., the Kondo
model with its exponentially small energy scale. Continuous
unitary transformations exhibit an intrinsic energy separation
because processes at higher energies are transformed faster
than processes at lower energies. This feature is similar to
standard RG approaches. The CUT approach can be set up
nonperturbatively so that it is able to derive effective models
even at exponentially low energies.

There are a number of applications of CUTs to the
Kondo problem. Results of conventional “poor man’s scaling”
[22] could be reproduced by a CUT in which diverging
differential equations occur [23]. This divergence indicates
the Kondo energy scale. Another application of the CUT to
the Kondo model [24] results in an effective model where
the matrix elements of the effective interaction still exhibit
logarithmic infrared divergences very similar to those found
in a standard perturbative treatment [1]. Furthermore, there
are CUT approaches to the Kondo model that succeed in
the derivation of a finite, convergent effective models. But
these approaches profit from a detour via the bosonized form
of the Kondo model [25–27].

CUTs were also applied to the Anderson impurity model
[28–32]. But none of them revealed the exponential character
of the Kondo temperature TK. Nevertheless, an important
previous work has been able to retrieve and to improve
the Schrieffer-Wolff transformation [30]. This approach has
been extended recently to impurities, which hybridize with a
superconducting environment [32].

In the present work, we show that CUTs yield the correct
low-energy physics of the Kondo model and of the Anderson
impurity model. Our approach does not rely on a bosonized
reformulation. Staying in a purely fermionic description
leads to convergence problems as one encounters diverging
couplings [23]. However, we will show that a change of the
reference state during the flow solves this problem avoiding the
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diverging couplings and yielding a finite, convergent effective
low-energy model characterized by the exponentially small
energy scale of the Kondo temperature.

This paper is set up as follows. In the remainder of this
introduction the basics of the CUTs are presented. In the next
section, the Kondo model is briefly introduced and its standard
treatment by means of CUTs is shown. The resulting flow
equations diverge. Thus, in Sec. III, a modified approach with
a change of the reference state is introduced that allows us
to derive a finite, well-defined effective model. This model
is indeed characterized by the correct exponentially small
energy scale. In Sec. IV, the Anderson impurity model is
tackled by the standard CUT, which again implies a diverging
flow. The corresponding modified flow implying convergence
is analyzed in Sec. V. Finally, the results are summarized in
Sec. VI, which also includes an outlook on promising future
work.

A. Continuous unitary transformations

The continuous unitary transformation (CUT), also called
flow equation approach, is a powerful method of theoretical
quantum mechanics aiming at the systematic derivation of
effective low-energy models. A CUT transforms a Hamiltonian
continuously closer (or even completely) to diagonal form
while connecting the transformed to the initial Hamiltonian
by a unitary transformation. The method was suggested in
the mid 90’s [33–35] and has been successfully applied to
a wide range of problems in condensed matter physics, for
a review see Ref. [36]. Nonperturbative [33,37–40] as well
as perturbative [41,42] versions have been developed in the
course of the last two decades. CUTs continue to be objects
of current research. Only recently, improved versions of the
CUT approach have been developed: the enhanced perturbative
(epCUT), the directly evaluated enhanced perturbative CUT
(deepCUT) [43] as well as a graph-theory based version called
gCUT [44].

For a CUT a continuous parameter l is introduced
parametrizing the Hamiltonian

H (l) = U † (l) H (0) U (l) . (1)

Differentiating (1) with respect to l yields the flow equation

∂H (l)

∂l
= [η (l) ,H (l)] , (2)

where the anti-Hermitian generator

η (l) = ∂U (l)

∂l
U † (l) (3)

is introduced. The flow equation (2) is the heart of the CUT
approach. There are numerous ways to choose the generator
[33,38,40,42,45,46]. We will discuss later which kind of
generator is employed in the present work.

Upon calculating the commutator between η and H ,
generically, operator terms will emerge that are not present
in the original Hamiltonian. Their commutators have to be
computed as well leading to even more terms and so on. This
procedure leads to a proliferating number of emerging terms.
Thus we need to approximate at some point by truncating
terms. Specifically, we employ deep CUT ideas [43], i.e., we

will target a specific part of H and determine a system of
differential equations that allow us to determine the targeted
quantity correctly up to a certain order in a small expansion
parameter, for instance, the spin-spin interaction J or the
hybridization V . We will describe the explicit procedure in
the derivation of the flow equations below.

II. KONDO MODEL

First, we present our approach for the Kondo model before
we will apply it to the Anderson impurity model as well. For
this reason, we briefly review it here.

The Kondo model was introduced by Kondo [1] in order to
explain the resistivity minimum upon lowering the temperature
found in metals hosting magnetic impurities. The model
describes the interaction of the conduction or bath electrons
of the nonmagnetic host metal with a localized spin �SI of the
impurity. The conduction electrons follow the dispersion εk.
The interaction is an exchange interaction implying a spin-spin
coupling J between the localized impurity spin and the spins
of the bath electrons �sb:

HK =
∑
k,σ

εkc
†
kσ ckσ + J �SI · �sb. (4)

The Hamiltonian is given in second quantization, i.e., c†kσ (ckσ )
creates (annihilates) a bath electron with momentum k and spin
σ while �sb is the bath electrons’ spin

�sb = 1

N

∑
k,k′

∑
α,β

c
†
kα �σαβck′β (5)

interacting with the local impurity spin. The components of the
vector �σ are the Pauli matrices �σ = ∑

μ∈x,y,z σμ�eμ as usual.

A. Logarithmic discretization

The Hamiltonian in energy representation is simpler than
the initial Hamiltonian. Let us assume that all parameters are
isotropic and thus only depend on the absolute value |k| of the
momenta. Due to this isotropy, it is convenient to introduce
spherical coordinates. Finally, a substitution k → ε (k) is used.
This leads to the continuum energy representation. For details
of the required steps, the reader is referred to Ref. [9].
Numerically, a continuum of operators or states can hardly
be handled. Thus we use a logarithmic discretization of the
energy representation, see, e.g., Refs. [9,10].

The important energies of the Kondo problem stretch from
the bandwidth D down to exponentially small energies below
the Kondo temperature TK . A linear discretization is not
suitable in such a problem. Thus one resorts to the logarithmic
discretization sketched in Fig. 1, for details see Ref. [10]. The
continuum of the bath electrons is discretized in exponentially
decreasing intervals:

I+
n

D
= [�−n−1,�−n], (6a)

I−
n

D
= [−�−n, − �−n−1], (6b)
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FIG. 1. (Color online) Logarithmic discretization of the contin-
uum of the bath electrons sketched for a flat density of states
(DOS) ρ(ε) = ρ0 
(D − |ω|) with ρ0 = 1/(2D) and a bandwidth
2D coupled to an impurity.

where � > 1 determines the discretization and n ∈ N. The
length of the nth interval is given by

dn

D
= (1 − �−1)�−n. (7)

In this logarithmic discretization, the higher energies are
only covered with low precision, while small energy scales
are represented with an increasingly higher resolution. More
precisely, the relative precision is the same at all energies, high
or low. In this way, the discretization scheme easily reaches
down to exponentially small energy scales below the Kondo
temperature TK .

B. Discretization of a flat density of states

In model (4), one discretizes the bath electrons’ density of
states (DOS). The formal representation is given by

ε±
n = 1

|γ ±
n |2

∫
n,±

ε ρ (ε) dε, (8a)

|γ ±
n |2 =

∫
n,±

ρ (ε) dε, (8b)

where we integrate over the intervals I±
n according to∫

n,+
=

∫ D�−n

D�−n−1
,

∫
n,−

=
∫ −D�−n−1

−D�−n

. (9)

Then, the discretized Hamiltonian reads

HK =
∑
n,σ

εn :c†nσ cnσ :

+
∑

μ

∑
α,β,n,m

Jnmσ
μ
αβS

μ

I :c†nαcmβ :, (10)

where

Jnm = Jγnγm. (11)

The colons denote that the operators are normal-ordered with
respect to the Fermi sea of the bath electrons

:c†nαcmβ : = c†nαcmβ − 〈FS|c†nαcmβ |FS〉. (12)

For a flat density of states,

ρ (ω) = ρ0 
 (D − |ω|) , ρ0 = 1/(2D), (13)

we can easily calculate the parameters (8a):

ε±
n

D
= ±1

2
(1 + �−1)�−n, (14a)

|γ ±
n |2 = 1

2
(1 − �−1)�−n. (14b)

C. Diagonalization of the spin-spin interaction

In order to diagonalize the spin-spin interaction, we
introduce the generator

η =
∑

μ

∑
α,β,n,m

ηnmσ
μ
αβS

μ

I :c†nαcmβ :, (15)

which has the same structure as the corresponding term in the
Hamiltonian (4). Specifically, we use the sign generator

ηnm = sgn (εn − εm) Jnm. (16)

Without further approximations this choice of the generator
would lead to an effective model in which the spin-spin inter-
action is diagonalized within degenerate subspaces, for a proof
of this statement see Ref. [38]. As soon as approximations are
used, this statement does not hold true necessarily and the
resulting flow equations might even diverge. Nevertheless,
despite the approximations, the CUT approach commonly
yields sensible results if the approximations are physically
justified.

Calculating the commutator between η from (15) and HK

from (10), terms emerge which so far did not appear in (10).
For instance, quartic operators in the fermionic bath operators
occur. We discard them after normal-ordering with respect to
the reference state, which is the Fermi sea of the fermionic bath
so far. Due to the normal-ordering feedback to the spin-spin
interaction in order J 2 is properly captured. Furthermore,
bilinear hopping terms occur, which we discard as well because
they only weakly renormalize the single-particle energies εn

in order J 2. The remaining terms of the commutator are
compared to the derivative of HK leading to the flow equation
(2):

∂lJnm = − |εn − εm| Jnmw −
∑

x

(sgn (εn − εx)

− sgn(εx − εm))(1 − 2θx)JnxJxm, (17)

where

θx = 〈FS|c†xσ cxσ |FS〉 (18)

stems from the normal-ordering with respect to the noninter-
acting Fermi sea. The linear term in (17) is a generic term for
a generator of the form (16). Usually, it implies exponential
convergence at large l. Solving (17) numerically, however,
reveals that the flow (17) diverges at some flow parameter
l0, which is related to the energy scale TK = l−1

0 , see Figs. 2
and 3.

D. Residual off-diagonality (ROD)

In Fig. 2, we show the residual off-diagonality (ROD),
which is defined by

ROD2 :=
∑

n:hn∈η

|hn|2 , (19)
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FIG. 2. Residual off-diagonality (ROD) (20) of the flow
equation (17) for the Kondo model with N = 80, � = 2 and from
left to right: 2ρ0J = 0.2, 0.19, 0.18, . . . , 0.09, 0.08, 0.07.

where hn denotes the coefficients in the Hamiltonian. We sum
over the square of the absolute value of all coefficients that
contribute to the generator [38]. In this way, the decrease of
the ROD measures the convergence of the CUT as a function
of l. In the case of the flow equation (17) the ROD is given by

ROD2 =
∑
n,m
n �=m

|Jnm|2 . (20)

In Fig. 2, one clearly sees that the flow first appears to converge
properly, indicated by a decreasing ROD. But there is a value l0
of the flow parameter l at which the ROD changes its behavior
and rises again. It even diverges quickly beyond l0.

In Fig. 3, the inverse energy scale l0 is analyzed at which
the flow equation diverges. We find an exponential behavior

FIG. 3. (Color online) Flow parameter l0 at which the flow
equation diverges, cf. Fig. 2, for the Kondo model with N = 80 and
� = 2 in a logarithmic plot vs 2ρ0J . The inset shows the exponential
character l0 ∝ exp (A�/2ρ0J ) in a logarithmic plot as function of
1/2ρ0J . The factor A� is given in Eq. (22) and stems from the
discretization.

FIG. 4. (Color online) Flow of the diagonal spin-spin exchange
interactions Jnn(l)

|γn|2 of the Kondo model with N = 80, � = 2, and
2ρ0J = 0.1. The Kondo temperature TK is taken from the inverse
of the point of divergence l0. The black lines show the exchange
couplings with an index n for which |εn| < TK holds while the red
lines show the couplings with an index n for which |εn| > TK holds.
Note that only couplings with |εn| < TK diverge.

of the form

l0 = T −1
K ∝ e

A�
2ρ0J , (21)

where the prefactor

A� = 1

2

� + 1

� − 1
ln � (22)

takes a well-known discretization effect [9] into account,
which is independent of the applied method NRG, CUT, or
others.

This result is very similar to the outcome of Anderson’s
“poor man’s scaling” [22]. The resulting differential equations
diverge at the Kondo temperature TK , which we derived here
in leading order in J . Truncating the flow equations in higher
orders would provide higher order contributions to the Kondo
temperature [23].

Figure 4 depicts the flow of the relative exchange couplings
Jnn/ |γn|2 for various values of n. Only the couplings Jnn

with an index n for which |εn| < TK diverge, in contrast
to the couplings with indices corresponding to |εn| > TK ,
which converge towards a finite value. This observation is
very interesting because it clearly shows that the spin-spin
interaction only plays a dominant role below the Kondo energy
scale. To our knowledge, it has not been derived before that
only the exhange couplings to levels below the Kondo energy
diverge, while the one to levels above this scale stay finite.

III. MODIFIED APPROACH: CHANGE OF THE
REFERENCE STATE DURING THE FLOW

Here we present a modification of the above approach that
avoids the occurring divergences. The caveat of the above
approach is the chosen reference state, i.e., the state to which
the CUT aims to map the ground state. So far, the ground state
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of the diagonal part

HD,old =
∑
n,σ

εnc
†
nσ cnσ (23)

was taken as the reference state leaving the spin of the impurity
free. Thus the reference state is two-fold degenerate. Here, we
include the diagonal spin-spin interactions

HK,diag =
∑

μ

∑
α,β,n

Jnnσ
μ
αβS

μ

I :c†nαcnβ : (24)

into the diagonal Hamiltonian

HD,modified = HD,old + HK,diag. (25)

The key idea is to take the ground state of Eq. (25) as reference
state. In view of the divergence of the spin-spin couplings at
low energies, it is indeed highly plausible, if not compulsory,
that these couplings must be included in the determination
of the reference state because it should be close to the true
ground state. Moreover, it is known that the ground state of
the Kondo model consists of a singlet state, which implies
that the impurity spin is correlated with a spin from the bath
electrons.

In order to choose the ground state of (25) as the reference
state, we have to understand how it depends on the diagonal
spin-spin interactions Jnn. In principle, it seems that we are
facing a many-body problem again, which is almost as difficult
as the original Hamiltonian. However, we can find the ground
state (25) by a much simpler consideration. If the couplings Jnn

are small enough, for instance, during the early stages of the
flow, the ground state is the Fermi sea. The reason is that the
spin-spin interactions do not have any effect on the Fermi sea
because all bath sites are either empty or doubly-occupied so
that there is no spin present. In order to have any effect, a spin
in the bath must be created by either adding a fermion above
the Fermi level or removing one from below the Fermi level.
This costs energy. Then, the energy gain due to the spin-spin
interaction must compensate this energy loss. This can only
happen if the couplings Jnn are large enough relative to the
energies εn.

The couplings Jnn increase during the flow and thus the
concomitant energy gain increases compared to the energy
loss. The energy balance depends on the site n and there will
be one specific site where the energy balance favors the singlet
formation. The other sites remain in a Fermi sea, unaffected
by the spin-spin interaction.

In order to understand how the ground state changes, one
only has to focus on the impurity and the specific sites where
it becomes energetically favorable to create a spin. We include
three sites in our analysis because if the creation of a spin is
favorable at the negative level εr̄ = −εr by removing a particle
then the same holds true at the positive level εr by adding a
particle due to particle-hole symmetry. Thus we consider

Hr =
∑

σ

εr (c†rσ crσ − c
†
r̄σ cr̄σ )

+ Jrr

∑
μ

∑
α,β

σ
μ
αβS

μ

I (c†rαcrβ + c
†
r̄αcr̄β), (26)

FIG. 5. (Color online) Part Hr of the Hamiltonian comprising the
first sites for which it becomes energetically favorable to create a spin
from the Fermi sea so that the spin-spin exchange is nontrivial. Due
to particle-hole symmetry, removing a particle from a negative level
implies the same energy loss as adding a particle to the corresponding
positive level.

where r̄ labels operators acting on the site with energy εr̄ = −εr

(for illustration see Fig. 5). This problem can be solved by exact
diagonalization and we find 32 eigenstates.

In order to test the modified approach keeping the numerical
calculation effort minimum, we neglect some of these eigen-
states and keep the following; (1) the energetically low-lying
ones, which are influenced by the spin-spin coupling, namely,
the singlet state |s±〉 and the triplet states |t±i 〉; (2) the Fermi
sea |FS,σ 〉 because the reference state is changed if the
singlet states are lowered below the Fermi sea, i.e., these
states compete to be the ground state; and (3) the state |σ̃ 〉
[cf. Eq. (27)] because it may also become the ground state.

These are 12 states [cf. Eqs. (27)] out of the 32 eigenstates
of the Hamiltonian (26). In essence, we neglect all states with
an energy larger than the energies of the triplet states.

The modified approach does not rely on this approximation,
but using the complete adapted operator basis would be
less transparent and the computational effort would increase
significantly. Moreover, we will see that this choice of kept
states yields the expected energy scales. Nevertheless, it will
be an interesting issue to implement the flow equations for the
complete set of states to study the influence of the reduction of
the number of kept states or to study whether an even stricter
truncation is sufficient as well. In Appendix, all eigenstates
of the Hamiltonian (26) are listed for completeness. The kept
states are

|s−〉 = 1√
2

(|0,↑,↓〉 − |0,↓,↑〉) , (27a)

|t−1 〉 = |0,↑,↑〉, (27b)

|t−2 〉 = 1√
2

(|0,↑,↓〉 + |0,↓,↑〉) , (27c)

|t−3 〉 = |0,↓,↓〉, (27d)

|s+〉 = 1√
2

(|↓,↑,↑↓〉 − |↑,↓,↑↓〉) , (27e)

|t+1 〉 = |↑,↑,↑↓〉, (27f)

|t+2 〉 = 1√
2

(|↓,↑,↑↓〉 + |↑,↓,↑↓〉) , (27g)
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JÖRN KRONES AND GÖTZ S. UHRIG PHYSICAL REVIEW B 91, 125102 (2015)

|t+3 〉 = |↓,↓,↑↓〉, (27h)

|FS,↑〉 = |0,↑,↑↓〉, (27i)

|FS,↓〉 = |0,↓,↑↓〉, (27j)

|↑̃〉 = 1√
6

[|↑,↑,↓〉 − 2|↑,↓,↑〉 + |↓,↑,↑〉] , (27k)

|↓̃〉 = 1√
6

[|↓,↓,↑〉 − 2|↓,↑,↓〉 + |↑,↓,↓〉] . (27l)

The notation encodes the states |r,d,r̄〉 where r represents
the state of the positive level, r̄ the corresponding state at the
negative level, and d the state of the impurity. The states |s−〉
and |t−i 〉 refer to the singlet and triplet states formed with the
negative level at εr̄ = −εr , while the states |s+〉 and |t+i 〉 refer
to the singlet and triplet states formed with the positive level
at εr . The states |FS,σ 〉 are the Fermi sea and a spin σ at the
impurity, while the states |σ̃ 〉 refer to a state with an effective
spin 1

2 .
The eigenvalues of the states in Eq. (27) read

Es± = −3Jrr

2
− εr , Et±i = Jrr

2
− εr , (28a)

EFS,σ = −2εr ,Eσ̃ = −2Jrr . (28b)

The indices s± and t±i refer to the singlet and triplet states
formed with the negative level at εr̄ = −εr and the positive
level at εr in Eq. (27), while the indices FS,σ refer to the
Fermi sea and σ̃ to the states with effective spin 1

2 in Eq. (27).
The parameter regimes with their respective ground states

are given by

Jrr <
2εr

3
ground state: |FS,σ 〉, (29a)

2εr

3
< Jrr < 2εr ground state: |s±〉, (29b)

Jrr > 2εr ground state: |σ̃ 〉. (29c)

As soon as the point

Jrr (l0) = 2εr

3
(30)

is reached, the ground state switches from the Fermi sea to
the singlet state. To be precise, both of them are doubly
degenerate because the singlet can be formed with site r

or r due to particle-hole symmetry. The singlet states are
no Slater determinants and thus Wick’s theorem cannot be
applied. However, the remaining bath, of course, remains a
Slater determinant and Wick’s theorem and the usual normal-
ordering can be used as before.

At the point where the singlet states become energetically
favorable, we choose the singlet states as the reference states
and the states (27) as a new basis. This means that, first, we
solve the flow (17) in the conventional operator basis with the
starting values (11). We track the ratio Jnn/εn at each site and
as soon as the ratio reaches 2/3 for some n we change the
reference state.

Figure 6 depicts the energy difference

�E (n) = Es (n) − EFS (n) (31)

FIG. 6. (Color online) Energy difference between the singlet
state and the Fermi sea �E(n) = Es(n) − EFS(n) at site n from (28)
for the Kondo model with N = 40, � = 2, and 2ρ0J = 0.14. The
sites n belong to the negative energy levels and the absolute values
of the energies are decreasing from top to bottom. The Kondo
temperature TK is taken from the inverse flow parameter l0 where
the flow starts to diverge. The black lines mark the flow for the n for
which |εn| < TK while the red lines mark the flow for the n for which
|εn| > TK . At the value of l where one �E(n) vanishes, the reference
state is changed. The blue line shows �E(nF ) at the site closest to the
Fermi level. The inset shows that the site closest to the Fermi level
forms the singlet first.

between the energy of the singlet state Es and the energy
of the Fermi sea EFS at a site n for the Kondo model.
At the first value of l where this difference vanishes, the
reference state is changed. The couplings Jnn only diverge
for indices n with |εn| < TK (cf. Fig. 4), i.e., only couplings
below the Kondo energy scale become large enough to make a
change of reference state possible. Thus, the approach ensures
intrinsically that the singlet will form below the Kondo energy
scale. The results displayed in Fig. 4 show that the smaller the
energy εn, the faster the ratio Jnn/εn increases. Thus the singlet
forms at the lowest energy scale in the system. In a continuum
of states, this would be infinitesimally close to the Fermi level
εF . In the logarithmically discretized numerical treatment, this
is the bath site with the lowest energy.

Once we changed the reference state we compute the flow
as discussed below in a modified operator basis. We do not
allow for further changes of the reference state which may
occur in principle. However, we will show below that the
chosen switched reference state ensures a convergent flow.
To achieve convergence is the primary goal of our present
study. In addition, the singlet reference states acquire a binding
energy equal to the Kondo energy scale in the course of the
flow. Thus there is no indication of a need to change the
reference state further. Moreover, each change of reference
state is cumbersome to implement so that we have to leave a
comprehensive discussion of this point to future research.

A. Effective model and the modified operator basis

In the next step, we determine the effective Hamiltonian
and the modified flow equations due to the changed reference
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state. We denote the site which is part of the modified operator
basis by r and the flow parameter at which the reference state
is changed by l0. When the flow parameter reaches the point
l = l1, the effective Hamiltonian is still of the form

H (l1) =
∑
n,σ

εn :c†nσ cnσ :

+
∑

μ

∑
n,m

∑
α,β

Jnm (l1) σ
μ
αβS

μ

I :c†nαcmβ :. (32)

The sites denoted by r and r̄ , where εr̄ = −εr , form the singlet
state with the impurity. Thus we treat them separately. Next,
we introduce the modified operator basis pertaining to these
three sites, which is adapted to the changed reference state

Ôkq = |k〉〈q| − 〈Ôkq〉, (33)

where k and q denote the basis states from (27). The subtraction
of the expectation values stands for normal-ordering. Because
the states |s−〉 and |s+〉 are degenerate, we cannot use a single
reference state but a reference ensemble [47]:

〈Ô〉 = 1
2 (〈s−|Ô|s−〉 + 〈s+|Ô|s+〉). (34)

The operator basis from (33) is normal-ordered with respect
to this reference ensemble. Due to the normal-ordering (33),
hopping terms will generically emerge in the course of the
flow which eventually change the energies Ek . However, all
effects on Ek stemming from the normal-ordering are at least
of order J 3 because all terms arising in this way are of order
J 2 and they need at least one more commutation to act on Ek ,
which increases the order in powers of J at least by one. We
focus on orders up to J 2 in the local energies and thus neglect
the normal-ordering from (33) using Ôkq = |k〉〈q| instead.

We expand all terms in the modified operator basis yielding
the Hamiltonian in the form

H̄ (l0) =
∑

n�=±r,σ

εn :c†nσ cnσ : +
∑
k,q

Ekq |k〉〈q|

+
∑
k,q

∑
n,m�=±r

∑
α,β

J kqαβ
nm |k〉〈q| :c†nαcmβ :

+
∑
k,q,σ

∑
n�=±r

�kqσ
n (|k〉〈q|cnσ + c†nσ |q〉〈k|). (35)

The basis states and the modified operators were chosen such
that terms acting only on the sites r or r̄ are diagonal. Hence we
know by construction that the Ek are given by the eigenvalues
in (28) where Jrr = Jrr (l1), while the starting values for the
other coefficients are determined from

J kqαβ
nm (l1) = Jnm (l1)

∑
μ

σ
μ
αβ〈k|Sμ

I |q〉, (36a)

�kqσ
n (l1) = Jnr (l1)

∑
μ,α

σμ
ασ 〈k|Sμ

I c†rα|q〉

+ Jnr̄ (l1)
∑
μ,α

σμ
ασ 〈k|Sμ

I c
†
r̄α|q〉, (36b)

Ekq (l1) = 2

⎛
⎝∑

μ

∑
α,β

Jrr̄σ
μ
αβ〈k|Sμ

I c
†
r̄αcrβ |q〉

⎞
⎠ . (36c)

The structure of the generator after changing the reference
ensemble is given by

η =
∑
k,q

∑
α,β

∑
n,m�=±r

η
kqαβ

nm,J |k〉〈q| :c†nαcmβ :

+
∑
k,q,σ

∑
n�=±r

η
kqσ

n,� (|k〉〈q|cnσ − h.c.) +
∑
k,q

ηE
kq |k〉〈q|.

(37)

We want to eliminate all terms that couple to the reference
ensemble. Thus we choose the coefficients of the generator of
the form

ηE
kq =

{
sgn(Ek − Eq)Ekq if k,q = s±

0 otherwise,
(38a)

η
kqαβ

nm,J =
{

sgn(Ek −Eq +εn −εm)J kqαβ
nm if k,q = s±

0 otherwise,
(38b)

η
kqσ

n,� =
{

sgn(Ek − Eq − εn)�kqσ
n if k,q = s±

0 otherwise,
(38c)

where k,q = s± means that k or q are in one of the singlet
states.

Summarizing, we only include terms which couple to the
singlet states. We emphasize that this implies that terms which
couple to the triplet states formed from the impurity spin and a
spin on a bath site at the Fermi level are not eliminated because
they are not included in the generator. Thus the reference state,
which becomes the ground state in the course of the flow,
consists of a singlet and a Fermi sea. But this does not imply
that the complete effective model is reduced to a singlet and a
free fermionic bath. This fact makes an exhaustive analysis of
the effective model challenging.

In order to obtain the modified flow equation (2), we
commute the generator (37) with the Hamiltonian (35). We
truncate terms which have a quartic structure in the fermionic
bath operators. The resulting flow equation reads

∂lEkq = (Eqq − Ekk)ηE
kq +

∑
p �=q

ηE
kpEpq −

∑
p �=k

ηE
pqEkp

+
∑

p

∑
α,β

∑
n,m�=±r

η
kpαβ

nm,J J pqβα
mn θn (1 − θm)

−
∑

p

∑
α,β

∑
n,m�=±r

η
pqαβ

mn,J J kpβα
nm θn (1 − θm)

−
∑
n�=±r

∑
p,γ

(
η

pkγ

n,� �pqγ
n + η

pqγ

n,� �pkγ
n

)
θn

+
∑
n�=±r

∑
p,γ

(
η

kpγ

n,� �qpγ
n + η

qpγ

n,� �kpγ
n

)
(1 − θn) , (39a)

∂l�
kqσ
n = (εn + Eqq − Ekk)ηkqσ

n,� +
∑
p �=q

(
η

kpσ

n,� Epq − ηE
pq�

kpσ
n

)

−
∑
p �=k

(
η

pqσ

n,� Ekp − ηE
kp�pqσ

n

)
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+
∑

p

∑
x �=±r,γ

(
η

kpγ

x,� J pqγ σ
xn − η

pqγσ

xn,J �kpγ
x

)
(1 − θx)

+
∑

p

∑
x �=±r,γ

(
η

pqγ

x,� J kpγσ
xn − η

kpγσ

xn,J �pqγ
x

)
θx, (39b)

∂lJ
kqαβ
nm = (εm − εn + Eqq − Ekk)ηkqαβ

nm,J

+
∑
p �=q

(
η

kpαβ

nm,J Epq − ηE
pqJ

kpαβ
nm

)

−
∑
p �=k

(
η

pqαβ

nm,J Ekp − ηE
kpJ pqαβ

nm

)

+
∑

x �=±r,γ,p

(
η

pqαγ

nx,J J
kpγβ

xm,J − η
kpγβ

xm,J J pqαγ
nx

)
θx

+
∑

x �=±r,γ,p

(
η

kpαγ

nx,J J
pqγβ

xm,J − η
pqγβ

xm,J J kpαγ
nx

)
(1 − θx)

−
∑

p

(
η

pkα

n,� �pqβ
m + η

pqβ

m,��pkα
n

)

−
∑

p

(
η

qpα

n,� �kpβ
m + η

kpβ

m,��qpα
n

)
, (39c)

where 
x := 〈c†xσ cxσ 〉 is the expectation value with respect
to the Fermi sea. It occurs upon the normal-ordering of the
fermionic bath operators with respect to the Fermi sea.

B. Results of the modified flow

The number of indices is very large and one should reduce
the number of differential equations by exploiting symmetries.
A lot of combinations of the k and q indices, for instance, do
not occur due to spin conservation which reduces the numerical
effort. In the following paragraphs the results obtained by the
modified approach are presented. Figure 7 depicts the ROD
of the Kondo model in the modified approach. The aim is to
verify that the flow (39) converges.

We start from the Kondo Hamiltonian and solve the original
flow (17) with the initial values (11). This implies that the
Fermi sea is the reference state. For small l, the ratio Jnn/εn is
significantly smaller than 2/3, cf. (30), and the flow proceeds as
long as this holds true. At some value l1, the spin-spin coupling
Jnn becomes large enough so that Jnn/εn = 2/3 is fulfilled. As
soon as this happens, we change the reference state and rewrite
the Hamiltonian in the form (35) with the modified operator
basis (27). Then, we use the modified flow (39) and continue
with the flow starting at l1. All sets of differential equations
are solved by a fourth-order Runge-Kutta algorithm.

For small l, the ROD is the same as for the original
flow (17) because the reference state is not changed yet. Once
we switch to the modified reference state, the ROD changes
discontinuously because the generator is changed so that other
types of terms are included in the ROD. One may wonder
why the ROD increases upon changing the reference state
although we aim at eliminating less terms than before. Recall
that we only rotate away terms that couple to the singlet
states. However, one must also bear in mind that we include
completely different types of terms in the generator after the
change to the modified operator basis. In particular, terms that

FIG. 7. (Color online) ROD for the Kondo model with N = 40,
� = 2, and 2ρ0J = 0.2 obtained from the modified approach where
the reference state is changed during the flow at l1. First, the Fermi
sea is the reference state and (17) is solved with the initial values (11).
After changing the reference state, the modified flow (39) is solved.
The modified flow converges in contrast to the original CUT. The
ROD for the original CUT (17) without changing the reference state
is denoted by the dashed line.

are diagonal in the fermionic bath operators are then included
which were not included before. For instance, we may inspect
terms of the form

J
t±i ,s±,αβ
nn |t±i 〉〈s±| :c†nαcnβ : (40)

with initial values at l1 that are proportional to Jnn (l1). Such
terms were not eliminated by the CUT in the conventional,
original operator basis. Thus, at l = l1, these terms are large
compared to the terms in the generator before the reference
state is changed, which have been suppressed by a factor
exp (−|εn − εm|l1). Once the reference state is changed, these
diagonal terms in the fermionic bath operators are included in
the ROD. Thus the ROD increases abruptly upon switching
the reference state and using the modified generator.

The dashed line in Fig. 7 shows the behavior of the ROD
if the reference state is not changed. In this case the ROD
diverges at l−1

0 corresponding to the Kondo temperature TK .
We conclude that the modified flow equation (39) is indeed able
to prevent this divergence leading to an effective Hamiltonian
with finite couplings even at the Fermi level εF = 0.

We succeeded to provide a method that yields an effective
Hamiltonian with small finite parameters for ε → εF . With the
conventional, original approach, we found the Kondo energy
scale only as the point at which the running couplings diverge
[23]. Figure 8 depicts the inverse energy scale given by the
flow parameter l1 at which the reference state is changed for
the Kondo model. We retrieve the exponential energy scale

l−1
1 ∝ e− A�

2ρ0J , (41)

where the factor A� is given by (22) taking discretization
effects into account [9]. Thus we confirm that the energy scale
at which the reference state is changed is proportional to the
Kondo temperature TK , at least at the level of accuracy of the
present study.
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FIG. 8. (Color online) Inverse energy scale l1 at which the refer-
ence state is changed for the Kondo model with � = 2 and N = 52.
The inverse energy scale l1 is increasing proportionally to the inverse
of the Kondo temperature T −1

K ∝ exp(A�/2ρ0J ). The factor A�

from (22) is due to the discretization.

In addition, there is another very interesting energy scale in
the effective model which is the binding energy of the singlets.
This energy is the energy by which the singlets are separated
from the Fermi sea states with a localized spin on the impurity.
Note that this does not imply that the system is gapped because
the other fermionic sites still exist and represent massless
excitations in the continuum limit.

We can identify the local binding energy easily as the energy
difference �s of the two lowest energies Es and E− in the
diagonal part (45) of the Hamiltonian (44) where the Ekq are
diagonalized first, cf. also (28). Hence we consider

�s = E− − Es (42)

at l → ∞.
If we omit the remaining interactions at finite l, we can

define an approximative binding energy of the singlet state by
the energy difference between the two lowest energy levels

�s (l) = E− (l) − Es (l) (43)

from the effective Hamiltonian

Heff =
∑
n,σ

εn :c†nσ cnσ : +
∑

k

Ekk|k〉〈k|

+ g
∑

σ

(|FS,σ 〉〈σ̃ | + |σ̃ 〉〈FS,σ |) , (44)

where we have first diagonalized the nondiagonal terms
proportional to Ekq . Diagonalizing the terms |k〉〈q| yields the
eigenvalues

Es± , Et±1,2,3
,

E± = 1
2

[
EFS,σ + Eσ̃ ±

√
(EFS,σ − Eσ̃ )2 + 4g2

]
, (45)

where the lowest-lying level is the energy of the singlet Es and
the second lowest-lying is the energy level E−, which belongs
to a linear combination of the Fermi sea and the |σ̃ 〉 states, see
also (28).

FIG. 9. Flow of �s(l) = E−(l) − Es(l) with E− and Es from (45)
for the Kondo model with N = 40 and � = 2. The quantity �s

converges to the binding energy of the Kondo singlet for l → ∞.

Figure 9 depicts the corresponding flow of �s(l). The
energy necessary to break up the singlet ground state is given
by the difference

�s (∞) = E− (∞) − Es (∞) (46)

where Es is the singlet energy, which is the lowest lying state,
and E− is given by (45), which is the first excitation above
the singlet state involving the impurity. We draw the reader’s
attention to the fact that �s can only be interpreted as the
binding energy for l → ∞ because only then the ground state
of the effective model will be the singlet state. For smaller l

there are still interaction terms present that act on the singlet
state, which vanish in the limit l → ∞.

Upon increasing l, �s (l) increases rapidly until it converges
towards the binding energy of the singlet state �s (∞). The
binding energy is analyzed in Fig. 10. For l → ∞, we find an

FIG. 10. (Color online) Binding energy of the singlet state
�s(∞) = E− (∞) − Es(∞) with E− and Es from Eqs. (45) and (28)
for the Kondo model with N = 40 and � = 2. The binding energy
shows the generic exponential behavior �s(∞) ∝ exp(A�/2ρ0J ).
The factor A� from (22) is an effect of the discretization.
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exponential behavior of the form

�s (∞) ∝ e− A�
2ρ0J , (47)

where the discretization factor A� is given by (22).
Hence we conclude that the modified CUT approach not

only yields an effective Hamiltonian with finite couplings, but
also results in a model in which the Kondo energy scale is
already manifest in the diagonal part. It is no longer hidden
within the intricate interplay of different physical processes.

Recall that earlier CUT approaches led to diverging cou-
plings [23] or to an effective model where the parameters ex-
hibited logarithmic infrared divergences very similar to those
found by a standard perturbative treatment [1]. Alternatively,
the detour via a bosonized form of the Kondo model was taken
[25–27]. The mapping of the fermionic Kondo model to the
bosonized one is systematically controlled only in the wide
band limit.

IV. ANDERSON IMPURITY MODEL

In the last two sections, we considered the Kondo model first
in the standard CUT akin to poor man’s scaling and second
with a change of reference state. The first approach yields
diverging couplings while the second provides a well-defined
effective model with finite couplings. In the present section
and in the next one, we will extend these treatments to the
Anderson impurity model.

A. Parametrization of the Anderson impurity model

We consider the Anderson impurity model in its standard
form [2,3]

H =
∑
k,σ

εkc
†
kσ ckσ +

∑
σ

εdd
†
σ dσ + Ud

†
↑d

†
↓d↓d↑

+
∑
k,σ

(Vk d†
σ ckσ + V

∗
k c

†
kσ dσ ). (48)

If we discretize it in the energy representation employing the
formulae (8a), we obtain

H =
∑
s=±

∑
n,σ

εs
nc

†
nσ,scnσ,s + εd

∑
σ

d†
σ dσ + Ud

†
↑d

†
↓d↓d↑

+
∑
s=±

∑
n,σ

V γ s
n (c†nσ,sdσ + d†

σ cnσ,s). (49)

The Schrieffer-Wolff transformation to a Kondo-type model
has been realized already in the early days of CUTs [30] and
extended recently to superconducting hosts [32]. Here, we use
a slightly different approach to eliminate the hybridization
elements Vn. We consider a discretized flat density of states
(DOS) (49) and choose the ground state of

HD =
∑
n,σ

εnc
†
nσ cnσ + εd

∑
σ

nd,σ + Und,↑nd,↓ (50)

as the reference state where nd,σ is the occupation operator of
the d level

nd,σ = d†
σ dσ . (51)

In the present paper, we restrict ourselves to the particle-
hole symmetric cases. Then, the singly-occupied impurity state

TABLE I. Impurity operator basis with nd,σ = d†
σ dσ .

bosonic operators fermionic operators

1 F1,↑ = (1 − nd,↓)d↑

nz = nd,↑ − nd,↓ F1,↓ = (1 − nd,↑)d↓

d
†
↑d↓ F2,↑ = nd,↓d↑

d
†
↓d↑ F2,↓ = nd,↑d↓

d↓d↑ F
†
2,↑ = nd,↓d

†
↑

d
†
↑d

†
↓ F

†
2,↓ = nd,↑d

†
↓

n̄ = nd,↑ + nd,↓ − 1 F
†
1,↑ = (1 − nd,↓)d†

↑

D̂ = 2nd,↑nd,↓ − n̄ F
†
1,↓ = (1 − nd,↑)d†

↓

is the lowest-lying eigenstate of (50) and thus there are two
degenerate reference states with a spin degree of freedom at the
impurity. Hence we have to use a reference ensemble for the
impurity operators and the normal-ordering scheme employed
is defined by

〈↑| : Â : |↑〉 + 〈↓| : Â : |↓〉 = 0. (52)

In order to be able to use sign generators similar to (16),
it must be evident which change of energy they induce. The
sign of this energy change determines the sign of the term
in the generator. To this end, we introduce an operator basis
whose terms imply a unambiguous change of local energy
on the impurity. The chosen operator basis has already been
used successfully before in the derivation of generalized t − J

models from Hubbard models [40]. Its terms are shown in
Table I.

The reason for this choice of operator basis becomes evident
upon inspecting the local impurity configurations, which are
connected by these operators. The energy difference between
the empty and the singly-occupied states is different from the
energy difference between the singly and the doubly-occupied
states. Thus there is no unique energy change induced by
the operator d†

σ because it connects the empty to the singly-
occupied state and the singly-occupied to the doubly-occupied
state.

The projected operator F
†
1,σ = (1 − nσ̄ )d†

σ only connects
the empty to the singly-occupied state while the projected
operator F

†
2,σ = nσ̄ d†

σ only connects the singly-occupied to
the doubly-occupied state. Thus there are unambiguous energy
differences induced by the projected operators reading

�E1 = εd = ε̃d − Ũ , (53a)

�E2 = εd + U = ε̃d + Ũ , (53b)

where the coefficients Ũ and ε̃d are the coefficients of the
Anderson impurity Hamiltonian (54) expressed in the operator
basis given in Table I. The values of the coefficients are given
in (56).

The Anderson impurity Hamiltonian expressed in the
projected impurity operator basis takes the form

H = HD + HR (54)
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with the diagonal part HD and the hybridization part HR:

HD =
∑
n,σ

εn :c†nσ cnσ : + ε̃d n̄ + ŨD̂, (55a)

HR =
∑
n,σ

Vn(F †
1σ cnσ + c†nσ F1σ )

+
∑
n,σ

�n(F †
2σ cnσ + c†nσ F2σ ). (55b)

The coefficients in the projected operator basis are given by

Vn = V γn, �n = V γn, ε̃d = εd + U

2
, Ũ = U

2
(56)

with the parameters εn and γn from (14a). The fermionic bath
operators are still normal-ordered with respect to the Fermi
sea.

B. Elimination of the hybridization

We want to eliminate the hybridization elements and ana-
lyze the spin-spin interaction induced thereby. This amounts up
to the Schrieffer-Wolff transformation realized by CUTs [30]
or the systematic derivation of t − J models from Hubbard
models by CUTs [40]. We choose the generator

η =
∑
n,σ

ηV
n (F †

1σ cnσ − c†nσ F1σ )

+
∑
n,σ

η�
n (F †

2σ cnσ − c†nσ F2σ )

+
∑
n,m,σ

ηt
nm :c†nσ cmσ :. (57)

For the flow equation (2) we commute the generator (57)
with the Hamiltonian (54), which generates terms not present
in the initial Hamiltonian reading

Ht =
∑
n,m,σ

tnm :c†nσ cmσ :, (58a)

HJ =
∑
n,m,σ

J ↑↓
nm d†

σ dσ̄ c
†
nσ̄ cmσ +

∑
n,m,σ

J nz

nmσ nz :c†nσ cmσ :

+
∑
n,m,σ

J n̄
nm n̄ :c†nσ cmσ :

+
∑
n,m

J±
nm(d†

↑d
†
↓cn↓cm↑ + c

†
m↑c

†
n↓d↓d↑). (58b)

All these emerging terms are of order V 2 and coincide
with terms in the arising in the standard Schrieffer-Wolff
transformation [48]. We aim at computing the couplings J (i)

nm

from (58a) in order V 2 and thus the commutators

[ηR,HD + HR] and [ηt ,HD] (59)

are needed; all other commutations yield terms of order V 3 or
higher.

Aiming at HJ from (58a) in order V 2 we neglect all terms
that contribute to HJ in order V 3. We point out that this implies
also to neglect terms in order V 2 that are not of the form HJ and
will influence HJ only in order V 3 or higher. This argument
applies to the flow of HD and the emerging hopping terms tnm

because they lead to corrections to HJ of order V 3 and higher
only. In this way, the flow equations simplify to

∂lVn = ηV
n (εn − ε̃d + Ũ ), (60a)

∂l�n = η�
n (εn − ε̃d − Ũ ), (60b)

∂lJ
↑↓
nm = η�

n �m + η�
m�n − ηV

n Vm − ηV
mVn, (60c)

∂lJ
±
nm = η�

n Vm + η�
mVn − ηV

n �m − ηV
m�n, (60d)

where only J
↑↓
nm has to be known due to spin-rotation

symmetry:

σJ nz

nmσ = 1
2J ↑↓

nm . (61)

The operator F
†
1σ cnσ promotes the empty impurity state

to the singly-occupied one while annihilating a particle with
energy εn in the bath. This leads to a change of energy

�E1,n = ε̃d − Ũ − εn. (62)

The operator F
†
2σ cnσ promotes the singly-occupied to the

doubly-occupied impurity level and annihilates a particle with
energy εn in the bath. This implies a change of energy

�E2,n = ε̃d + Ũ − εn. (63)

Thus the sign generator takes the form

ηV
n = −sgn(εn − ε̃d + Ũ )Vn, (64a)

η�
n = −sgn(εn − ε̃d − Ũ )�n. (64b)

C. Diagonalization of the induced spin-spin interaction

In addition, we want to diagonalize the induced spin-spin
interaction at the same time as it is generated upon eliminating
the hybridization. For this reason, we add the following terms
to the generator:

ηJ =
∑
n,m,σ

η↑↓
nmd†

σ dσ̄ c
†
nσ̄ cmσ +

∑
n,m,σ

ηnz

nmσnz :c†nσ cmσ :

+
∑
n,m

η±
nm(d†

↑d
†
↓cn↓cm↑ − c

†
m↑c

†
n↓d↓d↑)

+
∑
n,m,σ

ηn̄
nmn̄ :c†nσ cmσ :. (65)

These terms lead in the sign generator to terms of the same
kind with the prefactors:

η↑↓
nm = sgn (εn − εm) J ↑↓

nm , (66a)

ηnz

nm = sgn (εn − εm) J nz

nm, (66b)

ηn̄
nmσ = sgn (εn − εm) J n̄

nm, (66c)

η±
nm = −sgn (εn + εm) J±

nm. (66d)

We only track terms that act in lowest order J 2 on the
spin-spin interaction neglecting higher order contributions in
J . Hence the commutators [ηJ ,HD + HJ ] are needed. Among
the resulting terms, only those terms are kept that act on
HJ . All other terms are neglected because their feedback on
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the spin-spin interaction is at least of order J 3. Calculating
the commutators and comparing the coefficients in the flow
equation (2) yields additional terms to the flow equation (60)
so that one arrives at

∂lJ
nz

nmσ = (εm − εn) ηnz

nmσ

− 1

2

∑
x

σ
(
η↑↓

nx J ↑↓
xm − η↑↓

xmJ ↑↓
nx

)
(1 − 2θx), (67a)

∂lJ
↑↓
nm = (εm − εn) η↑↓

nm

+
∑

x

σ
(
ηnz

xmσ J ↑↓
nx − ηnz

nxσ J ↑↓
xm

)
(1 − 2θx)

+
∑

x

σ
(
η↑↓

xmJ nz

nxσ − η↑↓
nx J nz

xmσ

)
(1 − 2θx), (67b)

∂lJ
n̄
nm = (εm − εn) ηn̄

nm

− 1

2

∑
x

(
η±

xnJ
±
xm + η±

xmJ±
xn

)
(1 − 2θx), (67c)

∂lJ
±
nm = (εn + εm) η±

nm

+
∑

x

(
ηn̄

xm↑J±
nx + ηn̄

xn↓J±
xm

)
(1 − 2θx)

−
∑

x

(
η±

nxJ
n̄
xm↑ + η±

xmJ n̄
xn↓

)
(1 − 2θx), (67d)

where σ labels the spin if it is used as index while it takes the
values σ = ±1 as a coefficient. The occupation number

θx = 〈c†xσ cxσ 〉 (68)

is calculated with respect to the Fermi sea and results from the
normal-ordering of the fermionic bath operators.

Taking a closer look at the flow equation (67) reveals that
J nz and J ↑↓ only influence each other. They do not couple
to J± or J n̄, which also only influence each other. The spin-
rotation symmetry

σJ nz

nmσ = 1
2J ↑↓

nm (69)

holds true during the whole flow, which simplifies the flow
equation for J

↑↓
nm to

∂lJ
↑↓
nm = − (εn − εm) η↑↓

nm

−
∑

x

(η↑↓
nx J ↑↓

xm − η↑↓
xmJ ↑↓

nx ) (1 − 2θx) . (70)

This differential equation is the same as Eq. (17), which is
the flow equation for the diagonalization of the spin-spin
interactions in the Kondo model. Recall that in the Anderson
impurity model, we aim at eliminating the charge fluctuations
induced by the hybridization Vnm and diagonalizing the in-
duced spin-spin interaction Jnm simultaneously. We emphasize
that this is not in one-to-one correspondence to applying a
Schrieffer-Wolff transformation first and then diagonalizing
the effective Kondo Hamiltonian.

In order to determine the Kondo energy scale of the
Anderson impurity Hamiltonian with CUTs, we combine (60)
and (67). This flow equation also leads to divergence on
an energy scale that depends on the parameters U and V .
Figure 11 shows the point of divergence l0 as a function
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FIG. 11. (Color online) Flow parameter l0 at which the flow
equation diverges (compare Fig. 2) for the Anderson impurity model
with N = 60, � = 2, and V/D = 0.01414 in a logarithmic plot vs
U/D. The inverse energy l0 shows the generic exponential behavior
l0 ∝ exp(A�U/8ρ0V

2) of the Kondo temperature TK of the Anderson
impurity model. The factor A� is given by (22). The dashed-dotted
curve (blue) depicts the Bethe ansatz result (71). The discontinuous
behavior is a result of the discretization and happens every time when
U/2 crosses an energy level εn (dotted vertical lines). For decreasing
�, the discontinuities become smaller (compare Fig. 12).

of the interaction U . There are certain values of U for
which discontinuous jumps occur. In the intervals between
the discontinuities, we find the correct exponential behavior of
the Kondo temperature T −1

k ∝ exp(A�
U

8ρ0V 2 ), where A� from
(22) captures the influence of the discretization on the Kondo
temperature, cf. Ref. [9]. In order to show that the overall
behavior is indeed the correct one, Fig. 11 also depicts the
Bethe ansatz result [3,11]

TK,Bethe = U

√
�

2A�U
exp

(
−πA�U

8�
+ π�

2A�U

)
, (71)

where we use the hybridization � = πV 2/(2D) as a usual
shorthand. Moreover, we introduced the discretization factor
A� wherever the ratio U/� occurs.

The origin of the discontinuities is the discretization of the
bare energy levels. Each time the interaction U/2 crosses an
energy level εn, one sign in the generator

ηV
n = −sgn (εn + U/2) Vn, (72a)

η�
n = −sgn (εn − U/2) �n (72b)

is changed discontinuously implying a discontinuity in all
other quantities as well.

In Figs. 11 and 12, the dashed vertical lines show the values
of the interaction where U

2 = εn. One clearly sees that the
discontinuities occur indeed exactly when U/2 crosses an
energy level εn. In Fig. 12, the discretization parameter �

is decreased and thus more energy levels lie in the considered
interval. As a result, more discontinuities occur, but the weight
|γn|2 carried by the respective energy levels decreases so
that the induced jumps become smaller. Thus, in the limit
of � → 1, the curve would not display jumps anymore.
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FIG. 12. (Color online) Flow parameter l0 at which the flow
equation diverges (cf. Fig. 2) for the Anderson impurity model with
N = 200, � = 1.2, and V/D = 0.01414 in a logarithmic plot vs
U/D. The inverse energy l0 displays the generic exponential character
l0 ∝ exp(A�U/8ρ0V

2) of the Kondo temperature TK of the Anderson
impurity model. The discretization factor A� is given by (22). The
dashed-dotted curve (blue) depicts the Bethe ansatz result (71). The
discontinuous behavior is a result of the discretization and occurs
each time when U/2 crosses an energy level εn (dotted vertical lines).

Summarizing this section, we succeeded in eliminating the
hybridization in the Anderson impurity model by means of a
continuous unitary transformation and the thus induced spin-
spin interaction until a small energy scale (large values of the
flow parameter l) where the flow diverges. This energy scale
turns out to be the Kondo energy scale TK , capturing the correct
exponential behavior in U :

TK = l−1
0 = C (U ) exp

(
−A�

U

8ρ0V 2

)
, (73)

where C(U ) stems from the discretization and describes the
discontinuous behavior observed in Figs. 11 and 12; C(U )
is constant in each interval between two discontinuities.
The factor A� captures the discretization corrections in the
exponent [9]. To our knowledge, the correct exponential scale
has not yet been found by a CUT so far. Still, we do not obtain
a finite effective model, but a divergent flow.

V. MODIFIED APPROACH TO THE ANDERSON
IMPURITY MODEL

Here, we apply the modified approach to the Anderson
impurity model. First we follow the procedure of the last
section and start from the Anderson impurity Hamiltonian in
the form (54). The hybridization is eliminated by using (60).
Simultaneously, the thus induced spin-spin interaction is diag-
onalized by using (70). For small values of the flow parameter
l, the spin-spin exchange couplings J

↑↓
nm are generated in the

process of the elimination of the hybridization elements.
Beyond some value of l the hybridization elements become

negligible. Then the backaction of the induced spin-spin
interaction on itself in (70) is the driving effect in the flow
equation, which leads to diverging couplings (dashed black

FIG. 13. (Color online) ROD for the Anderson impurity model
with N = 52, � = 2, U/D = 3.2 × 10−3, and V/D = 0.01414. The
first part of the flow only shows the ROD of (70) for the induced spin-
spin interaction J ↑↓

nm from (58a). The diagonalization of the induced
spin-spin interaction leads to the divergence depicted as dashed black
line. After changing the reference state we solve the flow (39), which
turns out to converge in contrast to the original flow (70).

line in Fig. 13). At an even larger value l1 the formation
of a singlet state with the impurity becomes energetically
favorable. This is determined just as in the case of the Kondo
model referring to the coupling J

↑↓
nm instead of Jnm. To this end,

we consider only the singly-occupied impurity state because
l1 is much larger than 1/U so that the charge fluctuations on
the impurity will not play any significant role at this stage of
the flow. Hence the couplings J±

nm and J n̄
nm do not need to be

considered beyond l1. Using the spin-rotation symmetry (69)
for J

nz
nm and J

↑↓
nm leads to an effective Kondo Hamiltonian with

the couplings Jnm = J
↑↓
nm . Subsequently, we can follow the

same procedure as in the Kondo model, i.e., we change the
reference state to a mixture of singlets between the impurity
spin and bath fermions at the Fermi level and we expand the
effective Kondo Hamiltonian in the modified operator basis
(27) and use the modified flow equation (39).

Figure 13 shows the ROD of the Anderson impurity model
obtained with this modified approach. We only plot the ROD
of the spin-spin couplings

ROD2 =
∑
n,m
n �=m

|J ↑↓
nm |2. (74)

First, the ROD is increasing because the spin-spin coupling
is generated by the elimination of the hybridization. Without
changing the reference state the flow equation (70) leads to
divergence, see dashed black line. At some point l1 before the
divergence occurs the singlet formation becomes energetically
favorable, see Eq. (30), and the reference state is changed.

The ROD shows a discontinuous behavior when the refer-
ence state is changed because we use the modified generator,
which includes additional terms. The reason why the ROD is
abruptly increasing is the same as in the case of the Kondo
model, see Sec. III B. In contrast to the flow without change
of reference state, the modified flow equation converges and
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FIG. 14. (Color online) Inverse energy scale l1 at which the
reference state is changed for the Anderson impurity model with
N = 52, � = 2, and V/D = 0.01414. The inverse energy scale l1
is increasing proportional to the inverse of the Kondo temperature
T −1

K ∝ exp(A�U/8ρ0V
2). The dashed-dotted curve (blue) depicts

the Bethe ansatz result (71). The factor A� from (22) takes the
discretization into account. The discontinuities stem also from the
discretization of the energy.

leads to a finite, well-defined effective Hamiltonian. Next, we
analyze the same energy scales as for the Kondo model.

A. Effective model for the Anderson impurity model

Figure 14 shows the flow parameter l1 at which the reference
state is changed. We again find discontinuities for the same
reason as they occurred in Fig. 11. Between two discontinuities
we find the exponential behavior characteristic of the Kondo
energy scale in the Anderson impurity model

l−1
1 ∝ exp

(
−A�

U

8ρ0V 2

)
. (75)

Thus, for the Anderson impurity model, the point where
the reference state is changed is also given by the Kondo
temperature TK .

B. Binding energy of the Kondo singlet

In Fig. 15, the flow of �s from (42) is displayed.
Discontinuities occur whenever U/2 an energy level εn. For
clarity the different regions between two consecutive values
of εn are depicted in two panels in Fig. 15. We find that �s

increases quickly and converges to the binding energy of the
singlet �s(∞).

The binding energy of the singlets is analyzed in Fig. 16.
We again find the discontinuities already observed in Fig. 11.
Between these discontinuities the binding energy decreases
according to

�s (∞) ∝ exp

(
−A�

U

8ρ0V 2

)
. (76)

Thus we again retrieve a singlet ground state with a binding
energy given by the Kondo temperature TK .

FIG. 15. Flow of �s(l) = E−(l) − Es(l), where E− and Es

result from (45) and (28) for the Anderson impurity model with
N = 52, � = 2, and V/D = 0.01414 and various values of the
interaction. From top to bottom: (upper panel) U/D × 103 = 1.464,
1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 2.929 and (lower panel) U/D ×
103 = 3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5. The energy difference �s

converges to the binding energy of the Kondo singlet for l → ∞. The
flow for the different parameters is split into two plots for clarity
because each time when U/2 crosses εn l0 jumps, cf. Fig. 16.

VI. SUMMARY

A. Conclusions

To treat the exponentially small Kondo energy scale reliably
is a key problem in correlated fermionic systems. We presented
a way how to use CUTs in order to derive effective models for
the Kondo and the Anderson impurity model. The conventional
CUT approach with a fixed reference state leads to diverging
flow equations [23]. We identified the origin of this divergence
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FIG. 16. (Color online) Binding energy of the singlet �s(∞) =
E−(∞) − Es(∞) with E− and Es from (45) and (28) for the An-
derson impurity model with N = 52, � = 2, and V/D = 0.01414.
The binding energy shows the exponential behavior �s(∞) ∝
exp(−A�U/8ρ0V

2). The dashed-dotted curve (blue) depicts the
Bethe ansatz result (71). The factor A� from (22) takes the effects of
discretization into account.
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which lies in the inappropriate reference state. We introduced
a modified approach based on the change of the reference state
for the Kondo and the Anderson impurity model, which solves
the problem of diverging couplings during the flow and results
in a well-behaved effective low-energy model with finite pa-
rameters at arbitrarily small energies. This is the main achieve-
ment of the present work. We find a singlet ground state with
a binding energy that is given by the Kondo temperature TK .
Our approach is able to capture the exponentially small Kondo
energy scale. The quantitative result for the Anderson impurity
model compares well with the Bethe ansatz result [3,11].

The ground state of the effective model obtained by the CUT
is a singlet and a Fermi sea. But we stress that the complete
effective model also comprises couplings between the triplet
states of the impurity and the fermions in the bath. This implies
that even the effective model represents a correlated problem
with nontrivial properties. Furthermore, interactions within
the fermionic bath have not been tracked. For these reasons,
it is beyond the scope of the present work to analyze other
characteristic quantities such as the Wilson ratio and the like.

Earlier approaches for the Kondo model result in diverging
couplings at a characteristic flow parameter [23], an effective
model where the parameters still exhibit logarithmic infrared
divergences [24] or rely on a bosonized form of the Kondo
model before applying the CUT [25–27]. In the case of
the Anderson impurity model, only a few approaches based
on CUTs were published [28,30,31] while none of them
reveal the exponential character of the Kondo temperature TK.
Nevertheless, an important previous work is able to reconstruct
the Schrieffer-Wolff transformation using CUTs [30] and can
be extended to other hosts [32]. Our approach does not rely
on a bosonized form and can be extended to the Anderson
impurity model.

Of course, there are other methods which reliably provide
the exponentially small Kondo energy. The first is the nu-
merical renormalization group [8–10] and the Bethe ansatz
solution [11]. However, the challenge to find a reliable RG
approach with convergent flow has continued to attract much
attention. The functional RG approach yielded good results up
to intermediate interactions for the Anderson impurity model
[12]. Many other studies [13–17] improved the functional RG
approach recently but did not capture the strong coupling
regime. Only in 2013, Streib and co-workers succeeded [18]
exploiting a magnetic field as regulatory cutoff and conserved
Ward identities similar to a renormalized perturbation theory
developed by Hewson and his co-workers [19–21]. The diffi-
culties that these intricate approaches had to face underlines
impressively that the Kondo effect in the Anderson impurity
problem represents a true challenge.

The modified approach based on CUTs advocated here has
the merit to provide a convergent, i.e., with finite coefficints,
effective low-energy models of the Anderson impurity model
and the Kondo model. The key element is the change of
the reference state capturing the exponential character of the
Kondo temperature. This is the central finding of our study.

B. Outlook

Several extensions suggest themselves. One route is to
extend the set of operators to capture more than the leading

processes in the two main parts of the transformation: (i) the
elimination of the hybridization governed by the expansion in
V and (ii) the renormalization of the exchange couplings J

by eliminating the nondiagonal exchange couplings [23]. By
such an extension, higher order corrections beyond V 2 and J 2

can be addressed and the results for the Kondo energy scale
can be improved quantitatively.

A second route is to further explore the properties of the
obtained effective model. For instance, it is interesting to
compute explicitly the impurity contribution to the magnetic
susceptibility χ and to the specific heat C. We stress, however,
that the analysis of the effective model is not straightforward
because it still represents a correlated problem, for instance,
due to the interactions between the triplet states of the
impurity and the fermions in the bath. If χ and C are
known quantitatively, the characteristic Wilson ratio is known,
which is an established measure for the degree of correlation
effects. The technical difficulty in the CUTs is to separate
the contribution of the impurity in the renormalization of the
effective parameters.

A third route is to tackle the transformation of the ob-
servables as well. Transforming the creation and annihilation
operator of the impurity fermion will allow us to compute
the spectral densities which is a decisive quantity in many
applications [3–7]. A fourth extension is to address the case of
the asymmetric Anderson impurity model where the particle-
hole asymmetry is broken [3] and fifth extension is to address
finite temperatures as well.

Finally, we think that the methodological progress devel-
oped for the treatment of the Kondo problem by continuous
unitary transformations will trigger improved approaches to
other strongly correlated problems in general. Examples are
extended correlated systems with massless excitations or the
vicinities of quantum phase transitions where the ground state
has to be switched just as the reference state has to be switched
in the present study.
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APPENDIX: ADAPTED OPERATOR BASIS FOR THE
KONDO AND ANDERSON IMPURITY MODEL

We consider the Hamiltonian from Eq. (26)

Hr =
∑

σ

εr (c†rσ crσ − c
†
r̄σ cr̄σ )

+ Jrr

∑
μ

∑
α,β

σ
μ
αβS

μ

I (c†rαcrβ + c
†
r̄αcr̄β) (A1)

TABLE II. States with zero fermion besides the impurity spin

states energy εi S Sz used

|a1〉 = |0,↑,0〉 εa1 = 0 1
2 + 1

2 no

|a2〉 = |0,↓,0〉 εa2 = 0 1
2 − 1

2 no
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TABLE III. States with one fermion besides the impurity spin.

states εi S Sz used

|s−〉 = 1√
2

(|0,↑,↓〉 − |0,↓,↑〉) − 3Jrr

2 − εr 0 0 yes

|t−
1 〉 = |0,↑,↑〉 Jrr

2 − εr 1 +1 yes

|t−
2 〉 = 1√

2
(|0,↑,↓〉 + |0,↓,↑〉) Jrr

2 − εr 1 0 yes

|t−
3 〉 = |0,↓,↓〉 Jrr

2 − εr 1 −1 yes

|a3〉 = 1√
2

(|↑,↓,0〉 − |↓,↑,0〉) − 3Jrr

2 + εr 0 0 no

|a4〉 = |↓,↓,0〉 Jrr

2 + εr 1 −1 no

|a5〉 = 1√
2

(|↑,↓,0〉 + |↓,↑,0〉) Jrr

2 + εr 1 +1 no

|a6〉 = |↑,↑,0〉 Jrr

2 + εr 1 +1 no

TABLE IV. States with two fermions besides the impurity spin.

states εi S Sz used

|FS,↑〉 = |0,↑,↑↓〉 −2εr
1
2 + 1

2 yes

|FS,↓〉 = |0,↓,↑↓〉 −2εr
1
2 − 1

2 yes

|↑̃〉 = 1√
6

[|↑,↑,↓〉 − 2|↑,↓,↑〉+|↓,↑,↑〉] −2Jrr
1
2 + 1

2 yes

|↓̃〉 = 1√
6

[|↓,↓,↑〉 − 2|↓,↑,↓〉+|↑,↓,↓〉] −2Jrr
1
2 − 1

2 yes

|a11〉 = 1√
2

[|↑,↑,↓〉 − |↓,↑,↑〉] 0 1
2 + 1

2 no

|a12〉 = 1√
2

[|↓,↓,↑〉 − |↑,↓,↓〉] 0 1
2 − 1

2 no

|a13〉 = 1√
3

[|↑,↑,↓〉 + |↑,↓,↑〉 + |↓,↑,↑〉] Jrr
3
2 + 1

2 no

|a14〉 = 1√
3

[|↓,↓,↑〉 + |↓,↑,↓〉 + |↑,↓,↓〉] Jrr
3
2 − 1

2 no

|a15〉 = |↑,↑,↑〉 Jrr
3
2 + 3

2 no

|a16〉 = |↓,↓,↓〉 Jrr
3
2 − 3

2 no

|a17〉 = |↑↓,↑,0〉 2εr
1
2 + 1

2 no

|a18〉 = |↑↓,↓,0〉 2εr
1
2 − 1

2 no

TABLE V. States with three fermions besides the impurity spin.

states εi S Sz used

|s+〉 = 1√
2

(|↓,↑,↑↓〉 − |↑,↓,↑↓〉) − 3Jrr

2 − εr 0 0 yes

|t+
1 〉 = |↑,↑,↑↓〉 Jrr

2 − εr 1 +1 yes

|t+
2 〉 = 1√

2
(|↓,↑,↑↓〉 + |↑,↓,↑↓〉) Jrr

2 − εr 1 0 yes

|t+
3 〉 = |↓,↓,↑↓〉 Jrr

2 − εr 1 −1 yes

|a7〉 = 1√
2

(|↑↓,↓,↑〉 − |↑↓,↑,↓〉) − 3Jrr

2 + εr 0 0 no

|a8〉 = |↑↓,↑,↑〉 Jrr

2 + εr 1 +1 no

|a9〉 = |↑↓,↓,↓〉 Jrr

2 + εr 1 −1 no

|a10〉 = 1√
2

(|↑↓,↓,↑〉 + |↑↓,↑,↓〉) Jrr

2 + εr 1 0 no

TABLE VI. States with four fermions besides the impurity spin.

states εi S Sz used

|4,↑〉 = |↑↓,↑,↑↓〉 0 1
2 + 1

2 no

|4,↓〉 = |↑↓,↓,↑↓〉 0 1
2 − 1

2 no
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and its basis states. In the calculations presented in the main
text, we truncate basis states that are lying higher in energy
than the triplet states. All basis states are shown below in
Tables II–VI. The eigenstates are sorted by the number of
fermions besides the impurity spin in the levels occurring in
the Hamiltonian (A1). The arrow in the middle entry of the ket

stands for the state of the impurity. The arrow to the left for
the state of the particle state at εr > 0; the arrow to the left for
the state of the hole state at −εr < 0. In addition, the total spin
S and the total z-component Sz are given for the states. The
column “used” indicates whether or not the state is considered
in our calculations.
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