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The physics of the epsilon-near-zero (ENZ) mode, which is supported by a nanolayer at the frequency where
the dielectric permittivity vanishes, has recently been a subject of debate. In this Rapid Communication, we
thoroughly investigate and clarify the physics of this mode, providing its main characteristics and its domain
of existence. This understanding will benefit all the applications that rely on ENZ modes in semiconductor
nanolayers, including directional perfect absorption, voltage-tunable devices, and ultrafast thermal emission.
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Thin films made of metals, doped semiconductors, or
polar materials can support plasmon- or phonon-polariton
eigenmodes [1–4]. For excitation conditions close to the
dispersion of such eigenmodes, these structures can exhibit
peculiar properties. A representative example is the Berreman
absorption feature observed for p-polarized light illuminating
dielectric thin films backed by a metal substrate [5–7].
This resonant absorption, close to the longitudinal phonon
frequency, was recently attributed to the excitation of the
so-called “Berreman mode” [8]. On thin plasmonic films, a
similar resonant absorption occurs near the plasma frequency
and was attributed to a “Brewster mode” [9], whose dispersion
was recently proven experimentally in Ref. [10]. These modes
are radiative modes: Their dispersion relation lies on the left
of the light line and thus can be excited from free space.
The physics of such modes is well understood [11–15]: They
appear when the dielectric constant is close to zero and are
associated with a collective oscillation of charges in the thin
films.

Very recently, another mode—defined as the “epsilon-near-
zero” (ENZ) mode—was observed in Ref. [8] and only when
very subwavelength film thicknesses were used. This ENZ
mode is a confined mode whose dispersion lies on the right of
the light line and thus can be accessed using the Kretschmann
geometry or grating couplers, for example. It was briefly
shown that this mode corresponds to a long-range surface wave
mode in the thin-film regime [16]. However, a clear theoretical
investigation of the behavior and domain of existence of the
ENZ mode is still missing, and it is the purpose of this work.
The understanding of the physics of the ENZ mode will benefit
all the applications that could rely on it [17], such as directional
perfect absorption and ultrafast thermal emission.

We will consider in this Rapid Communication the three-
layer structure depicted in Fig. 1, where a nanolayer with
thickness d and relative permittivity ε2 is surrounded by two
semi-infinite regions with relative permittivities ε1 (top) and
ε3 (bottom).

A solution to Maxwell’s equations in the absence of excita-
tion defines a mode of the structure. A mode is characterized
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by a pair (k‖,ω) that satisfies the equation

1 + ε1kz3

ε3kz1
= i tan (kz2d)

(
ε2kz3

ε3kz2
+ ε1kz2

ε2kz1

)
, (1)

where k‖ is the transverse wave number, ω the angular
frequency, and k2

zi = εi
ω2

c2 − k2
‖ is the longitudinal wave

number in medium i = 1,2,3 with Re(kzi) + Im(kzi) � 0.
Equation (1) can be easily derived from either the Fresnel re-
flection coefficient [18,19] or the transfer matrix method [20].
The monochromatic time harmonic convention exp(−iωt) is
implicitly assumed. Equation (1) deals with complex-valued
variables and can be solved in two manners: (i) selecting
a real-valued ω and computing the complex-valued k‖, or
(ii) selecting a real-valued k‖ and computing the complex-
valued ω. Both descriptions lead to different representations
of the same mode but are equivalent, as shown in Ref. [21]. We
continue with description (ii) for the remainder of this work,
as suggested in Refs. [1,8].

For the sake of simplicity, and in order to extract the
essential physics of the ENZ mode, we consider a metallic
nanolayer, whose dielectric constant is described by a simple

Drude model ε2(ω) = 1 − ω2
P

ω2+iγ ω
, with ωP depicting the

plasma angular frequency and γ the damping, and surrounded
by free space (ε1 = ε3 = 1). The dielectric constant of
the film can vanish when the frequency is close to ωP ,
leading to the possibility of observing an ENZ mode. Un-
less otherwise indicated, ωP = 10 000 cm−1 (corresponding
to a plasma wavelength λP = 2πc/ωP = 1 μm) and γ =
100 cm−1; these values are used as representative examples
for the figures shown in this work. For the same reasons
of simplicity, we will not address the issue of nonlocal
effects that could arise from very small film thicknesses.
More complex environments will be studied at the end of this
Rapid Communication. The plasmonic film supports surface
plasmon-polariton (SPP) modes. When its thickness d is larger
than the skin depth (∼100 nm), the layer can be considered as
a semi-infinite medium. This is clearly observed in Fig. 2(a),
where we report the dispersion of the real part of ω of the
SPP supported by a 1-µm-thick slab in free space (blue curve).
The figure displays the classic growing trend to the right of
the light line, approaching Re(ω)/ωP = 1/

√
2 for large k‖. It

is also known that when the thickness d is comparable to the
skin depth, the SPP splits into the short-range SPP and the
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FIG. 1. (Color online) A three-layer structure containing a layer
with thickness d and two semi-infinite regions.

long-range SPP [22,23]. This is displayed in Fig. 2(b), where
we show the dispersion relations of the two SPPs supported by
a 100-nm-thick slab. Similar to the case reported in Fig. 2(a),
also the two SPPs in Fig. 2(b) approach Re(ω)/ωP = 1/

√
2

for large k‖.
However, limited discussion has been provided in the

literature to the dispersion of short-range and long-range SPPs
when the slab thickness is further reduced to values (much)
smaller than the skin depth. Similar to what is reported in
Fig. 2(b), Fig. 2(c) shows the dispersion relations of the
two SPPs, but now for a 2-nm-thick film. In this case, we
observe that the dispersion of the long-range SPP remains quite
constant at Re(ω)/ωP = 1 for increasing k‖. Because of this
peculiar condition, and although this is still a long-range SPP,
this part of the dispersion has been defined as an ENZ mode.
Plotting the same dispersion in a wider k‖ range [Fig. 2(d)]
confirms the behavior of short-range and long-range SPPs
observed in Fig. 2(b), i.e., ω approaches Re(ω)/ωP = 1/

√
2

for large k‖. Thus, we infer that the so-called ENZ mode can
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FIG. 2. (Color online) (a) SPP supported by a layer with thick-
ness of 1 µm, a value much larger than the skin depth. (b) The SPP
splits into short-range (red) and long-range (blue) SPPs when the layer
thickness is 100 nm, a value comparable to the skin depth. (c) Further
decreasing the thickness to 2 nm, a value much smaller than the skin
depth, a flat dispersion appears at Re(ω)/ωP = 1 that is associated
with an ENZ mode. In (a)–(c), the dotted and dashed-dotted horizontal
green lines depict the limits Re(ω)/ωP = 1 and Re(ω)/ωP = 1/

√
2,

respectively. The dashed green line depicts the light line. (d) As in
(c), showing a wider range of k‖.

exist only for certain ranges of thickness, frequency, and wave
number, and our first objective is to define these ranges.

It is straightforward to derive the asymptotic behavior for

large k‖. When k‖ → ∞ we know that kz1 = ik‖
√

1 − ω2

c2k2
‖

≈
ik‖, and the same approximation can be made for kz2. It follows
that for k‖d → ∞, Eq. (1) leads to ε2 → −1 and ω → ωP√

2
−

i
γ

2 . To understand now the conditions under which an ENZ
mode can be defined and what its peculiar features are, we
have to rewrite Eq. (1) when ω is close to ωP . For small values
of the thickness such that |kz2d| � 1, Eq. (1) can be rewritten
as

2ε2kz1 = id
(
ε2

2k
2
z1 + k2

z2

)
. (2)

Noting again that kz1 ≈ ik‖, Eq. (2) can be rewritten as

2ε2k‖ = d

[
ω2

c2
ε2(ε2 + 1) − k2

‖
(
ε2

2 + 1
)] ≈ −dk2

‖
(
ε2

2 + 1
)
.

(3)

The second equality in Eq. (3) can be assumed if ω2

c2 ε2 � k2
‖ .

Such a condition can be satisfied if ε2 → 0. This is possible
for ω ≈ ωP ; in such a case, we can rewrite Eq. (3) as
(ω2 + iγ ω)(1 + k‖d

2 ) = ω2
P by neglecting the ε2

2 term on the
right-hand side. Under this approximation, a new dispersion
relation can be derived for the ENZ mode:

ω ≈ ωP

[
1 − k‖d

4

]
− i

γ

2
. (4)

This approximation is valid only when ω ≈ ωP . This
equation is very similar to the approximation reported in
Ref. [24] for the surface plasmon mode at a metallic surface
with spatial dispersion. The existence domain of an ENZ mode
is thus ωP

c
< k‖ � 4

d
. For instance, Fig. 3 shows the dispersion
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FIG. 3. (Color online) The dispersion of the long-range (blue)
SPP when the layer thickness is 10 nm. The dashed black line
depicts the approximation Re(ω) ≈ ωP [1 − k‖d

4 ]. The shaded gray
area depicts the range of k‖ below Eq. (4). The inset shows the
magnitude of the imaginary part of the mode dispersion, which
becomes constant and is equal to γ /2 for large k‖. These losses
equal the well-known losses of the short-range SPP.
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FIG. 4. (Color online) (a) Dispersion (top) and profile of the
intensity of the z component of the electric field vs the spatial variable
z normalized by the thickness d computed at k‖ = 2ωP /c (bottom)
for the long-range SPP supported by a 2-nm-thick layer surrounded
by free space. The shaded gray area describes the ENZ mode validity
range. (b), (c) As in (a), for a slab thickness of 20 and 150 nm,
respectively. |Ez|2 is normalized to the maximum value. When the
dispersion curve does not lie within the ENZ mode validity range, the
field is not constant inside the layer.

of the real and imaginary parts of ω of the long-range SPP for
a layer thickness of 10 nm. In agreement with the previously
defined domain, it is seen that the dispersion given by Eq. (4)
(dashed black line) approximates quite well the real dispersion
curve (solid blue line) in the region ωP

c
< k‖ < 1

10
4
d

(gray
shaded area), giving a phenomenological approximation of the
previous inequality k‖ � 4

d
. Moreover, using field-continuity

conditions dictated by Maxwell’s equations, it has been shown
in previous studies that the z component of the electric field
is much stronger than the in-plane components, and that the
electric field exhibits a constant field profile within the slab
[8]. This last feature is observed only in the range indicated
by the gray shaded area in Fig. 3. It turns out that the
ENZ mode can appear only for small thicknesses given by
2π
λP

� 1
10

4
d

, corresponding to a relative difference between ω

and ωP of less than 10%. A good rule of thumb is that the
ENZ mode becomes apparent for nanoscale thickness d � λP

50
(in our case, d � 20 nm). This explains why the ENZ mode
was not observed in metals (λP on the order of hundreds of
nanometers), but, for example, in doped semiconductors (λP

on the order of 5−50 μm) where this condition can be easily
met.

Next, we show in Fig. 4 the dispersion of the real part of
ω of the long-range SPP for three layer thicknesses, namely,
2, 20, and 150 nm. Together with the dispersion diagrams, we
also show the profile of the intensity of the z component of
the electric field versus the spatial variable z normalized by
the thickness d and computed at k‖ = 2ωP /c. We observe that
when the dispersion curve falls within the existence range of
the ENZ mode depicted by the shaded gray area, the field is
rather constant within the slab. On the contrary, as shown in
Fig. 4(c), the field exhibits a minimum in the middle of the slab
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FIG. 5. (Color online) (a) The magnitude of the z component of
the electric field dependence on the inverse of the layer thickness,
calculated at the center of the slab as detailed in the inset and computed
at k‖ = 2ωP /c. The black line represents a linear fit of the crosses.
(b) Magnitude of the z component of the electric field vs the spatial
variable z for various slab thicknesses. The lower the thickness is,
the larger the field generated within the slab. In both figures, the
electric field is normalized to the value exhibited for a thickness
d = 20 nm.

if the dispersion is outside of the ENZ mode existence limits:
This is the long-range SPP behavior that has been known for
decades for thin films. As predicted above, we see in Fig. 4
that an ENZ mode is observed only if d � 20 nm.

Because larger fields are expected in thinner films, our next
objective is to derive the dependence of the electric field on
the thickness of the film. We first compute the Poynting vector
along the x direction,

〈Sx〉 = 1

2
Re(−EzH

∗
y ) = 1

2

ε0

k‖
Re(ω∗ε∗

2)|Ez|2. (5)

It is possible to show that Im(ε2) = 0 for the complex
frequency of the mode, so that Re(ω∗ε∗

2) = Re(ω)Re(ε2),

with Re(ω) = ωP (1 − k‖d
4 ) ≈ ωP and Re(ε2) ≈ 1 − ω2

P

Re(ω)2 ≈
2(ω−ωP )

ωP
= −k‖d

2 , leading to 〈Sx〉 = − ε0ωP d

4 |Ez|2. Now, due to
the fact that the ENZ mode exhibits constant |Ez|, we integrate
along the z axis to obtain∫

z

〈Sx〉 ≈
∫ 0

−d

−ε0ωP d

4
|Ez|2dz = −ε0ωP

4
|Ez|2d2. (6)

The electric field is normalized in such a way that the
mode carries 1 W of power per meter of wave front, i.e.,
|∫

z
〈Sx〉| = 1 W/m [25]. This then leads to |Ez|2 ≈ 4

ε0ωP d2 ,

or Ez ∝ 1
d

. This linear dependence with 1
d

is shown in
Fig. 5(a), where the magnitude of the z component of
the electric field (blue crosses) is computed at the center
of the slab as a function of thickness. Figure 5(b) represents
the magnitude of the z component of the electric field versus
the spatial variable z for different thicknesses d. As predicted,
we observe a field increase of ten times when comparing the 2
nm case to the 20 nm one. The linear dependence mentioned
above can also be inferred by the results shown in Ref. [26].

Up to now, we have analyzed Drude layers in free space. If
we were to assume the surrounding media to be dielectrics with

permittivities ε1 = ε3, and still assuming ε2(ω) = 1 − ω2
P

ω2+iγ ω
,

it is easy to demonstrate that the approximate ENZ mode
dispersion would become ω ≈ ωP [1 − ε1k‖d

4 ] − i
γ

2 . We aim

121408-3



RAPID COMMUNICATIONS

CAMPIONE, BRENER, AND MARQUIER PHYSICAL REVIEW B 91, 121408(R) (2015)

0 5 10 15 201

0.8

0.6

0.4

0.2

0x 10 3

d (nm)

gold

glassd

Re( )
k//

FIG. 6. (Color online) Slope of the ENZ mode dispersion vs
d computed for different thicknesses d for the structure in the
inset.

to show now that this result can be generalized if the thin
layer permittivity does not follow a Drude model. For this
reason, let us consider the structure studied in Ref. [8]. The
thin film is a now a glass layer, which can support an ENZ
mode close to the longitudinal phonon frequency. The layer
is deposited on a gold substrate and the upper medium is
free space. All the material parameters are provided in Ref. [8]
(λP = 8 μm). In the ENZ mode regime, the dispersion relation
remains linear (not shown here—see Ref. [8]). The dispersion
slope �Re(ω)/�k‖ is reported in Fig. 6 versus thickness d. It
is seen that this slope has a linear dependence on d, suggesting
that the properties analyzed earlier can be generalized to any
structure supporting an ENZ mode. More generally, Fig. 6
suggests that the ENZ mode dispersion relation can always be
written as ω ≈ ωP [1 − αk‖d] − i

γ

2 , with α being a coefficient
that depends on the permittivities of the semi-infinite media 1
and 3.

From a practical point of view, these findings allow us
to give some rule of thumb on material systems that can
support ENZ modes. We map in Fig. 7 the plasma wavelength
(zero crossing of the permittivity, obtained, for example, in
plasmonic or films supporting optical phonons) λP versus
thin layer thickness d for some (nonexhaustive) material
systems, and overlap colored boxes for each material system
representing the experimentally achievable thickness. Thicker
films are possible, but, for example, there are experimental
lower bounds to the thickness of metals where they can still
maintain good properties. The red dashed line depicts the
thickness threshold under which the ENZ mode can exist.
From this figure, we conclude that the ENZ modes can
be observed mainly in oxides, doped semiconductors, and
polar materials, but not in metals, due to the combination of
values of plasma wavelength and experimentally achievable
thicknesses.

In conclusion, the so-called ENZ mode has been discovered
and used in pioneering papers [8,16,27]. Although the main
features of this mode—almost-flat dispersion relation and
large electric field in the thin layer—were briefly described, a
complete study of this mode, including its domain of existence
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FIG. 7. (Color online) Classification of some (nonexhaustive)
material systems that may support ENZ modes, obtained by mapping
the plasma wavelength λP vs thin layer thickness d . The colored
boxes for each material system extend horizontally and to the
left to the minimum experimentally achievable thickness. The red
dashed line defines the relation λP = 50d , which represents a
boundary to determine if the structure supports an ENZ mode (left
area).

for a general layered structure, was still missing. We have
reported a description of this promising mode. In the simple
case of a thin Drude nanolayer surrounded by free space, we
have demonstrated that the ENZ mode is definitely a part of
a long-range surface wave mode, which is characterized by
a very large and almost constant electric field in the film.
The z component of the electric field is inversely proportional
to the thickness of the film. We have derived a useful form
of the dispersion relation for this mode, leading to a simple
definition of the frequency/wave-vector range in which this
mode can exist. This has allowed us to determine the range of
thicknesses for which a film can support such a mode, and has
provided us with a rule of thumb to understand which material
systems can support an ENZ mode. We have further shown
that the behaviors given by this very simple case are rather
robust, since we can find the same behaviors in very different
geometries and for different materials. This paves the way for
very interesting possibilities, particularly in semiconductors,
in which such ultrathin layers can be easily fabricated, and
opens up possibilities in many applications, such as directional
perfect absorption [19,28,29], ultrafast voltage-tunable strong
coupling with metamaterials [27], electro-optical modulation
[30], and ultrafast thermal emission [16,31].
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