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Nonequilibrium spin transport in Zeeman-split superconductors
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We investigate theoretically the nonlocal conductance through a superconducting wire in tunnel contact with
normal and ferromagnetic leads. In the presence of an in-plane magnetic field, the superconducting density of
states is spin split, and the current injected from the normal lead is spin polarized. A nonlocal conductance that
is antisymmetric with the applied voltage can be measured with a ferromagnetic lead. It persists for a distance
between the contacts that is larger than both the charge-imbalance relaxation length and the normal-state spin
relaxation length. We determine its amplitude by considering two extreme models of weak and strong internal
equilibration of the superconducting quasiparticles due to electron-electron interactions. We find that the nonlocal
signal, which was measured in recent experiments and discussed as a spin-imbalance effect, can be interpreted

alternatively as the signature of a thermoelectric effect.
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Introduction. Recent progress in the realization of complex
ferromagnet/superconductor (F/S) heterostructures has lead
to the emergence of “superconducting spintronics” as a
promising field of research. A fundamental question concerns
the ability of superconductors to sustain the flow of a spin-
polarized current. A standard way to study spin injection and
relaxation in a normal metal consists in contacting it with
two ferromagnetic leads, an injector (I) and a detector (D),
and measuring the dependence of the nonlocal conductance,
gn1 = 0Ip/0V, on their separation. Such a method was also
used to measure the spin lifetime in superconductors [1-3].
Moderate variations of the spin lifetime in the supercon-
ducting state, with respect to its normal-state value, could
be attributed to magnetic impurities [2] or weak spin-orbit
coupling [3,4].

It is also possible to inject a spin-polarized current from
a nonferromagnetic, normal (N) metal into a superconducting
film subject to an in-plane magnetic field. Indeed, Bogoliubov
quasiparticles in superconductors carry a spin % The spin
degeneracy of the superconducting gap for quasiparticles with
opposite spins may thus be lifted by the Zeeman effect.
At zero temperature, one expects the injected current to be
fully spin polarized if the applied voltage is in the range
between the gaps for electrons with opposite spins [5]. Based
on this effect, recent experiments have established that the
nonlocal conductance measured with a F detector persists over
a distance from a N or F injector that is much longer than the
spin relaxation length mentioned above [6-9]. This method
was also applied at finite frequency [10].

Such a nonlocal signal distinguishes itself from the charge-
imbalance effect, which already exists in the absence of a
magnetic field and for both N injector and detector [11,12], by
a longer decay length. Moreover, in the case of a N injector,
the field-induced nonlocal conductance is antisymmetric with
respect to the applied voltage, while the charge-imbalance
signal is symmetric. By analogy, it was discussed as a “spin-
imbalance” effect [13]. Various scenarios for the relaxation of
the signal were discussed, without a clear conclusion.

The aim of our Rapid Communication is to show theoreti-
cally that such a signal appears naturally in models where the
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spin imbalance—defined as a difference between distribution
functions for quasiparticles with opposite spins—is absent.
Indeed, one needs to distinguish between spin polarization,
arising from a density of states effect, and spin imbalance,
characterizing unequal occupations. The current injected in
the superconductor is accompanied by an energy flow that
produces an out-of-equilibrium distribution of quasiparticles
in the S wire. This in turn results in an induced current at the
detector, provided that the quasiparticles with opposite spins
have different densities of states, such that the superconductor
acquires a finite spin polarization, and different probabilities
to tunnel through the tunnel barrier. Those conditions are
naturally realized if the superconducting density of states is
Zeeman split and the detector is ferromagnetic. The detector
current then corresponds to the thermoelectric effect predicted
in a single S/F tunnel junction in the presence of a magnetic
field [14,15]. Within this approach, the scale over which the
nonlocal signal disappears is related with energy relaxation,
which is set by electron-phonon interactions. Namely, as long
as energy cannot relax, the superconductor will carry excess
quasiparticles that lead to a nonlocal signal. In particular, while
electron-electron interactions lead to internal equilibration of
the quasiparticles, they do not relax energy and, therefore,
do not suppress the signal. We find, however, that they
qualitatively change its voltage dependence.

Formalism. The setup that we address consists of a
superconducting wire in tunnel contact with two normal or
ferromagnetic leads separated by a distance d (see Fig. 1). The
first lead is voltage biased with respect to the superconductor; it
acts as a quasiparticle injector. As shown in experiments [6—8],
it can result in a detector current flowing through the second
contact. Below we obtain the dependence of the injector and
detector currents, /1 and Ip, respectively, on the voltage bias
V, both in the regimes of slow and fast electron-electron
relaxation. While the formalism is more general, we specify
the results only for a N/S/F structure, i.e., a N injector and F
detector.

Using the tunnel Hamiltonian theory of Ref. [12], we
find that the current flowing between a normal or ferro-
magnetic lead at equilibrium and a superconductor with an
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out-of-equilibrium quasiparticle distribution is given by

2]
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Here, fy is the Fermi distribution at temperature Ty in the
leads, V, is the voltage bias between lead o = 1,D and
the superconductor, with Vi =V and Vp =0, G, is the
normal-state tunnel conductance, P, is the spin polarization
of the lead (|Py| <1 and P, = 0 for a normal lead), A is
the superconducting gap, v(E) = E/+/ E* — A?is the reduced
BCS density of states, and E, = E 4+ oh, where h = ugB is
a Zeeman field and o = % (for 1 / |) is a spin label.

The nonlocal signal is described by the second line of
Eq. (1). The out-of-equilibrium distribution functions in the
superconductor, fai(E) =[f;(E) X f7(E)]/2, are related
with the distributions for electronlike [ f; (E)] and holelike
[ f,7(E)] Bogoliubov excitations with spin o and energy E >
A + o h, respectively. The last term in Eq. (1) corresponds to a
charge-imbalance contribution to the current [12]. Deviations
of f;+ from its equilibrium value f; yield a contribution to the
current proportional to P,, which therefore exists only when
the lead is ferromagnetic.

To evaluate the current (1), we need to determine the
superconducting gap and distribution functions in the vicinity
of the tunnel junctions. The former should satisfy the local
self-consistency equation

¢ dE N

1 A/A m[l ;fo(Ea):|. )
Here, the pairing constant A and Debye frequency 2 are
related with the BCS gap at zero temperature through
Ao = 2Qe~/*. To obtain the distribution functions, we may
generalize the Boltzmann equation approach for Bogoliubov
quasiparticles [16,17] to Zeeman-split superconductors. In the
diffusive regime (At « 1, where 7 is the elastic scattering
time) [18], we find that the distribution functions solve the
kinetic equations

= D (E)V? f2(E) = I3(E). (3)
Here, D,(E) = Dy/v(E), where Dy is the diffusion con-
stant in the normal state and & = —o. The collision integral

> . . . . o
Z5(E) contains elastic and inelastic contributions as well as

FIG. 1. (Color online) Setup of the junction.
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contributions due to the tunnel injection of quasiparticles from
the leads.

The elastic contribution stems from the effect of the in-plane
magnetic field on the orbital motion of the electrons as well
as from the electron scattering by magnetic impurity and by
normal impurities having a large spin-orbit scattering potential.
It takes the form

> _ 1 < s
I5,(E) = rl(,(E)[f" (E) — f(E)]
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and p,y (E) = 0(E; — A)Es Es + 5656, + 5" A1/ (556, ) for
s,s' = &. Here, 1/t = DN(ewB)2/6 for an in-plane mag-
netic field and a wire with a thickness w « &g, where &5 =
/D /Ay is the superconducting coherence length, whereas
1/tm and 1/7 are the spin-flip rates due to magnetic and
spin-orbit impurities, respectively, in the normal state. These
rates will be assumed smaller than A, so that they affect the
kinetic equations, but not the superconducting density of states.
The rate 1/7;, leads to charge-imbalance relaxation while the
rate 1/1p, leads to spin-imbalance relaxation, whereas the
rate 1/13, yields both. Note that the two last terms on the
right-hand side of Eq. (4) are only effective when the bands
for Bogoliubov quasiparticles with opposite spins overlap,
enabling elastic spin relaxation.

The tunnel injection of quasiparticles at position x,, results
in the term

8(x — xq)
2621)1\/2

1 P,
12 (E) = G Y —C

s=%

><<1 is%)[fo(E+seVa)— fR(E). (6)

a

Here vy is the density of the superconductor (per spin) in the
normal state, and X is the cross section of the superconducting
wire.
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Finally, the inelastic collision integral contains both
electron-electron and electron-phonon contributions, charac-
terized by rates . and Yepn, respectively. It is important to
note that electron-electron interactions do not lead to energy
relaxation, as discussed in more detail later.

Recent experiments with N/S/N structures demonstrated
that, at low temperatures, the relaxation of the charge-
imbalance signal under magnetic field was dominated by the
orbital depairing mechanism [19,20]. The nonlocal spin signal
of Refs. [6,8] persists over a much longer length than the
one determined by this effect. Taking this into account, we
decompose Eq. (3) into two diffusion equations for f, (E)
and f,_"(E). Assuming that charge imbalance relaxes fast,
1/Toy = 00, we find £, (E) = 0. As a consequence, Eq. (3)
reduces to a single kinetic equation,

—Dy(E)V?fH(E) = T,(E). (7)
In particular, the elastic contribution to the collision integral
reduces to a spin-flip term

1

Iel,a(E) = I (E)

[f5(E) = ;7 (E), ®)

with an elastic spin relaxation rate t,'(E) = t,,'(E) +
1:3_01(E), in agreement with Refs. [13,21,22] at h = 0.

Taking into account that P; = 0 and V, = 0O for the N/S/F
setup that we consider, Eq. (1) reduces to

G o0
=4 Z [A dE w(E) foEs 4 eV)— fo(Es — eV)]

C))
|

V(Es)Gi{5[fo(E +eV) + fo(E — eV)] — fo(E)}
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for the injector current and
PG o0
o= "2 50 [ dEWENS ) - fED (10)
= A

for the detector current, respectively. Equation (10) then yields
the nonlocal conductance g, = d/p/d V.

While electron-phonon scattering in superconductors was
investigated in detail [23], much less is known about electron-
electron scattering. It was argued recently that, due to the
different energy dependence of the two rates, a large or
small 1atio Yee/Yepn could be achieved in aluminum (the
superconductor used in all cited experiments), depending on
the energy range probed [24]. To proceed further, we will
therefore evaluate the distribution f, that enters Eq. (10) in
two limiting cases, Ye-c <K Ve-ph and Ye-c > Veph, and discuss
qualitatively the differences in the result for the nonlocal
conductance. Electron-phonon processes will be described
phenomenologically by imposing that f;7(E) = fy(E) at a
distance L, from the tunnel junctions. Characteristic length
scales for Al are in the range of several um, as discussed, e.g.,
in Ref. [19].

Slow internal equilibration. We first assume that electron-
electron collisions are very rare. In that case, spin relaxation
is dominated by elastic spin-flip processes. Equation (7) may
be solved to obtain the distribution function fj , both for slow
and fast elastic spin relaxation.

Neglecting elastic spin-flip processes, 1/7s,(E) — 0,
and using the boundary conditions fj (E;x =—L,) =
FH(E;x =d + L) = fo(E), we obtain the solution to Eq. (7)
at the position of the detector (x = d) as

FHE) = fo(E)+

where G, =oyX/L, is an effective conductance associ-
ated with the electron-phonon relaxation length and oy =
2¢%vy Dy is the normal-state conductivity of the superconduct-
ing wire. Here we added a subscript « to the reduced density
of states (v, ) to indicate that is should be evaluated with the
self-consistent gap A, at the position x,, of the corresponding
lead. Note that, at G, << G1,Gp and d <K L,, the distribution
function does not depend on spin.

As elastic spin-flip processes require spin-up and spin-down
states to be available, they modify the distribution function
only in the energy range E > A + h, where the density of
states in both spin bands is finite. Thus, in the opposite regime
of fast elastic spin relaxation, 1/, (E) — 00, the result (11)
still holds at energies A —h < E < A+h. At E> A+h,
spin relaxation equilibrates the distributions between up and
down spins, fT’L (E) = ff(E). The resulting distribution is
given by an equation similar to (11) with v,(E5) replaced
by Ta(Es) = 3, Va(Es)/2.

The nonlocal conductance is obtained by inserting the
distribution (11) into Eq. (10). Figure 2 shows results in both
regimes of slow and fast elastic spin relaxation. (Note that here
we disregarded the self-consistency of the gap.) We observe
that both regimes give rise to the same qualitative behavior.

2G, + vi(E5)G1 + vp(E5)Gp + (d/ LG, + vi(E5)Gil[G, + vp(Es)Gpl/ G,

an

(

Namely, the nonlocal conductance is the sum of two contribu-
tions of opposite signs that have different threshold voltages
(A £ h)/e, respectively. At G, < Gi,Gp, spin relaxation has
no effect, as f;r (Ey= f f’ (E) in the entire energy range even
in the absence of spin-flip processes. At G, > G1,Gp, elastic
spin relaxation leads to a reduction of the peak at the threshold
voltage (A + h)/e. Howeyver, also the overall magnitude of the

a2
(a) W :le

FIG. 2. (Color online) Nonlocal conductance as a function of the
bias voltage in the regimes of slow (solid lines) and fast (dashed lines)
elastic spin relaxation. Curves are shown for three different Zeeman
fields, i/ Ay = 0.1 (black), 0.2 (red), and 0.4 (blue). The two panels
correspond to (a) G, = 0.5Gp and (b) G, = 20Gp. Furthermore,
d < L, and GI = GD.
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signal decreases with increasing electron-phonon relaxation,
corresponding to increasing G,. Furthermore, as a function
of the separation between injector and detector, the nonlocal
conductance decreases algebraically on the scale of the
electron-phonon relaxation length. Therefore, the measured
signal is mainly governed by energy relaxation. It is difficult
to make a clear distinction between the cases where spin
imbalance is present or absent.

Fast internal equilibration. In the opposite regime of
frequent electron-electron collisions, the energy redistribution
among Bogoliubov quasiparticles tends to establish a common
Fermi distribution f(E), with a local temperature 7' that may
differ from the temperature in the leads, 7p. Such heating
effects were previously addressed in the context of S/N/S
junctions [25]. As the internal equilibration in this so-called
“hot” quasiparticle regime facilitates spin relaxation, we will
concentrate on the regime of fast spin relaxation. Thus, there
is no spin imbalance. Applying the already mentioned con-
dition of energy conservation for electron-electron scattering
processes, we then obtain the heat equation

—Vv? [‘%Z/A dE Eaf(Eg):| =

where

> 0w (12)

a=1,D

Gy o
%Z / dE v(E)Es ful Eq) — f(E,)]

(13)
is the power injected at the tunnel junctions and f,(E) =
[fo(E + eVa) + fo(E — eVe)]/2 [26].

Integrating Eq. (12) along the S wire for nearby injector and
detector junctions (d < L,), we find that the local temperature
and superconducting gap in the vicinity of the junctions are
determined by

Qa:

0= Z dE E;{2G.[f(Es) — 0(E — A(T)) fo(Es)]
s A

+V(E) Y Gal f(Eq) — fa<Eg)]}, (14)

together with the self-consistency equation (2) that yields
A(T,h) [27]. The generalization to a finite separation d
between injector and detector is straightforward [28].

The dependence of the local temperature on the applied
voltage shows two thresholds at eV = A =+ h, corresponding
to the opening of each of the spin channels. For a critical
voltage

26,

G 2G.
7Gx 426, T2(h) —
Gy

eV, =
3 G

h?, (15)

where Gy = G+ Gp and T.(h) is the superconducting
critical temperature, the local temperature reaches the crit-
ical temperature and thus superconductivity is suppressed
locally [29]. When G, > Gi,Gp, the critical voltage is very
large and the local suppression of superconductivity in the
voltage range up to a few Ay is negligible.

The nonlocal signal exists only for voltages Ag(h) — h <
eV < eV,. The current increases with voltage as long as the
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FIG. 3. (Color online) Nonlocal conductance as a function of the
bias voltage in the “hot” quasiparticle regime. Same parameters as
in Fig. 2. Note that in (a), local superconductivity is suppressed
completely beyond the critical voltages eV, /Ay &~ 1.51, 1.72, 1.77
forh/Ag = 0.1,0.2,0.4, respectively. In (b), corresponding to a larger
value of G,, the critical voltages are much larger. Thus, in the voltage
range shown, the local suppression of superconductivity is small.
The results without taking it into account are shown for comparison
(dotted lines).

—=0.15

local density of states remains gapped and then decreases once
the local temperature reaches the value for which A(T,h) = h
and the gap closes locally. The successive openings of the two
spin channels for transport thus yield two peaks of the same
sign in the nonlocal conductance, whereas the gap closing
at V < V. results in a peak with opposite sign. The position
of this last peak beyond which the signal quickly vanishes
is determined mainly by the efficiency of energy relaxation,
characterized by G,. Its magnitude may be large because
the gapless region is narrow. The results are illustrated in
Fig. 3.

Discussion. We showed that a finite nonlocal signal exists in
the absence of spin imbalance, both for slow and fast electron-
electron relaxation. The amplitude of the signal decreases
with increasing energy relaxation due to electron-phonon
processes. On the other hand, at very weak energy relaxation,
the system quickly overheats and superconductivity becomes
locally suppressed, leading to a complete suppression of the
nonlocal signal beyond a critical voltage V,. Electron-electron
relaxation qualitatively modifies the voltage dependence of the
nonlocal conductance. In particular, if V. > A, one finds two
peaks with opposite signs at slow electron-electron relaxation
whereas one finds two peaks with the same sign at fast
electron-electron relaxation. While spin imbalance may be
present, it does not lead to any easily identifiable features in the
nonlocal conductance. A double peak structure in agreement
with the scenario of fast electron-electron relaxation is clearly
visible in Ref. [9].

Note added. Recently, we learned of two preprints that
address the same effect [30,31]. They use a quasiclassical
theory, which is complementary to our kinetic theory and
which allows them to incorporate the orbital depairing effect
of the magnetic field. While Ref. [30] also attributes the signal
measured in Refs. [6,7] to a thermoelectric effect, none of
these preprints consider the “hot” quasiparticle regime and
the local suppression of superconductivity that we discuss
here.
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