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Cyclotron-resonance-induced negative dc conductivity in a two-dimensional electron
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We theoretically predict instability of a zero-dc-current state of the two-dimensional electron system formed
on the surface of liquid helium induced by the cyclotron resonance (CR). This conclusion follows from the
theoretical analysis of the dc magnetoconductivity which takes into account the contribution from radiation in an
exact way. A many-electron model of the dynamic structure factor of the 2D Coulomb liquid is used to describe
the influence of strong internal forces acting between electrons. For low electron densities and high amplitudes
of the microwave field, the dc magnetoconductivity is shown to become negative in the vicinity of the CR which
causes the instability. This effect is strongly suppressed by Coulomb forces in the region of high densities.
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Microwave-induced resistance oscillations and zero-
resistance states (ZRS) observed in a two-dimensional (2D)
electron gas subjected to a transverse magnetic field [1–3]
represent a surprising discovery in condensed matter physics.
A number of theoretical mechanisms have been proposed to
explain these oscillations and ZRS [4–8]. Still, by now the
origin of the phenomenon is controversial. A crucial result [9],
independent of the details of the microscopic mechanism, is
that the ZRS can be explained by an assumption that the
longitudinal linear response conductivity σxx is negative in
appropriate ranges of the magnetic field B. In this case, a
zero-current state is unstable and the system spontaneously
develops a nonvanishing local current density.

The above noted phenomena were observed in high-quality
GaAs/AlGaAs heterostructures. There is another extremely
clean 2D electron system formed on the surface of liquid
helium which exhibits remarkable quantum magnetotransport
phenomena [10] although it is a nondegenerate system of
strongly interacting electrons. Since electron gas degeneracy
is not a crucial point for some of the theoretical mechanisms
explaining ZRS in semiconductor systems, these mechanisms
potentially can be applied to surface electrons (SEs) on liquid
helium as well. Complementary studies of these phenomena
in the system of SEs on liquid helium could help with
identification of the origin of ZRS observed in GaAs/AlGaAs
heterostructures.

It should be noted that another kind of magnetoconductivity
oscillations and ZRS (zero-σxx states to be exact) was already
observed in the system of SEs on liquid helium [11,12]
when the energy of excitation of the second surface subband
(�2 − �1) was tuned to the resonance with the microwave
(MW) frequency. These phenomena were explained [13] by
nonequilibrium population of the second surface subband
which triggers quasielastic intersubband decay processes
accompanied by electron scattering against or along the driving
force, depending on the ratio (�2 − �1) /�ωc (here ωc is the
cyclotron frequency). An important evidence for identification
of the mechanism of oscillations and ZRS observed for SEs on
liquid helium was recently found in studies of the Coulombic
effect on positions of conductivity extrema [14].

The most frequently discussed mechanism of negative
conductivity effects called the displacement mechanism was

proposed already in 1969 by Ryzhii [15]. In this model,
an electron scattering by an impurity potential accompanied
by absorption of a photon is the origin of the negative
linear response conductivity. In recent developments of the
model [16,17], the contribution from radiation is taken into
account exactly which is important for high MW powers.
Even though in semiconductor systems other mechanisms
reportedly [18,19] could give a stronger effect, it is very
attractive to study the displacement model for the 2D electron
system on liquid helium.

In the displacement model, the strength of the effect
depends on the product of two dimensionless parameters:

λ = eE(0)
ac lB

�ω
, � = ω2

c∣∣ω2 − ω2
c

∣∣ , (1)

where E(0)
ac is the amplitude of the MW field, and lB = √

�c/eB

is the magnetic length. For a fixed ratio ω/ωc, the value of
� is the same in both semiconductor and SE systems. The
effective mass of SEs is very close to the free electron mass
me, while the effective mass of semiconductor electrons is
much smaller: m∗

e � 0.064me. Therefore, at fixed E(0)
ac and ω,

in experiments with SEs on liquid helium λ is smaller than it
is for semiconductor electrons by the factor

√
m∗

e/me � 1/4,
and multiple magnetoconductivity oscillations with ω/ωc � 2
are expected to be very small. The reduction of λ can be
well compensated by approaching the cyclotron resonance
(CR) condition ωc → ω, which increases �. Thus, for SEs
on liquid helium, negative dc conductivity (similar to that of
the semiconductor model) could be expected in the vicinity
of the CR. Since the average Coulomb interaction energy
per SE UC is usually much larger than the average kinetic
energy, a many-electron treatment of the displacement model
is required.

In this work, we report results of a theory of the dis-
placement mechanism of negative dc conductivity applied to
SEs on liquid helium interacting with capillary-wave quanta
(ripplons). The ac electric field is taken into account in an
exact way similarly to Refs. [16,17]. Scattering with ripplons
is described using a perturbation theory. Strong Coulomb
interaction is taken into account employing a model based on
the dynamic structure factor (DSF) of a 2D electron liquid. We
found that results of the many-electron treatment drastically
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depend on SE density ns , which allows us to predict the range
of ns where negative conductivity effects can be observed.

We will use the Landau gauge in which a momentum in
the y direction (py) is a good quantum number. The dc and ac
electric fields (Edc and Eac) are taken to be parallel to the x axis.
The ac field Eac (t) = E(0)

ac cos ωt . In the absence of scatterers,
the exact solution of the single-electron Hamiltonian can be
written as [16,20]

ψn,X (x,y,t) = eiϑ(x,y,t) exp

{
i
X

lB
β sin ωt

}

× exp
(−iXy/l2

B

)
ϕn(x − X − ξ (t) ,t), (2)

where

X = −cpy

eB
− eEdc

meω2
c

, β = λ
ω2

c(
ω2 − ω2

c

) , (3)

ϕn (x,t) is the well-known solution for the unforced quantum
harmonic oscillator, n is the Landau level index, and ξ (t)
is the classical solution of the forced harmonic oscillator,
ξ = eE(0)

ac cos ωt/m(ω2 − ω2
c ). The resonant denominator of

β originates from ξ̇ . The exact expression for ϑ (x,y,t) is not
important in the following treatment.

The interaction with ripplons causes electron scattering
between different states given in Eq. (2). The dc conductivity
σxx of SEs can be found from the equation for current density
jx = −ensl

2
B

∑
q qyw̄q, where w̄q is the average probability

of electron scattering with the momentum exchange �q, and
l2
Bqy represents a change of the orbit center number X for such

a process. The effective collision frequency νeff , entering the
usual conductivity form, is found as

νeff = − 1

meVH

∑
q

�qyw̄q (VH ) , (4)

where VH = cEdc/B is the absolute value of the Hall
velocity. The w̄q depends on Edc because, in addition to
εn = �ωc (n + 1/2), we have a term eEdcX. For nondegenerate
electrons, the probability wq is independent of the quantum
number X due to eEdc(X′ − X) = �qyVH . In this case, wq
can be averaged over Landau level numbers only, assuming
an equilibrium distribution Z−1

‖ exp (−εn/Te) (here Z‖ is the
partition function).

In a single-electron treatment, w̄q can be found in terms of
the DSF of a nondegenerate 2D electron gas

S(q,�) = 2

π�Z‖

∑
n,n′

I 2
n,n′ (xq)

×
∫

dεe−ε/Tegn (ε) gn′ (ε + ��) , (5)

where gn (ε) = −ImGn (ε) represents the Landau level density
of states, Gn (ε) is the single-electron Green’s function, xq =
q2l2

B/2,

In,n′ (x) =
√

min (n,n′)!
max (n,n′)!

x
|n′−n|

2 e− x
2 L

|n′−n|
min(n,n′) (x) , (6)

and Lm
n (x) are the associated Laguerre polynomials. This

representation is similar to that of the theory of thermal neutron
(or x-ray) scattering by solids, where the scattering cross

section of a particle flux is expressed in terms of the DSF
of the target.

Comparing with the case E(0)
ac = 0, matrix elements,

describing electron scattering, contain the additional fac-
tor exp(−iqylBβ sin ωt). Using the expansion eiz sin φ =∑

m Jm(z)eimφ [here Jm(z) is the Bessel function], the pro-
cedure of finding scattering probabilities can be reduced to a
quite usual treatment. Then, for ripplon creation (index +) and
destruction (index −) processes, w̄

(±)
q (VH ) can be found as

w̄(±)
q (VH ) = |C̄±

q |2
�2

∞∑
m=−∞

J 2
m(βqylB)

× S(q,−qyVH + mω ∓ ωr,q), (7)

where C̄±
q = Vr,qQq[N (r)

q + 1/2 ± 1/2]1/2, N (r)
q is the ripplon

distribution function, Vr,q is the electron-ripplon coupling [10],
Qq = √

�q/2ρωr,q , ωr,q � √
α/ρq3/2, and α and ρ are the

surface tension and mass density of liquid helium, respectively.
Generally, the structure of Eq. (7) is similar to that found

for other scattering mechanisms important for semiconductor
electrons [16,17,21]. The main advantage of the form of Eq. (7)
is that we can employ the properties of the equilibrium DSF
and model the effect of Coulomb interaction using the DSF
of strongly interacting SEs. Such a possibility appears under
the condition lB 
 a (here a is a typical electron spacing)
which allows us to consider a fluctuational electric field Ef ,
acting on a particular electron, as a quasiuniform field [22].
This reduces the many-electron problem to a single-electron
dynamics. Even in this limit, the situation remains to be very
complicated; still an accurate form of the DSF of the 2D
Coulomb liquid in a magnetic field can be found [10]:

S (q,�) = 2
√

π

Z‖

∑
n,n′

I 2
n,n′

γn,n′
exp

[
−εn

Te

− Pn,n′ (�)

]
, (8)

where

Pn,n′ = [� − (n′ − n)ωc − φn]2

γ 2
n,n′

, φn = �2
n + xq�

2
C

4Te�
, (9)

�γn,n′ =
√

�2
n + �2

n′

2
+ xq�

2
C, (10)

�n is the collision broadening of Landau levels, �C =√
2eE

(0)
f lB , and E

(0)
f � 3

√
Ten

3/4
s is the typical fluctuational

electric field [23] under the condition UC/T > 10.
Remarkably, the DSF of the Coulomb liquid with strong in-

teraction given in Eq. (8) is similar to the DSF of noninteracting
electrons (the latter corresponds to the regime �C 
 �n). The
proportionality factor 1/γn,n′ reflects the singular nature of the
magnetotransport in 2D systems. For �C = 0, eventually, it
leads to the enhancement factor �ωc/�n of the SCBA theory,
which describes the effect of multiple electron scattering. The
fluctuational electric field drives an electron from a scatterer
which reduces multiple scattering by increasing γn,n′ given
in Eq. (10). As the function of frequency, the DSF has
maxima near Landau excitation energies. The fluctuational
field introduces an additional broadening of these maxima√

xq�C and the shift in their positions φC = xq�
2
C/4Te�.

This form of the DSF describes well the magnetotransport
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properties of SEs [10] even those induced by the intersubband
MW resonance [14].

In most cases, the ripplon energy can be disregarded
in the frequency argument of the DSF which allows us
to consider electron scattering as quasielastic (in this limit
C̄±

q → C̄q = Vr,qQq

√
T/�ωr,q). Then, using the property of

the equilibrium DSF, S(q,−�) = exp(−��/Te)S(q,�), the
effective collision frequency can be represented as the sum
νeff = ∑∞

m=0 νm, where

ν0 = 1

meTe

∑
q

q2
y |C̄q|2J 2

0 (βqylB)S(q,0), (11)

and

νm = 2

me�

∑
q

q2
y |C̄q|2J 2

m(βqylB)

×
[

(1 − e− m�ω
Te )S ′ (q,mω) + �

Te

e− m�ω
Te S (q,mω)

]
(12)

for m > 0. The derivative S ′ ≡ ∂S/∂� appears because of
the linear expansion of the function w̄q (VH ) in Eq. (4).
Equation (11) follows from the relationship S ′ (q,0) =
(�/2Te) S (q,0). Usually, the second term in square brackets of
Eq. (12) is very small. In the following, we shall consider the
regime of sharp maxima of S (q,�), realized at γn,n′ 
 ωc.

Since λ, entering the definition of |β| = λ�, is usually very
small, we shall concentrate on effects induced by the CR, when
ωc is quite close to ω. Sometimes we shall use a damping form√

(ω2 − ω2
c )2 + 4γ 2∗ ω2 instead of |ω2 − ω2

c | in the denomina-
tor of � given in Eq. (1). This denominator originates from the
classical equation; therefore, it is reasonable to set the damping
parameter γ∗ to its classical value νcl .

The Eq. (11) indicates that ν0, as the function of ω − ωc,
has a symmetrical minimum at ωc = ω. To the contrary, the
next term ν1 and the following terms νm with m > 1 have an
asymmetrical shape of a derivative of a maximum affected
by the symmetrical factor J 2

m(λ�qylB). For noninteracting
electrons, S ′ (q,ω) has a negative minimum at ω − ωc =
γ0,1/

√
2. At this point, the whole sum νeff becomes negative

already at λ = 1.4 × 10−3 due to the proximity of the CR
condition and the extreme sharpness of Landau levels. This
estimate is very promising for experimental studies of negative
conductivity effects in the system of SEs on liquid helium.

At the chosen value of ω − ωc, the sum over m converges
quite rapidly. Still, each next term in the sum of νeff has its own
minimum which is closer to the point ωc = ω. This follows
from Eqs. (8) and (9): for each energy exchange �� = �mω

there is a term with n′ − n = m having a sharp maximum near
ωc = ω (the sharpness of the maximum increases with m). The
derivative of such a term contributes to νm of Eq. (12). Since
the effect of Eac eventually comes from ξ̇ (t), an approach to
the resonance condition is equivalent to an effective increase
in Eac which explains the importance of multiphoton terms.
Thus, in the vicinity of the resonance, a substantial number of
νm should be taken into account. This situation is illustrated
in Fig. 1 where partial sums

∑mmax
m=0 νm with different mmax

are shown as functions of B. Here, the damping parameter
γ∗ = νcl , and the many-electron DSF is taken into account for

FIG. 1. Contributions from partial sums
∑mmax

m=0 νm to νeff normal-
ized vs the magnetic field B for a sequence of mmax: from mmax = 1
to mmax = 7 (solid). The conditions are the following: T = 0.2 K
(liquid 4He), ns = 106 cm−2, and E(0)

ac = 0.05 V/cm.

ns = 1 × 106 cm−2. It is clear that an inclusion of higher terms
only enhances the effect of negative conductivity making the
minimum deeper and shifting its position closer to the point
ωc = ω.

Figure 2 illustrates how Coulomb forces affect σxx (B).
Here it was instructive to set γ∗ = 0. One can see that an
increase in ns strongly suppresses the conductivity minimum
and maximum near the CR without substantial changes in their
positions and broadening. This is contrary to the Coulombic

FIG. 2. The magnetoconductivity σxx normalized vs B for
different electron densities: ns/106 cm−2 = 1 (dash-dot-dotted), 2
(dash-dotted), 2.5 (dashed), and 30 (solid). Here mmax = 7. Other
conditions are the same as in Fig. 1.
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effect reported previously for intersubband displacement
mechanism [24] and for conductivity oscillations with ω/ωc �
2 caused by one-photon assisted scattering [25].

For ns � 2 × 106 cm−2, an additional maximum is formed
at ω − ωc > 0. Both the minimum and the maximum of
the region ω − ωc > 0 are moving up when ns increases.
Eventually, the curve σxx (B) obtains the shape with two
maxima settled in the regions ω − ωc > 0 and ω − ωc <

0 (the latter one is higher) and with a strong minimum
positioned between the maxima at ω − ωc. It should be
noted that a similar shape of the dc conductivity affected
by the CR was experimentally observed for the vapor atom
scattering regime [26]. An important conclusion which fol-
lows from Fig. 2 is that electron density should be rather
small to obtain the negative conductivity regime giving rise
to a state with σxx = 0 similar to ZRS in semiconductor
systems.

Recent experiments [27] indicate an unusually large expan-
sion of the electron system in a lateral direction, which cannot
be understood in the framework of the generally accepted ef-
fective electron temperature approximation. Electron densities
used in this experiment were rather high ns > 40 × 106 cm−2

which does not allow us to use directly an explanation based
on the negative dc conductivity. Still, for electron temperatures
Te estimated there, the system enters the regime Uc/Te < 1,
where the fluctuational field model fails and the single-electron

treatment could be a much better approximation. In this
regime, the negative dc conductivity could appear even for
a high ns , because ν0 decreases with Te stronger than the
sign-changing terms νm with m � 1. In a Corbino geometry,
the formation of a steady ring current j , making σxx(j ) = 0,
should be accompanied by a lateral redistribution of SEs.
Predictions on properties of the ring current are possible only
in a nonlinear (in Edc) treatment which requires separate
investigations. Nevertheless, the present theory allows us
to formulate experimental conditions, where negative dc
conductivity effects can be observed.

In summary, we have investigated theoretically the influ-
ence of cyclotron resonant excitation on the dc magnetocon-
ductivity of the highly correlated 2D electron system formed
on the surface of liquid helium. In the low electron density
region (ns � 106 cm−2), where the Coulomb interaction is
weak enough, the dc magnetoconductivity is shown to reach
negative values for quite usual amplitudes of the MW field
which causes instability of the zero-dc-current state. The
Coulomb interaction, increasing with electron density, is
shown to eliminate this effect, and at high densities (above
107 cm−2) the theory presented here yields the dc conductivity
behavior which is similar to that observed in experiments. We
found also that in the high-density range, instability could be
triggered by electron heating which restores the applicability
of the single-electron theory.
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