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We study the nonequilibrium Keldysh Green’s function for an N -orbital Anderson model at high bias voltages,
extending a previous work which for the case only with the spin degrees of freedom N = 2 to arbitrary N . Our
approach uses an effective non-Hermitian Hamiltonian that is defined with respect to a Liouville-Fock space
in the context of a thermal field theory. The result correctly captures the relaxation processes at high energies,
and is asymptotically exact not only in the high bias limit, but also in the high-temperature limit at thermal
equilibrium. We also present an explicit continued-fraction representation of the Green’s function. It clearly
shows that the imaginary part is recursively determined by the decay rate of intermediate states with at most
N − 1 particle-hole-pair excitations. These high bias properties follow from the conservations of a generalized
charge and current in the Liouville-Fock space. We also examine temperature dependence of the spectral function
in equilibrium, comparing the exact results with the numerical finite-T and analytical T → ∞ results of the
noncrossing approximation.
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I. INTRODUCTION

Role of the orbital degrees of freedom has been one of the
key issues in quantum dots and dilute magnetic alloys [1,2]. It
also gives a variety in the many-body effects, such as the Kondo
effect and Coulomb blockade, in a wide energy scale [3–8].
Specifically, the orbital degeneracy affects the nonequilibrium
current and current noise of quantum dots driven by the bias
voltage eV , and has recently been studied in the low-energy
Fermi-liquid regime [9–12].

However, further investigations of higher-energy regions
beyond the Fermi-liquid regime are still needed to com-
prehensively explore the orbital effects on the correlated
electrons in quantum dots. There are some efficient numerical
approaches that can provide information relevant to the
intermediate-energy regions. For instance, the Wilson numer-
ical renormalization group (NRG) [13], the density matrix
renormalization group [14], the continuous-time quantum
Monte Carlo methods [15,16], and the Matsubara-voltage
approach [17] can be applied to the multiorbital Anderson
model for quantum dots in the case where the internal degrees
of freedom N are not so large. Alternatively, perturbative
large-N approaches, such as the noncrossing approximation
(NCA) [18–22] and 1/(N − 1) expansion [23,24], can explore
the parameter regions complementary to the numerical ones.

We have previously considered the high bias limit of the
N = 2 Anderson model [25,26], for which nonequilibrium
quantum transport in the low-energy Fermi-liquid region has
been investigated for a long time [27–35]. We have shown
that the Keldysh Green’s function [36,37] is solvable in the
opposite limit eV → ∞, where the excitations of whole
energy scales equally contribute to the dynamics. In this limit,
the model can be mapped onto a non-Hermitian Hamiltonian
of two effective sites in a doubled Hilbert space that is defined
in the thermal field theory [38,39]. The asymptotically exact
Green’s function for eV → ∞ has a similar form to the atomic-
limit solution of Hubbard I [40–42], but is still nontrivial as
the hybridization energy scale � (≡ �L + �R) that competes

with the Coulomb repulsion U is fully taken into account
without any assumptions. For this reason, the result correctly
captures the imaginary part due to the relaxation processes,
which in the high bias limit is determined by the damping of
a single-particle accompanied by a virtually excited particle-
hole pair in the intermediate states. Furthermore, it has also
been clarified that the spectral weight depends sensitively on
the asymmetry in �L and �R , which are the hybridizations
between the impurity and the reservoirs on the left and right,
respectively.

In this paper, we extend the formulation to treat the multi-
orbital Anderson model, and provide the asymptotically exact
high bias Green’s function for generic two-body interactions
Umm′ between the electrons in different orbitals m and m′ with
orbital-dependent hybridizations �L,m and �R,m. The thermal-
field-theoretical approach [38,39] that we use is equivalent to
the Keldysh formalism. However, the time evolution along the
backward Keldysh contour is dealt with in a different way,
using fictitious fermions defined with respect to the enlarged
Hilbert space. It is also referred to as a Liouville-Fock space
and has been applied to quantum-transport problems [43–46].
We show that the effective non-Hermitian Hamiltonian can be
expressed in terms of a generalized charge and current, which
commute each other, also in the multiorbital case. This alge-
braic structure makes the many-body effects on the Green’s
function and other dynamic correlation functions separable
in the time representation. The exact Green’s function can be
expressed in a factorized form, which consists of contributions
of the intermediate particle-hole-pair excitations from each of
the orbitals.

For the m-independent interactions and hybridizations,
namely for U , �L, and �R , we also obtain the continued-
fraction representation of the Green’s function for arbitrary
N as a function of frequency ω. The results show that the
spectral function has N distinguishable peaks, the height of
which is determined by the binominal distribution, specifically
for symmetric hybridizations �L = �R and strong interac-
tions U � �. In the continued-fraction representation, the
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imaginary part due to the relaxation of the intermediate
state with k (= 1,2, . . . ,N − 1) particle-hole-pair excitations
recursively emerges through the iteration that terminates after
N − 1 steps.

Our results also describe the high-temperature limit at
equilibrium eV = 0, where the Fermi function becomes an
ω-independent constant f (ω) → 1

2 . We also examine temper-
ature dependence of the spectral function of the particle-hole-
symmetric SU(4) Anderson model, using the NCA which can
also be analytically solved in the limit of T → ∞. Near the
Kondo temperature T � TK , besides the Kondo peak at the
Fermi level ω = 0, not all the four subpeaks of the atomic
nature can be seen yet but the lower two subpeaks can be
at ω = ±U/2. It is at much higher temperatures T � TK

that the higher-energy subpeaks emerge at ω = ±3U/2. The
NCA reasonably describes these features of the temperature
dependence although there are some quantitative deviations
from the exact results in the high-temperature limit. The
analytic solution can also be used in such a way as a standard
for comparisons to check the accuracy of any approximations.

This paper is organized as follows. We describe the
relation between the Keldysh formalism and the thermal-field-
theoretical approach in Sec. II. The effective non-Hermitian
Hamiltonian for the high bias limit is introduced in Sec. III.
The initial and final states for the time-dependent perturbation
theory are introduced with the nonequilibrium density matrix
for the Liouville-Fock space in Sec. IV. General properties of
the dynamic correlation functions, which can be deduced from
the charge and current conservations in the Liouville-Fock
space for eV → ∞, are discussed in Sec. V. The derivation
of exact high bias Green’s function for generic two-body
interactions Umm′ is given in Sec. VI. The continued fraction
representation of the Green’s function for the m-independent
interaction U and properties of the spectral function are
described in Sec. VII. Summary is given in Sec. VIII.

II. KELDYSH FORMALISM

We start with a multiorbital Anderson impurity coupled
to two noninteracting leads (α = L,R). The Hamiltonian is
given by H = H0 + HU with

H0 =
N∑

m=1

εd,m nd,m +
∑

α=L,R

N∑
m=1

vα,m(d†
mψαm + H.c.)

+
∑

α=L,R

N∑
m=1

∫ D

−D

dε ε c†εαmcεαm, (1)

HU = 1

2

∑
m�=m′

Umm′ nd,mnd,m′ . (2)

Here, nd,m = d
†
mdm describes the local charge in the quantum

dot, and d
†
m creates an electron in a one-particle state with a

quantum number m (= 1,2, . . . ,N ) whose eigenenergy εd,m

generally depends on m, for instance, in a finite magnetic
field. The interelectron interaction Umm′ generally depends on
m and m′, with a requirement Umm′ = Um′m. The operator c

†
εαm

creates a conduction electron with energy ε in orbital m for the
lead on the left α = L or right α = R. It is normalized such that

{cεαm,c
†
ε′α′m′ } = δαα′ δmm′δ(ε − ε′). The linear combination of

the conduction electrons, defined by ψαm ≡ ∫ D

−D
dε

√
ρc cεαm

with ρc = 1/(2D), couples to the quantized levels of the dot
via the hybridization matrix element vα,m. This hybridization
causes an m-dependent level broadening of the energy scale
�m ≡ �L,m + �R,m with �α,m = πρc v2

α,m. We consider the
parameter region where the half-bandwidth D is much grater
than the other energy scales D � max(Umm′ ,�m,|εd,m|,T ,eV )
unless otherwise noted.

Nonequilibrium steady state under a finite bias voltage
can be described by the Keldysh formalism [27,28,36,37].
Specifically, we use an effective action S = S0 + SU that
determines the time evolution along the Keldysh contour

Z =
∫

Dη Dη ei [S0(η, η) +SU (η, η) ], (3)

S0 =
N∑

m=1

∫ ∞

−∞
dt dt ′ ηm(t) K 0,m(t,t ′) ηm(t ′) , (4)

SU = − 1

2

∑
m�=m′

Umm′

∫ ∞

−∞
dt

× { η−,m(t) η−,m(t) η−,m′ (t) η−,m′(t)

− η+,m(t) η+,m(t) η+,m′ (t) η+,m′(t)}. (5)

Here, ηm = ( η−,m, η+,m) is a pair of the Grassmann numbers
for the − and + branches of the Keldysh contour. The
kernel K 0,m(t,t ′) is given by the Fourier transform of the
noninteracting Green’s function

K 0,m(t,t ′) =
∫ ∞

−∞

dω

2π
{G0,m(ω)}−1e−iω(t−t ′) , (6)

{G0,m(ω)}−1 = (ω − εd,m) τ 3 − �0,m(ω) , (7)

�0,m(ω) = −i�m

[
1 − 2f

(m)
eff (ω)

]
(1 − τ 1) + �mτ 2. (8)

Here, 1 is the 2 × 2 unit matrix and τ j for j = 1,2,3 are the
Pauli matrices,

τ 1 =
(

0 1
1 0

)
, τ 2 =

(
0 −i

i 0

)
, τ 3 =

(
1 0
0 −1

)
.

(9)

The distribution function f
(m)
eff (ω) is defined by

f
(m)
eff (ω) = �L,m fL(ω) + �R,m fR(ω)

�L,m + �R,m

, (10)

where fα(ω) = [ e(ω−μα )/T + 1 ]−1 and μα is the chemical
potential for lead α. This distribution function describes
the energy window as depicted in Fig. 1, and determines
the long-time behavior of K 0,m(t,t ′) as a function of t − t ′.
Furthermore, temperature T and bias voltage eV ≡ μL − μR

enter through f
(m)
eff (ω) for impurity correlation functions.

III. LIOUVILLE-FOCK SPACE FOR eV → ∞
We consider two kinds of the high-energy limits in this

work. One is the high bias limit eV � T , where fL → 1
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FIG. 1. The nonequilibrium distribution function f
(m)

eff (ω) for
μL − μR = eV and T = 0. The Fermi level at equilibrium eV = 0
is chosen to be the origin of energy ω = 0.

and fR → 0. The other is high-temperature limit T � eV

where fL = fR → 1
2 , and this includes thermal equilibrium

at eV = 0 as a special case. In both of these two limits, the
distribution function f

(m)
eff (ω) becomes a constant independent

of the frequency ω:

f
(m)
eff (ω) →

{
�L,m

�L,m+�R,m
for eV → ∞,

1
2 for T → ∞.

(11)

Then, the hybridization self-energy �0,m(ω) also becomes
independent of ω, and then excitations of whole energy scales
equally contribute to the dynamics. This makes the problems
in the high-energy limits solvable. In the following, we
concentrate on the eV → ∞ limit because the T → ∞ limit
is equivalent to the symmetric coupling case �L,m = �R,m of
the high bias limit as long as local properties near the impurity
site are concerned.

A. Effective non-Hermitian Hamiltonian

In the high bias limit, the hybridization self-energy defined
in Eq. (8) is given by an ω-independent matrix

lim
eV →∞

�0,m(ω) = τ 3 L0,m, (12)

L0,m ≡ i

[
�L,m − �R,m −2�L,m

−2�R,m −(�L,m − �R,m)

]
. (13)

Then, the kernel K 0,m(t,t ′) takes a Markovian form with
a linear combination of δ(t − t ′) and its derivative. The
derivative arises from the ω linear part of {G0,m(ω)}−1, and
the noninteracting part of the action S0 can be expressed in a
single integration with respect to t :

S0 →
N∑

m=1

∫ ∞

−∞
dt η†

m(t)

{
1
(
i

∂

∂t
− εd,m

)
− L0,m

}
ηm(t). (14)

Here, the transformation η
†
m = ηm τ 3 has been introduced only

for the conjugate part of the Grassmann numbers, keeping the
counter part ηm unchanged. This transform makes the time-
derivative term S0 diagonal, keeping the interacting action SU

in a similar form:

SU = − 1

2

∑
m�=m′

Umm′

∫ ∞

−∞
dt {η†

−,m(t) η−,m(t) η
†
−,m′(t) η−,m′(t)

− η
†
+,m(t) η+,m(t) η

†
+,m′(t) η+,m′(t)}. (15)

Therefore, in the high bias limit, the Lagrangian that
corresponds to the integrand of S0 + SU does not have an
explicit time dependence other than the first derivative i∂/∂t

term in Eq. (14). The contributions of the conduction electrons
enter through L0,m. The Lagrangian of this form can also be
constructed from a non-Hermitian Hamiltonian defined with
respect to the doubled Hilbert space, consisting only of the
impurity degrees of freedom: Ĥeff = Ĥ

(0)
eff + Ĥ

(U )
eff ,

Ĥ
(0)
eff ≡

N∑
m=1

ξd,m(n−,m+ n+,m − 1)

+
N∑

m=1

(d†
mL0,mdm − i�m), (16)

Ĥ
(U )
eff ≡ 1

2

∑
m�=m′

Umm′

[(
n−,m− 1

2

)(
n−,m′ − 1

2

)

−
(
n+,m− 1

2

)(
n+,m′ − 1

2

)]
. (17)

Here,

ξd,m = εd,m + 1

2

∑
m′(�=m)

Umm′ , (18)

and d†
m = (d†

−,m , d
†
+,m) is a set of two independent fermion

operators introduced for the − and + branches, respectively,
and nμ,m = d

†
μ,mdμ,m. In this representation, the fermion

operators with the label “−” describe the original impurity
electron d

†
−,m ≡ d

†
m. The other component with the label “+”

corresponds to a tilde-conjugate operator d̃
†
m in the standard

notation of the thermal field theory [38,39]. Specifically, our
representation uses a particle-hole transformed version where
d
†
+,m ≡ d̃m.

Note that the conduction degrees of freedom have been
effectively decoupled, and the extended Hilbert space for
the impurity states, which is referred to as Liouville-Fock
space [43–46] in the following, consists of 22N basis sets. The
time evolution of the state vectors in this space is described by
the Heisenberg operators [38,39]

O(t) ≡ eiĤeff t O e−iĤeff t , (19)

i
∂O(t)

∂t
= [O(t) , Ĥeff]. (20)

B. Charge and current representation

One of the merits of the effective Hamiltonian formulation
is that it can clearly extract the properties that system acquires
in the high bias limit. In order to see the precise features, we
rewrite the interaction part defined in Eq. (17) in the form

Ĥ
(U )
eff = 1

2

∑
m�=m′

Umm′( Qmqm′ + Qm′qm)

=
N∑

m=1

qm
̂(UQ)m. (21)

115429-3



AKIRA OGURI AND RUI SAKANO PHYSICAL REVIEW B 91, 115429 (2015)

Here, the operators Qm, qm, and ̂(UQ)m are defined by

Qm ≡ n−,m + n+,m − 1, qm ≡ n−,m − n+,m

2
, (22)

̂(UQ)m ≡
∑

m′(�=m)

Umm′Qm′ . (23)

The operator ̂(UQ)m corresponds to the potential that is
induced in the orbital m by the particles occupying the other
orbitals m′( �= m). Note that this potential ̂(UQ)m vanishes
identically in the subspace where Qm′ = 0 for all m′ (=
1,2, . . . ,N ). This happens for the final and initial states
〈〈I || and ||ρ〉〉, which are introduced in the next section for
the time-dependent perturbation theory in the Liouville-Fock
space.

The off-diagonal components of Ĥeff can be regarded as the
operators, equivalent to the current IR,m flowing from the dot
to the right lead and IL,m flowing from the left lead to the dot,

IR,m = −2�R,m d
†
+,md−,m, IL,m = −2�L,m d

†
−,md+,m.

(24)

Although these are non-Hermitian, the operator equivalence
holds with respect to the Liouville-Fock space. Using these
charge and current operators, the effective Hamiltonian can be
expressed in the form

Ĥeff =
N∑

m=1

ξd,m Qm + i

N∑
m=1

(Pm − �m), (25)

Pm ≡ IR,m + IL,m + 2Wm qm, (26)

Wm ≡ (�L,m − �R,m) − i
1

2
̂(UQ)m. (27)

The two operators Qm and Pm commute each other, and also
commute, respectively, with Ĥeff :

[Qm,Pm′ ] = 0, [Qm, Ĥeff] = 0, [Pm, Ĥeff] = 0. (28)

Therefore, Qm and Pm are conserved, and Ĥeff acquires
a highly symmetrical algebraic structure. The equations of
motion for the relative charge qm and the relative current pm

constitute a closed system

∂qm

∂t
= −pm, pm ≡ IR,m − IL,m, (29)

∂pm

∂t
= 4L2

m qm + 2WmPm, (30)

L2
m ≡ 1

4
{̂(UQ)m}2+ i(�L,m − �R,m) ̂(UQ)m − �2

m. (31)

It is also deduced from Eqs. (28)–(30) that the second
derivative of pm satisfies the equation

∂2pm

∂t2
= − 4L2

m pm. (32)

The operator L2
m plays a central role on the relaxation

phenomena in the high bias limit. Specifically, in the subspace
where ̂(UQ)m = 0, the eigenvalue of L2

m is given simply

by −�2
m, and the Heisenberg operators of pm and qm can

be expressed as a linear combination of e2�mt and e−2�mt .
Here, the relaxation rate 2�m is determined by a damping
of a particle-hole-pair excitation [26]. Furthermore, it can be
deduced from these properties that in the high bias limit, a
wide class of the susceptibilities of the charges and currents
become identical to those for the noninteracting electrons as
shown in Sec. V A.

IV. INTERACTION REPRESENTATION FOR THE
NON-HERMITIAN HAMILTONIAN

We have introduced in the above Ĥeff corresponds to the
effective action S0 + SU . In order to complete the full descrip-
tion, we need to specify the density matrix that determines the
nonequilibrium distribution. Furthermore, it is also necessary
to impose some conditions as the fermion operators d+,m of the
+ branch describe the same physical particle as that of the −
branch at the turnaround point t → ∞ of the Keldysh contour.
As we see in the following, the time-dependent perturbation
theory for the Liouville-Fock space can be constructed in a
way such that these requirements can be fulfilled through the
properly chosen final 〈〈I || and initial ||ρ〉〉 states [47].

To this end, we consider the time evolution in more detail
in the interaction representation

Û(t2,t1) ≡ T exp

[
−i

∫ t2

t1

dt eiĤ
(0)
eff t Ĥ

(U )
eff e−iĤ

(0)
eff t

]
, (33)

OI (t) ≡ eiĤ
(0)
eff t O e−iĤ

(0)
eff t , (34)

where T is the usual time-ordering operator along the branch
of −∞ < t < ∞.

A. Final and initial states: 〈〈I|| and ||ρ〉〉
The free part of the effective Hamiltonian can be rewritten

in a diagonal form

Ĥ
(0)
eff =

∑
m

ξd,m

(
a−1

m am + b−1
m bm − 1

)
+
∑
m

i�m

(
a−1

m am − b−1
m bm − 1

)
. (35)

Here, a−1
m and b−1

m are defined with respect to the left eigen-
vectors of the non-Hermitian matrix L0,m. Correspondingly,
am and bm describe the right eigenvectors:

am ≡ d−,m − d+,m√
2

, a−1
m ≡

√
2(�L,md

†
−,m− �R,md

†
+,m)

�L,m + �R,m

,

(36)

b−1
m ≡ d

†
−,m + d

†
+,m√

2
, bm ≡

√
2(�R,md−,m+ �L,md+,m)

�L,m + �R,m

.

(37)

These operators satisfy the anticommutation relations{
am,a−1

m′
} = {bm,b−1

m′
} = δmm′ , (38)

{
bm,a−1

m′
} = {am,b−1

m′
} = {am,am′} = {bm,bm′} = 0. (39)
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Since the eigenvalues of Ĥ
(0)
eff are complex, the corresponding

eigenstates show a decaying or explosive long-time behavior
for t → ∞:

aI
m(t) = ame(�m−iξd,m)t , bIm(t) = bme−(�m+iξd,m)t . (40)

The relaxation time is determined by �m, i.e., the imaginary
part of the eigenvalue. Thus, the final and initial states in the
time-dependent perturbation theory for correlation functions
must satisfy a strong requirement that they should eliminate
the explosive part, preserving only the decaying part. This
condition is cleared by taking the states, in which all the
explosive “am” particles are filled, as a set of “vacuums”

〈〈I || ≡ 〈0| aN aN−1 . . . a2 a1, (41)

||ρ〉〉 ≡ a−1
1 a−1

2 . . . a−1
N−1 a−1

N |0〉 . (42)

These two states are normalized such that 〈〈I ||ρ〉〉 = 1. We can
see that the causal propagators defined with respect to these
states correctly describe the relaxation process

〈〈I ||T aI
m(t) a−1I

m′ (0)||ρ〉〉 = − δmm′ θ (−t) e(�m−iξd,m)t , (43)

〈〈I ||T bIm(t) b−1I
m′ (0)||ρ〉〉 = δmm′ θ (t) e−(�m+iξd,m)t . (44)

The final state 〈〈I || also satisfies the other requirement for
the turnaround point of the Keldysh contour

〈〈I ||d−,m = 〈〈I ||d+,m, 〈〈I ||d†
−,m = −〈〈I ||d†

+,m. (45)

These relations hold for arbitrary m, and reproduce a linear
dependence between the − and + components of the Keldysh
correlation functions corresponding to Eqs. (76) and (77).

In the final and initial states, defined in Eqs. (41) and (42),
the charge Qm vanishes identically for each m of the orbitals:

〈〈I ||Qm = 0, Qm||ρ〉〉 = 0. (46)

It can also be deduced from this property that 〈〈I || and ||ρ〉〉
are also the eigenstates for both Ĥ

(0)
eff and Ĥeff , with zero

eigenvalue,

〈〈I ||Ĥ (0)
eff = 0, 〈〈I ||Ĥeff = 0, (47)

Ĥ
(0)
eff ||ρ〉〉 = 0, Ĥeff||ρ〉〉 = 0. (48)

Therefore, 〈〈I || and ||ρ〉〉 do not evolve in time in both the
Schrödinger and interaction representations

〈〈I || eiĤeff t = 〈〈I ||, 〈〈I || Û(t,t ′) = 〈〈I ||, (49)

e−iĤeff t ||ρ〉〉 = ||ρ〉〉, Û(t,t ′)||ρ〉〉 = ||ρ〉〉. (50)

Specifically, in the interaction representation, the initial con-
dition is given formally at t → −∞. Therefore, taking the
initial condition to be ||ρ(−∞)〉〉 ≡ ||ρ〉〉, the time evolution
of the wave function in the interaction representation can be
described in the form

||ρ(t)〉〉 ≡ Û(t, − ∞)||ρ(−∞)〉〉 = ||ρ〉〉. (51)

Then, the expectation values are defined with respect to the
wave function at t = 0 that is the time the Heisenberg and the

interaction representations coincide:

〈O(t)〉 ≡ 〈〈I ||O(t)||ρ(0)〉〉 (52)

= 〈〈I ||TOI (t) Û(∞, − ∞)||ρ(−∞)〉〉. (53)

This completes an explicit construction of the time-dependent
perturbation theory for the high bias limit.

B. Statistical distributions at eV → ∞
The initial state ||ρ〉〉 determines the density matrix in the

limit of eV → ∞, and has the properties similar to Eq. (45):

�L,m d+,m||ρ〉〉 = − �R,m d−,m||ρ〉〉, (54)

�R,m d
†
+,m||ρ〉〉 = �L,m d

†
−,m||ρ〉〉. (55)

The underlying statistical weight can be extracted as a density
matrix, defined such that ρ̂ ||I 〉〉 ≡ ||ρ〉 [47],

ρ̂ =
N∏

m=1

( 1 + 2rm qm), rm ≡ �L,m − �R,m

�L,m + �R,m

, (56)

where ||I 〉〉 is a conjugate of 〈〈I || whose explicit form is given
in the right-hand side of Eq. (41). This density matrix correctly
describes the statistical distribution in the high bias limit. Note
that ρ̂ in this case does not depend on the interaction Umm′ but
varies as a function of rm that parametrizes the asymmetry in
the dot-lead couplings. Specifically, in the symmetric-coupling
case where rm = 0 for all m, it describes a uniform distribution
ρ̂ = 1 and the average occupation of n−,m becomes the same
as that of n+,m.

The average formula (52) reproduces exactly the local
charges in the high bias limit

〈〈I ||qm||ρ(0)〉〉 = rm

2
, (57)

and 〈n−,m〉 + 〈n+,m〉 = 1. Furthermore, the steady currents
through the dot are also correctly reproduced:

〈〈I ||IR,m||ρ(0)〉〉 = 〈〈I ||IL,m||ρ(0)〉〉 = 2�L,m�R,m

�L,m + �R,m

. (58)

Note that the averages of the charges and currents do
not depend on Umm′ in the high bias limit. Similarly, the
dynamic susceptibilities for charges and currents also take
the noninteracting values as discussed in the next section.

V. CORRELATION FUNCTIONS IN THE THERMAL FIELD
THEORY FOR eV → ∞

In this section, we explain the relations between the Keldysh
correlation functions and the corresponding thermal-field-
theoretical ones. We also describe some important high bias
properties.

A. Dynamic susceptibility

We consider a dynamic susceptibility, defined by

χ
μν

mm′(t) ≡ −i
∑
λλ′

τ
μλ

3 τ λ′ν
3 〈〈I || T δnλ,m(t) δnλ′,m′ ||ρ〉〉, (59)
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where δnμ,m ≡ nμ,m − 〈nμ,m〉 for μ = −,+. The Pauli matrix
τ 3 has been multiplied so that each (μ, ν) component of
χ

μν

mm′ coincides with the corresponding element of the Keldysh
susceptibility.

Equation (59) can be calculated further, rewriting it in terms
of the relative charge δqm ≡ qm − 〈qm〉:

χ
μν

mm′ (t) = − i〈〈I || T δqm(t) δqm′(0)||ρ〉〉
= − iθ (t) 〈〈I || δqm e−iĤeff t δqm′ ||ρ〉〉

− iθ (−t) 〈〈I || δqm′ e
iĤeff t δqm||ρ〉〉. (60)

We have used an identity δnμ,m = 1
2 Qm − sign(μ) δqm and the

high bias properties described in Eq. (46) to obtain the second
line. This expression shows that the dynamics of the excited
states 〈〈I || δqm and δqm′ ||ρ〉〉 determine the time evolution of
χ

μν

mm′ (t). In these two states, one particle-hole pair is excited,
respectively, from the “vacuums” 〈〈I || and ||ρ〉〉, by the matrix
elements

δqm = 1

2

(
a−1

m bm + 4�L,m�R,m

�2
m

b−1
m am

)
+ rm

2

(
a−1

m am − b−1
m bm − 1

)
, (61)

as

〈〈I || δqm = 1

2
〈0| aN . . . am+1 bm am−1 . . . a1, (62)

δqm||ρ〉〉 = 2�L,m�R,m

�2
m

a−1
1 . . . a−1

m−1 b−1
m a−1

m+1 . . . a−1
N |0〉 .

(63)

The particle-hole-pair excitation does not change the total Qm

in the Liouville-Fock space, and thus

〈〈I ||δqm Qm′′ = 0, Qm′′ δqm′ ||ρ〉〉 = 0 (64)

for all m′′ (= 1,2, . . . ,N ). Therefore, in Eq. (60) the operators
Qm′′ ’s included in Ĥeff in the intermediate states can be
replaced by the corresponding eigenvalues Qm′′ = 0 for all
m′′:

χ
μν

mm′(t)

= −iθ (t) 〈〈I || δqm e
−i
∑

m′′ (d†
m′′ L

0,m′′ d
m′′ −i�m′′ )t

δqm′ ||ρ〉〉
− iθ (−t) 〈〈I || δqm′ e

i
∑

m′′ (d†
m′′ L

0,m′′ d
m′′ −i�m′′ )t

δqm||ρ〉〉,
(65)

and thus the interaction term vanishes in the intermediate
states, Consequently, the dynamic susceptibility is asymp-
totically free in the high bias limit as it coincides with the
noninteracting form

χ
μν

mm′ (t) = − i δmm′
�L,m�R,m

(�L,m + �R,m)2
e−2�m|t |. (66)

Alternatively, one can calculate χ
μν

mm′(t) from the equation of
motion, in which the decay rate 2�m appears as the eigenvalue
of L2

m, mentioned in Sec. III B.
This asymptotically free behavior in the high bias limit is

common to a wide class of the correlation functions XAB(t,t ′),
defined with respect to the operators A and B which commute

with Qm for all m:

XAB(t,t ′) ≡ − i 〈〈I || T A(t) B(t ′)||ρ(0)〉〉, (67)

[A ,Qm] = [B ,Qm] = 0. (68)

For this correlation function, the relations corresponding to
Eq. (64) follow for both A and B from the condition (68),
and thus the interaction effects vanish as that in the case of
the dynamic susceptibility χ

μν

mm′(t). One important example of
this is the shot noise that can be derived from the current-
current correlation function. Because the current operator
Iα,m satisfies a commutation relation [Iα,m ,Qm] = 0, the high
bias asymptotic form of the ω-dependent current fluctuations
becomes identical to the noninteracting result also in the
multiorbital case as that in the N = 2 case [26].

B. Green’s function

We next describe the correspondence between the Keldysh
Green’s function and the ones defined with respect to the
Liouville-Fock space. The free Green’s function for Ĥ

(0)
eff is

defined by

Gμν

0,m(t) ≡ − i 〈〈I ||T dI
μ,m(t) d†I

ν,m(0)||ρ〉〉. (69)

This function can be calculated, using Eqs. (40) and (41),

G0,m ≡
[
G−−

0,m G−+
0,m

G+−
0,m G++

0,m

]
= G0,m τ 3. (70)

Here, G0,m(ω) is the high bias asymptotic form of the Keldysh
Green’s function

{G0,m(ω)}−1 = τ 3 [ (ω − ξd,m)1 − L0 ]. (71)

Note that εd,m which appeared in the original definition of
G0,m(ω) given in Eq. (7) has been replaced by ξd,m, including
the energy shift defined in Eq. (18) into the nonperturbed part.

The interacting Green’s function for the Liouville-Fock
space is defined by

Gμν
m (t) ≡ −i 〈〈I ||T dμ,m(t) d†

ν,m(0)||ρ(0)〉〉 (72)

= −i 〈〈I ||T dI
μ,m(t) d†I

ν,m(0) Û(∞, − ∞)||ρ〉〉. (73)

The same relation holds between the interacting Green’s
functions Gm and Gm as that in the noninteracting case

Gm = Gm τ 3. (74)

This can be verified perturbatively, using the Feynman
diagrammatic expansion which can be generated from
Û(∞, −∞) defined in Eq. (73). The noninteracting Green’s
function G0,m that is assigned to the Feynman diagrams has
one-to-one correspondence with the Keldysh propagator G0,m,
as shown in Eq. (70). Furthermore, the Feynman rule for Gm is
essentially the same as that for Gm in the Keldysh formalism.
There is a slight difference in the treatment of the Hartree term
but the counter term, which is a part of Ĥeff , compensates
the difference as shown in Appendix A. Therefore, there
is an exact diagram-to-diagram correspondence between the
Keldysh and thermal-field-theoretical perturbation expansion,
and thus Eq. (74) holds. Note that the sign that arises from τ 3

also appears in the relation between the Keldysh self-energy
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�m for Gm and the corresponding self-energy �TFT
m , defined

by {Gm}−1 = {G0,m}−1 − �TFT
m , as

�m(ω) = τ 3 �TFT
m (ω). (75)

The four components of Gμν
m have the same linear de-

pendence as the Keldysh components G
μν
m have. Therefore,

the retarded Gr
m and advanced Ga

m Green’s functions can be
expressed in two different forms

Gr
m = G−−

m + G−+
m = G+−

m + G++
m , (76)

Ga
m = G−−

m − G+−
m = G++

m − G−+
m . (77)

In the high bias limit, Gm can be expressed in terms of these
two Green’s functions

Gm = Gr
m

�m

[
�R,m �L,m

�R,m �L,m

]
+ Ga

m

�m

[
�L,m −�L,m

−�R,m �R,m

]
.

(78)

This is because the statistical distribution for eV → ∞ is
determined by a time-independent state ||ρ〉〉 as shown in
Eqs. (54)–(56). Furthermore, only a single component among
the four is independent since the relation Ga

m(ω) = {Gr
m(ω)}∗

holds in the frequency representation. For this reason, we
consider mainly the retarded Green’s function in the rest of
the paper.

VI. EXACT INTERACTING GREEN’S FUNCTION
FOR eV → ∞

In this section, we describe a derivation of the asymptotic
form of Green’s function in the high bias limit.

A. Generic form in the high bias limit

The retarded Green’s function can be expressed in the
following form, using Eq. (76):

Gr
m(t) = 1

2 (G−−
m (t) + G−+

m (t) + G+−
m (t) + G++

m (t)) (79)

= −i θ (t) 1
2 〈〈I ||(d−,m(t) + d+,m(t))

× (d†
−,m + d

†
+,m)||ρ(0)〉〉. (80)

This can be rewritten further, using the properties of 〈〈I || and
||ρ〉〉 given in Eqs. (47) and (48),

Gr
m(t) = −i θ (t) 〈〈Im|| e−iĤeff t ||ρm〉〉. (81)

Here, 〈〈Im|| and ||ρm〉〉 denote the intermediate states with
single-particle excitations

〈〈Im|| ≡ 〈〈I || 1√
2

(d−,m + d+,m)

= (−1)m−1 〈0| aN . . . am+1 d−,md+,m am−1 . . . a1,

(82)

||ρm〉〉 ≡ 1√
2

(d†
−,m + d

†
+,m)||ρ〉〉

= (−1)m−1 a−1
1 . . . a−1

m−1 d
†
+,md

†
−,m a−1

m+1 . . . a−1
N |0〉.

(83)

In contrast to the particle-hole-pair excitation for the dynamic
susceptibilities described in Eqs. (62) and (63), in the single-
particle states 〈〈Im|| and ||ρm〉〉 the orbital m is doubly occupied
while all the other orbitals m′ ( �= m) are kept unchanged in a
similar way. Thus, for Ĥeff which determines time evolution of
the intermediate state described in Eq. (81), the operators Qm′ ’s
can be replaced by their eigenvalues: Qm = 1 and Qm′ = 0 for
m′ �= m. This significantly simplifies Eq. (81), and makes the
correlation effects factorizable in a bilinear form

Gr
m(t) = − i θ (t) e−i(ξd,m−i�m)t

∏
m′(�=m)

e−�m′ t 〈〈Im|| e−i d†
m′ L̃

(m)
m′ d

m′ t ||ρm〉〉, (84)

L̃
(m)
m′ ≡ i

⎡⎢⎢⎣�L,m′ − �R,m′ − i
1

2
Um′m −2�L,m′

−2�R,m′ −(�L,m′ − �R,m′) + i
1

2
Um′m

⎤⎥⎥⎦ . (85)

The matrix L̃
(m)
m′ consists of the free part L0 defined in Eq. (13) and the correction due to the interelectron interaction. The product

in Eq. (84) can be calculated separately for each m′ ( �= m) as

〈〈Im|| e−i d†
m′ L̃

(m)
m′ d

m′ t ||ρm〉〉 =[1 −1]e−i L̃
(m)
m′ t

[
�L,m

�m

−�R,m

�m

]
= Z

(m+)
m′ e−iE (m)

m′ t + Z
(m−)
m′ eiE (m)

m′ t . (86)

Here, E (m)
m′ is a complex eigenvalue of L̃

(m)
m′ and Z

(m±)
m′ is a weight factor determined by the corresponding eigenvector [45]

Z
(m±)
m′ ≡ 1

2

(
1 ± i�m′ + rm′

2 Um′m

E (m)
m′

)
, E (m)

m′ ≡
√

1

4
U 2

m′m− �2
m′ + irm′�m′ Um′m. (87)

We obtain the explicit expression of the retarded Green’s function, substituting Eq. (86) into Eq. (84),

Gr
m(t) = −i θ (t) e−i(ξd,m−i�m)t

∏
m′(�=m)

e−�m′ t (Z(m+)
m′ e−iE (m)

m′ t + Z
(m−)
m′ eiE (m)

m′ t
)
. (88)
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This is a main result of this work, and the Green’s function can
be written in a factorized form in the time representation.

The asymptotically exact result for eV → ∞ captures
essential physics of relaxation of interacting electrons at
high-energy scales. The imaginary part of E (m)

m′ is bounded
in the range |Im E (m)

m′ | � �m′ , and it certifies that Gr
m(t)

decays at long time [45]. The squared eigenvalue {E (m)
m′ }2

also corresponds to the eigenvalue of the operator L2
m for

̂(UQ)m = Um′m, which is defined in Eq. (31). This means
that the particle-hole-pair excitation in the intermediate state
evolves in time and contributes to the relaxations, which we
can see more clearly in the continued-fraction representation in
the next section. Note that the high bias expression (88) in the
symmetric-coupling case, where rm′′ = 0 for all m′′, can also
be regarded as an exact high-temperature Green’s function at
equilibrium because of the relation described in Eq. (11). The
Fourier transform Gr

m(ω) = ∫∞
0 dt ei(ω+i0+)t Gr

m(t), which can
be carried out by expanding the product, becomes a function of
ωm ≡ ω − ξd,m in the frequency representation. Alternatively,
it can also be calculated, using a resolvent form of Eq. (81),

Gr
m(ω) = 〈〈Im|| 1

ω − Ĥeff + i0+ ||ρm〉〉. (89)

B. Some special cases

We examine some special cases in this section. The first
one is the free-particle limit where Ĥ

(U )
eff → 0. Equation (88)

obviously reproduces the free propagator

Gr
0,m(t) = −i θ (t) e−i(ξd,m−i�m)t (90)

as e−�m′ t 〈〈Im|| e−i d†
m′ L̃

(m)
m′ d

m′ t ||ρm〉〉 → 1 for m′ �= m in the non-
interacting case.

The second example is the case where one of the two leads
are disconnected. In the limit rm′′ → +1 (−1) for all m′′, the
right (left) lead is disconnected, and the impurity level with
the width �m → �L,m (�R,m) is fully occupied (empty). Then,
the Green’s function takes the form

lim
{rm′′ }→±1

Gr
m(t) = −i θ (t) e−i(ξd,m± N−1

2 Um−i�m) t . (91)

The corresponding spectral function for rm′′ → ±1 has a
single Lorentzian peak at ω = ξd,m ± (N − 1)Um/2 with

Um ≡∑m′(�=m) Um′m/(N − 1). Note that the peak position
depends on which of the leads, R or L, is disconnected.

The third one is the atomic limit, where both �L,m′′ and
�R,m′′ vanish for all m′′. In this case, the complex eigenvalue
and weight factors approach E (m)

m′ → Um′m/2 and Z
(m±)
m′ → 1

2 .
Then, Eq. (88) takes the form

lim
{�

R,m′′ }→0

{�
L,m′′ }→0

Gr
m(t)

= −i θ (t) e−iξd,mt
∏

m′(�=m)

e−i 1
2 Um′mt + ei 1

2 Um′mt

2
. (92)

VII. GREEN’S FUNCTION FOR THE UNIFORM
INTERACTION CASE

In this section, we consider the high bias Green’s func-
tion for the m-independent interactions and hybridizations,
choosing Umm′ = U , �m = �, and rm = r for all m and
m′. However, the impurity levels ξd,m = εd,m + (N − 1)U/2
can still be dependent on m, and also the coupling can be
asymmetric �L �= �R . Then, Eq. (88) takes the form

Gr
m(t) = −i θ (t) e−i(ξd,m−iN�)t ( Z(+) e−iE t + Z(−) eiE t )N−1.

(93)

Here, E and Z(±) correspond to E (m)
m′ and Z

(m±)
m′ for the

uniform parameters, respectively. This Green’s function can
be rewritten in a partial fraction form, carrying out the Fourier
transform using the binominal expansion

Gr
m(ω) =

N−1∑
Q=0

(
N − 1
Q

) {Z(+)}Q{Z(−)}N−1−Q

ω−ξd,m+iN�+(N − 1 − 2Q) E .

(94)

Note that the imaginary part of Gr
m(ω) is determined not only

by iN� in the denominator but also through the complex
parameters E and Z(±).

A. Continued-fraction representation

The Green’s function can also be expressed in a continued-
fraction form, converting Eq. (94) or carrying out the House-
holder transformation for Eq. (89):

Gr
m(ω) = 1

ωm − A1
rU
2 + i C1� − B1 (1−r2)( U

2 )2

ωm−A2
rU
2 +i C2�− B2 (1−r2)( U

2 )2

. . . −
. . .

ωm−AN−1
rU
2 +i CN−1�− BN−1 (1−r2)( U

2 )2

ωm−AN
rU
2 +i CN�

, (95)

where ωm = ω − ξd,m. The square-root dependence due to
E disappears in the continued-fraction representation as the
coefficients Ak , Bk , and Ck (for k = 1, 2, . . . ,N ) are integers,
which do not depend on the physical parameters

Ak = N − 1 − 2(k − 1), Bk = k (N − k),

Ck = 2k − 1. (96)

The coefficient Ak , which determines the energy shifts due to
the coupling asymmetry, decreases as k increases and changes
the sign at the middle of k between 1 and N . The coefficient
Bk corresponds to the residue of intermediate states with k

particle-hole pairs, and has a maximum at the middle of k.
In contrast, the coefficient Ck increases linearly with k. It
determines the relaxation rate in the high bias limit, and can be
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decomposed into two parts Ck� = (k − 1)2� + �. The first
term can be interpreted as a sum of the damping rate of k − 1
intermediate particle-hole pairs, each of which decays with
the ratio of 2� as mentioned in Secs. III B and V A, and the
second term � corresponds to the decay rate of the single
incident particle. Note that the initial part of the continued
fraction (95) can be expressed in the form

ωm − A1
rU

2
+ i C1 � = ω − εd,m − 〈nm′ 〉 (N − 1)U + i�.

(97)

Here, the third term in the right-hand side corresponds to the
energy shift due to the Hartree term with 〈nm′ 〉 = (1 + r)/2,
the average occupation of the orbital m′ ( �= m). Therefore, the
remainder part of the energy denominator can be regarded as

the self-energy correction �r
d,m(ω) beyond the Hartree term

Gr
m(ω) = 1

ω − εd,m − 〈nm′ 〉 (N − 1)U + i� − �r
d,m(ω)

.

(98)

In order to see these features of the Green’s function more
clearly, we provide some examples for first few N . In the
simplest case, for N = 2, it takes the form [26]

Gr
m(ω)

∣∣
N=2 = 1

ωm − rU
2 + i� − (1−r2)( U

2 )2

ωm+ rU
2 +i3�

. (99)

For N = 3,

Gr
m(ω)

∣∣
N=3 = 1

ωm − 2 rU
2 + i� − 2(1−r2)( U

2 )2

ωm+i3�− 2(1−r2)( U
2 )2

ωm+2 rU
2 +i5�

. (100)

For N = 4,

Gr
m(ω)

∣∣
N=4 = 1

ωm − 3 rU
2 + i� − 3(1−r2)( U

2 )2

ωm− rU
2 +i3�− 4(1−r2)( U

2 )2

ωm+ rU
2 +i5�− 3(1−r2)( U

2 )2

ωm+3 rU
2 +i7�

. (101)

For N = 5,

Gr
m(ω)

∣∣
N=5 = 1

ωm − 4 rU
2 + i� − 4(1−r2)( U

2 )2

ωm−2 rU
2 +i3�− 6(1−r2)( U

2 )2

ωm+i5�− 6(1−r2)( U
2 )2

ωm+2 rU
2 +i7�− 4(1−r2)( U

2 )2

ωm+4 rU
2 +i9�

. (102)

For N = 6,

Gr
m(ω)

∣∣
N=6 = 1

ωm − 5 rU
2 + i� − 5(1−r2)( U

2 )2

ωm−3 rU
2 +i3�− 8(1−r2)( U

2 )2

ωm− rU
2 +i5�− 9(1−r2)( U

2 )2

ωm+ rU
2 +i7�− 8(1−r2)( U

2 )2

ωm+3 rU
2 +i9�− 5(1−r2)( U

2 )2

ωm+5 rU
2 +i11�

. (103)

These expressions are simplified further for r = 0, i.e., the
symmetric couplings or the high-temperature limit of thermal
equilibrium, as all the terms corresponding to the energy
shift vanish. Particularly for N = 2, the exact self-energy
becomes identical to the order U 2 results [25]. However,
the similar cancellations of the higher-order terms in the
power series of U do not occur for N > 2. This is because
the high-order processes of the multiple particle-hole-pair

excitations occurring in different orbitals contribute to the
self-energy for N > 2.

B. Spectral functions for the uniform interactions

We examine further the high bias property in the case of
the uniform interactions. One of the simplest situations is the
atomic limit where both �L and �R vanish. In this case, the
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complex eigenvalue and weight factor become E → U/2 and
Z(±) → 1

2 , respectively, as mentioned in Sec. VI B. Thus, the
high bias retarded Green’s function given in Eq. (94) simplifies

Gr
m(ω)

�L/R→0−−−−−→
N−1∑
Q=0

(
N − 1
Q

)
1

2N−1

1

ω − ξd,m − (Q − N−1
2

)
U

= 1

ω − ξd,m − �
(ATM)
d,m (ω)

. (104)

The Green’s function in this limit has poles at ω = ξd,m +
[Q − (N − 1)/2]U for Q = 0,1, . . . ,N − 1, the residues of
which are given by the binominal distribution. Each of these
N poles represents contributions of a single-particle and a
single-hole excitation between the Q-particle and Q + 1-
particle states. This assignment of the spectrum can be verified,
comparing with the equilibrium finite-temperature Green’s
function in the atomic limit, given in Appendix B. The last
line of Eq. (104) defines the T → ∞ atomic-limit self-energy
�

(ATM)
d,m (ω), the explicit form of which can be obtained from

�r
d,m(ω) that is defined in Eqs. (95) and (98) taking the limit

of � → 0 and r → 0,
The couplings to the leads �L and �R make these poles

resonances with finite width. The Hubbard I (or Hubbard II
for N > 2) approximation [40,48], or the decoupling approxi-
mation of equation of motion (EOM), gives the imaginary part
i� to the atomic-limit Green’s function defined in Eq. (104).
Specifically, in the limit of r → 0 or high-temperature limit
T → ∞, it appears only in the initial part of the continued-
fraction expansion

Gr(EOM)
m (ω) = 1

ω − ξd,m + i� − �
(ATM)
d,m (ω)

. (105)

Alternatively, Gr(EOM)
m (ω) can be expressed in a continued-

fraction form similar to Eq. (95), by replacing the coefficients
Ck such that C1 → 1 for k = 1 and Ck → 0 for all the other k (�
2). This indicates that the decoupling approximation of EOM
significantly underestimates the relaxation effects, especially
for N � 2.

We also examine the NCA, which deals with the hybridiza-
tions in a more improved way. Specifically, in the limit of
T → ∞ at equilibrium eV = 0, the NCA equations for finite
U can be solved analytically as shown in Appendix C, and
then the retarded Green’s function takes the form

Gr(NCA)
m (ω)

T →∞−−−→
N−1∑
Q=0

(
N − 1
Q

)
1

2N−1

× 1

ω − ξd,m − (Q − N−1
2

)
U + iN�

= 1

ω − ξd,m + iN� − �
(ATM)
d,m (ω + iN�)

.

(106)

Note that the NCA in this case takes into account all possible
2N impurity configurations, from the empty to the fully
occupied orbital states [19]. In Eq. (106), the partial-fraction
representation shows that the spectral function is given by

a series of the Lorentzian peaks with the same width N�.
The last line shows that, through the atomic-limit self-energy
�

(ATM)
d,m with the argument ω + iN�, the constant imaginary

part iN� also appears in each step of the continued-fraction
expansion. The explicit expression corresponding to Eq. (95)
can be obtained by replacing the coefficients such that Ck → N

for all k and taking r → 0 as mentioned. Note that the exact
coefficient Ck = 2k − 1 given in Eq. (96) shows that the
imaginary part evolves step by step from i� to i(2N − 1)�
in the continued-fraction expansion. Therefore, the constant
imaginary part of iN� that the NCA gives in the limit of
T → ∞ corresponds to an average of the exact ones.

In Fig. 2, the high bias spectral function −Im Gr
m(ω) for

N = 4 is plotted for some different values of r , choosing the
interactions such that (a) U/(π�) = 2.0 and (b) 4.0. Four
separate peaks, emerging at ω − ξd,m = ±U/2 and ±3U/2,
can be recognized in Fig. 2(b) for symmetric coupling r = 0.
As the coupling asymmetry r increases, spectral weight moves
towards a region around the right-end peak at ω − ξd,m =
(N − 1)U/2 and in the limit of r → 1 it takes the Lorentzian
form with the width � which corresponds to Eq. (91). For
negative r , the spectral weight moves in the opposite direction
towards the left-end peak at ω − ξd,m = −(N − 1)U/2. Note
that the impurity level is fully occupied for r → 1, or
empty for r → −1, in the case where one of the leads is
disconnected. For weak interactions, the level broadening due
to the hybridizations dominates and the fine structure of the
spectrum is smeared as seen in Fig. 2(a).

Figure 3 shows another example for even N (= 6) case:
(a) U/(π�) = 2.0 and (b) 6.0. The six-peak spectral structure
can be seen at ω − ξd,m = ±U/2, ±3U/2, and ±5U/2 for
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FIG. 2. (Color online) Exact high bias spectral function for N =
4 for uniform interactions (a) U/(π�) = 2.0 and (b) 4.0, for different
coupling asymmetries r ≡ (�L − �R)/(�L + �R).
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FIG. 3. (Color online) Exact high bias spectral function for N =
6 for uniform interactions (a) U/(π�) = 2.0 and (b) 6.0, for different
coupling asymmetries r ≡ (�L − �R)/(�L + �R).

symmetric coupling r = 0 in Fig. 3(b). As the coupling
asymmetry r increases, the spectral weight moves towards the
higher-energy region, as mentioned in the above. Specifically,
the results obtained at r = 0.7 show a transient behavior that
the highest two peaks share the most of the spectral weight.
For weak interactions, as seen in Fig. 3(a), not all the six
peaks emerge in a distinguishable way because of the level
broadening due to the coupling to the leads.

The other examples, shown in Fig. 4, are the spectral
function for odd N with (a) N = 3, U/(π�) = 4.0, and (b)
N = 5, U/(π�) = 6.0. In the case of odd N , one of the peaks
appears at the center where ω − ξd,m = 0. The central peak
corresponds to the excitations between the Q = (N − 1)/2
and (N + 1)/2 particle states, and it is nothing to do with the
Kondo singlet state. The asymmetry in the couplings also shifts
the spectral weight to the higher-energy region as that in the
even-N case.

The asymptotically exact Green’s function can also be used
as a standard for comparisons to check out the accuracy, or
applicability, of theoretical calculations. Figure 5 compares the
exact high-temperature results (solid line) and the NCA results
of the spectral function for the SU(4) particle-hole-symmetric
case εd = −3U/2 at equilibrium eV = 0. The NCA results
are obtained (dotted line) at T = TK and (dashed line) at
T → ∞ from Eq. (106). The Kondo temperature is defined
by TK = πz�/4 with z, the wave function renormalization
factor that has been deduced from the NRG: (a) z = 0.52 for
U/(π�) = 2.0, and (b) z = 0.25 for U/(π�) = 4.0. We see
that the high-temperature NCA results (dashed line) for strong
interactions, shown in Fig. 5(b), reasonably agree with the
exact results, specifically at 6.0 � |ω|/� � 12.0 between the
lowest and the next peaks. However, the NCA underestimates

FIG. 4. (Color online) Exact high bias spectral function for odd
N and uniform interactions: (a) N = 3, U/(π�) = 4.0, and (b)
N = 5, U/(π�) = 6.0, for different coupling asymmetries r ≡
(�L − �R)/(�L + �R).

FIG. 5. (Color online) NCA and exact high-temperature results
of the equilibrium spectral functions in the SU(4) case for finite
interactions, (a) U/(π�) = 2.0 and (b) 4.0, in the particle-hole-
symmetric case εd = −3U/2. The solid line denotes the exact T →
∞ results from Eq. (95). The NCA results are obtained (dotted line)
numerically at T = TK , and (dashed line) analytically at T → ∞
from Eq. (106). The Kondo temperature is defined by TK = πz�/4,
with z the renormalization factor deduced from the NRG: (a) z = 0.52
for U = 2.0π� and (b) z = 0.25 for U = 4.0π�.
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the spectral weight at low frequencies |ω|/� � 6.0, which
results in an excess accumulation of the spectral weight in
the high-frequency region |ω|/� � 18.0 outside the higher-
energy peaks. Nevertheless, for U � � as in the case of
Fig. 5(b), the NCA reasonably describes how the spectral
structures evolve at T � TK . At T = TK (dotted line), the
Kondo peak is seen at ω = 0 with the two side peaks at ω =
±U/2 while the other higher-energy peaks still do not appear at
ω = ±3U/2 and the spectral weight spreads as a wide shoulder
at high frequencies |ω| � 3U/2. The higher-energy peaks
evolve at high temperatures T � U , and the NCA captures
typical features of these changes. Similar features can also be
seen in Fig. 5(a) for a weak interaction. However, the NCA
becomes less accurate for U � �, where the effects of the
hybridizations dominate and the peak structures are smeared.

VIII. SUMMARY

We have described exact high bias properties of the multior-
bital Anderson impurity connected to two noninteracting leads.
In the limit of eV → ∞, the distribution function f

(m)
eff (ω)

becomes a constant independent of ω, and the excitations of
whole energy scales equally contribute to the dynamics [25].
Because of this highly symmetric structure of the excitation
processes, the time evolution along the Keldysh contour, in the
high bias limit, can be described by the effective Lagrangian of
a Markovian form [Eqs. (14) and (15)], which has no long-time
tail.

We have constructed the corresponding Hamiltonian for-
mulation using the non-Hermitian time-evolution generator
Ĥeff . This Hamiltonian is defined with respect to the doubled
Hilbert space, which consists of the original Fock space for
the real particles and the counterpart for the fictitious particles
that represent the time-reversed states along the backward
Keldysh contour. The real and fictitious particles satisfy the
boundary condition in time, given in Eq. (45), at the turnaround
point t → ∞ of the Keldysh contour. This ensures the linear
dependence of the four components of the nonequilibrium
Green’s function. The effective Hamiltonian Ĥeff has a highly
symmetrical algebraic structure [Eq. (28)], which can be
clearly seen in the expression in terms of the generalized charge
and current defined with respect to the enlarged Hilbert space.
This represents the essential symmetries that the excitations
acquired in the high bias limit.

We have obtained the analytic expression (88) of the
Green’s function, which is asymptotically exact in the eV →
∞ limit. It shows that many-body effects on the Green’s
function Gr

m(t) can be factorized in the time representation.
This result holds for general orbital-dependent parameters;
ξd,m, �R,m, �L,m, and Um′m. Furthermore, the continued-
fraction representation of Gr

m(ω) has been obtained for
m-independent interactions and hybridizations. The explicit
continued-fraction representation, given in Eq. (95), shows that
the imaginary part emerges recursively through the relaxation
of intermediate states with an incident particle accompanied
by excited k particle-hole pairs (k = 1,2, . . . ,N − 1), which
give the damping rate of (2k − 1)�.

The corresponding spectral function has N separate peaks
at ω − ξd,m = −(N − 1)U/2, . . . (N − 1)U/2 for symmetric
coupling �L = �R with strong interactions U � �. The

coupling asymmetry �L �= �R varies the average impurity
occupation, and shifts the spectral weight towards high-energy
region. We have also examined the temperature dependence of
the spectral weight using the NCA, which can be analytically
solved for T → ∞. The results demonstrate a typical feature:
among the N separate peaks seen in the limit of T → ∞, the
ones corresponding to the highest-energy excitations disappear
as temperature decreases, and for large N the next-highest ones
will also disappear as T decreases further. Our results can
also be used as a standard to check theoretical approaches to
out-of-equilibrium quantum impurities at high bias voltages.
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APPENDIX A: FEYNMAN RULE FOR THE
HARTREE TERM

There is a slight difference between the Feynman rules for
the Keldysh Green’s function G

μν
m and those for the Green’s

function Gμν
m defined with respect to the doubled Hilbert space.

It emerges for the + component of the Hartree-type
self-energy �++

m , which corresponds to the tadpole diagram
shown in Fig. 6. As the arguments t and t ′ for the inner
Green’s function along the loop are equal, the limit is
required to be taken carefully such that G++

m (t + 0+,t) in
the Keldysh approach whereas the opposite limit is required
for G++

m (t,t + 0+) in the thermal-field-theoretical approach.
This is caused by the difference in the direction of the time
ordering for the operators belonging to the + branch. Thus,
for the − component of the Hartree-type self-energy �−−

m , the
same limit t ′ → t + 0+ is taken for both the Keldysh and the
thermal-field-theoretical Green’s functions.

The effective Hamiltonian Ĥeff , defined in Eqs. (16)
and (17), includes the U -dependent terms such that

1

2

∑
m�=m′

Umm′ Qm + Ĥ
(U )
eff

= 1

2

∑
m�=m′

Umm′(n−,m n−,m′ − n+,m n+,m′ ) + Ĥ
(CT)
eff . (A1)

The last term includes only the number operators for the +
branch,

Ĥ
(CT)
eff ≡

N∑
m=1

∑
m′(�=m)

Umm′

(
n+,m − 1

2

)
, (A2)

and can be regarded a counter term for the particles in the +
branch. This term compensates the difference that arises in the
+ component of the Hartree energy shift, mentioned above.

FIG. 6. Feynman diagram for the Hartree term.
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APPENDIX B: ATOMIC LIMIT IN THERMAL
EQUILIBRIUM

The atomic-limit Green’s function in equilibrium takes the
following form at finite temperatures:

G(ATM)
m (ω) =

N−1∑
Q=0

(
N − 1
Q

)
1

�

e−βEQ+1 + e−βEQ

ω − (EQ+1 − EQ)
, (B1)

� =
N∑

Q=0

(
N

Q

)
e−βEQ , EQ = Q εd + U

2
Q (Q − 1) (B2)

in the SU(N ) case where quantized level εd has N -fold
degeneracy [48]. This function has the poles at ω = εd + QU

for ω forQ = 0,1,2, . . . ,N − 1. Equation (B1) coincides with
Eq. (104) in the T → ∞ limit.

APPENDIX C: NONCROSSING APPROXIMATION

The closed system of equations of the NCA can be
analytically solved in the high-temperature limit T → ∞
at equilibrium eV = 0, to yield the expression, given in
Eq. (106). In this appendix, we provide the outline of
derivation.

1. Basic equations of the NCA

The NCA is a self-consistent perturbation theory, which
collects a specific series of expansions in the hybridization
[18–21]. This method is known to give physically reasonable
result at energy scales near the Kondo temperature. To work
in this approximation, we rewrite the Hamiltonian, given by
Eqs. (1) and (2), in the form

H = Hband + Hdot + Hhyb, (C1)

Hband =
N∑

m=1

∫ D

−D

dε ε c†εmcεm, (C2)

Hdot =
2N∑
n=1

En |n〉〈n| , (C3)

Hhyb =
N∑

m=1

2N∑
n,n′

(
vmMm

n,n′ |n〉〈n′|ψm + H.c.
)
. (C4)

Here, En and |n〉 are the 2N many-body eigenvalues and
corresponding eigenstates of Hdot that include the interactions
between electrons in the dot. The matrix element Mm

n,n′ ≡
〈n|d†

m|n′〉 is defined between these many-body eigenstates.
Note that we consider an equilibrium situation, and therefore
only a linear combination of the the conduction bands
which couples to the dot ψm ≡ (vL,mψL,m + vR,mψR,m)/vm

with vm =
√

v2
R,m + v2

L,m are explicitly shown in the above
Hamiltonian.

The NCA for finite interactions can be described by
the coupled equations for the retarded resolvents and the

self-energies

Rn(ω) = 1

ω − En − �
(NCA)
n (ω)

, (C5)

�(NCA)
n (ω) =

2N∑
n′=1

N∑
m=1

�m

π

[(
Mm

n,n′
)2 + (Mm

n′,n
)2]

×
∫ D

−D

dε Rn′ (ω + ε)f (ε). (C6)

The local density of states at the dot site is given by

ρdm(ω) = − 1

π
Im Gr

m(ω)

= 1

Ztotal/Zband

2N∑
n,n′

(
Mm

n,n′
)2 ∫ D

−D

dε e−βε

×[ρn(ε)ρn′(ε + ω) + ρn(ε)ρn′(ε − ω)], (C7)

with a partition function

Ztotal

Zband
=

2N∑
n=1

∫ D

−D

dε e−βερn(ε), (C8)

and the spectral function for the resolvent

ρn(ω) = − 1

π
Im Rn(ω). (C9)

2. High-temperature limit

In the high-temperature limit, the Fermi distribution func-
tion in Eq. (C6) is replaced by a constant 1

2 , and the integration
can be readily executed to give an ω-independent constant.
Then, the NCA equation can be solved and the resolvent is
given by a Breit-Wigner form

Rn(ω) = 1

ω − En + i�n

, (C10)

with

�n =
2N∑
n′

N∑
m

�m

2

[(
Mm

n,n′
)2 + (Mm

n′,n
)2]

. (C11)

Substituting these forms into Eq. (C7), the asymptotic form
of the local density of state in the limit of T → ∞ can be
expressed in a sum of the Lorentzian peaks

ρdm(ω) = 1

2N−1

2N∑
n,n′

(
Mm

n,n′
)2 �n + �n′

π

× 1

[ ω − (En′ − En)]2 + (�n + �n′)2 . (C12)

Particularly, for the m-independent interactions and hy-
bridizations Umm′ ≡ U and �m ≡ �, the asymptotic expres-
sions can be more simplified because �n in this case is
explicitly in the form

�n = N�

2
. (C13)

Then, Eq. (C12) corresponds to the NCA Green’s function
given in Eq. (106).
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