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Frequency-dependent phonon mean free path in carbon nanotubes
from nonequilibrium molecular dynamics
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Owing to their long phonon mean free paths (MFPs) and high thermal conductivity, carbon nanotubes
(CNTs) are ideal candidates for, e.g., removing heat from electronic devices. It is unknown, however, how
the intrinsic phonon MFPs depend on vibrational frequency in nonequilibrium. We determine the spectrally
resolved phonon MFPs in isotopically pure CNTs from the spectral phonon transmission function calculated
using nonequilibrium molecular dynamics, fully accounting for the resistive phonon-phonon scattering processes
through the anharmonic terms of the interatomic potential energy function. Our results show that the effective room
temperature MFPs of low-frequency phonons (f < 0.5 THz) exceed 10 μm, while the MFP of high-frequency
phonons (f � 20 THz) is in the range 10–100 nm. Because the determined MFPs directly reflect the resistance
to energy flow, they can be used to accurately predict the thermal conductivity for arbitrary tube lengths by
calculating a single frequency integral. The presented results and methods are expected to significantly improve
the understanding of nonequilibrium thermal transport in low-dimensional nanostructures.
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I. INTRODUCTION

The small atomic mass, rigid sp2 bonding, and high
structural order of carbon atoms in carbon nanotubes (CNTs)
and graphene gives rise to exceptional mechanical and thermal
properties. For example, the thermal conductivity (TC) of
carbon nanotubes has been theoretically predicted [1–7] and
experimentally measured [8–11] to be in the range 500–7000
W/(mK) at room temperature, depending on, e.g., the tube
chirality, tube length, and experimental setups [12]. The
high TC, mechanical strength and the vast possibilities of
chemical functionalization make carbon nanotubes attractive
for applications aiming at, e.g., efficient heat removal in
electronics [13], thermoelectric interface materials [14,15],
and phonon waveguides and rectifiers [16,17].

Heat is carried in CNTs primarily by the propagating lattice
vibrations, phonons [18]. One of the key unknown factors
determining the phononic TC in isotopically pure nanotubes
is the mean free path (MFP) describing the characteristic
distance of resistive phonon-phonon scattering events. The
effective MFP in CNTs has been experimentally estimated to
be in the range 500–750 nm at room temperature [8,9]. These
estimates are based, however, on a kinetic formula, which
is known to underestimate the true MFP [19] and cannot
account for the strong dependence of MFP on the phonon
frequency [20–24]. The frequency-dependence is visible, e.g.,
in the thermal conductivity accumulation function [25,26],
whose experimental measurement has been recently enabled
by advanced spectroscopic techniques [27–30].

The frequency-dependent MFPs have been previously
determined theoretically either from the decay of the mode
energy correlation function [31,32] in equilibrium molecular
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dynamics (EMD) simulations [5,33] or by calculating
the phonon-phonon scattering rates from first principles
[21–24,34,35]. While it is known that only the umklapp
scattering processes can directly generate thermal resistance
due to the change in crystal momentum [36,37], both normal
and umklapp scattering processes contribute to redistributing
the mode energy. Therefore, the MFPs obtained from EMD
simulations do not directly reflect the decay of the heat flux
in nonequilibrium [36]. In first-principles calculations, on
the other hand, typically only three-phonon scattering in the
first order is considered. Higher-order scattering processes
and four-phonon scattering processes are either neglected or
treated approximately [22]. In addition, determining TC from
the first-principles scattering rates requires [24] the solution of
the highly complicated Boltzmann equation.

In this paper, we provide an in-depth evaluation of
the frequency dependence of the effective phonon MFPs
and phonon transmission functions based on nonequilibrium
molecular dynamics (NEMD) simulations and the generalized
form of the recently developed expression for the spectral
decomposition of the nonequilibrium heat current [38]. The
obtained phonon MFPs reflect the length dependence of
the transmission function arising from the phonon-phonon
interactions implicitly included in our simulations through the
anharmonic terms in the interatomic potential energy function.
Because the nonequilibrium heat current inherently accounts
for the different roles of normal and umklapp processes in
generating thermal resistance, the determined MFPs capture
the subtle interplay of normal and umklapp processes. In
contrast to first-principles calculations of MFPs, NEMD also
accounts for all orders of all phonon-phonon interactions and
the effective MFPs can be directly used to predict TC, as shown
below.

The paper is organized as follows. We first generalize the
recently developed expression for the spectral heat current
to describe many-body potentials in Sec. II A. We then
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define the generalized phonon transmission function and
show how the MFPs can be determined from the length
dependence of the transmission in Sec. II B. In Sec. II C,
we discuss the decomposition of the transmission function
into different angular wave-number contributions, allowing for
calculating the relaxation times for different wave numbers
and comparison to other methods. The molecular dynamics
setup and the numerical methods are presented in Sec. III A,
followed by a detailed overview of the numerically calculated
length-dependent transmission functions and mean free paths
in Sec. III B and their dependence on the angular wave numbers
and comparison to EMD in Sec. III C.

II. THEORY

A. Spectral heat current formula

To calculate the phonon MFPs from the decrease of the
phonon transmission function as a function of tube length,
we need to evaluate the phonon transmission function from
the anharmonic NEMD simulations. To achieve this, we first
need to generalize our previous approach [38] to calculate
the spectrally resolved heat current to many-body potentials
such as the Tersoff potential. Here we briefly overview this
generalization by complementing the previous derivation of
Ref. [38].

The expression for the interparticle heat current Qi→j

between atoms i and j (located at different sides of the
imaginary cross-section) is given by [39,40]

Qi→j = 1
2 〈Fji · vj − Fij · vi〉. (1)

Here, the angular brackets denote the steady-state nonequilib-
rium ensemble average assumed to be equal to the time average
due to ergodicity, the velocities of atoms i and j are denoted
by vi and vj , respectively, and Fji is the interparticle force
on atom j due to atom i. The spectral heat current qi→j (ω),
satisfying Qi→j = ∫ ∞

0 (dω/2π )qi→j (ω) with ω the angular
frequency, was shown to be given by the expression [38]

qi→j (ω) = 2Re[K̃ji(ω)], (2)

where K̃ji(ω) = ∫ ∞
−∞ dteiωtKji(t) is the Fourier transform of

the force-velocity cross-correlation function defined in time-
domain as

Kji(t1 − t2) = 1
2 〈Fji(t1) · vj (t2) − Fij (t1) · vi(t2)〉. (3)

The correlation function (3) depends explicitly only on the
time difference t1 − t2 (and the Fourier transform on a single
frequency variable) due to the assumed steady state.

In contrast to Ref. [38], where the forces were generated due
to two-particle interactions (more specifically Lennard-Jones
potentials), in the present CNT systems the forces have also
three-body contributions. Therefore it is necessary to carefully
define the interatomic forces Fji used in analyzing the force-
velocity correlation function (3) using NEMD.

The required expression for the interparticle force can be
derived from the interparticle heat current, which can in turn
be calculated by monitoring the temporal rate of change of the
local energy [41,42]. The system’s total energy E = K + U ,
which consists of the kinetic energy K and potential energy
U , is written as the sum over the local energies εi of atoms

i ∈ {1, . . . ,N}:
E =

∑
i

εi . (4)

The local energy εi consists of the local kinetic and potential
energy contributions,

εi = 1
2mv2

i + Ui(r1, . . . ,rN ), (5)

where ri is the atomic position, m is the atom mass, N is the
number of atoms and Ui the local potential energy. By using
the equation of motion

m
dvi

dt
= −∂U

∂ri

, (6)

one can show that the temporal rate of change of local energy,
which equals the in-flow of heat current, is

dεi

dt
= −

∑
j �=i

(
− ∂Ui

∂rj

· vj + ∂Uj

∂ri

· vi

)
. (7)

Identifying the term in parentheses on the right-hand side
as the interparticle heat current and comparing to Eq. (1)
leads to conclude that for general interatomic potentials, the
interparticle force Fji used to calculate the heat currents is
given by

Fji = −2
∂Ui

∂rj

. (8)

The spectral heat current (2) can be calculated using
force and velocity trajectories from NEMD simulation with
fully anharmonic interatomic potentials. Keeping track of the
generalized interparticle forces (8) is, however, complicated
and tedious. Therefore it is useful to derive an expression
for the spectral heat current that only requires the atomic
velocity trajectories instead of explicit interparticle forces. For
a solid, this can be achieved by expanding the interparticle
force in terms of small atomic displacements ui = ri − r0

i

from the average position r0
i . It is important to emphasize

that this expansion is only applied in the post-processing
phase to simplify the calculation of the spectral heat current.
Fully anharmonic forces, accounting for all orders of phonon-
phonon interactions, are used in the NEMD simulation.

The first-order term of Eq. (2), which turns out to be the
strongly dominant term for the rigid carbon-carbon interac-
tions considered in this paper, is obtained by approximating
the total potential energy as the quadratic sum

U ≈ 1

2

∑
i,j

∑
α,β

uα
i K

αβ

ij u
β

j , (9)

where the force constant matrix is

K
αβ

ij = ∂2U

∂uα
i ∂u

β

j

∣∣∣∣
u=0

. (10)

Here, the coordinates are α,β ∈ {x,y,z}. From Eq. (9), one
can see that the local potential energy Ui can be approximated
by

Ui ≈ 1

2

∑
j

∑
α,β

uα
i K

αβ

ij u
β

j . (11)
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This results in the generalized interparticle force [Eq. (8),
j �= i]

F
γ

ji ≈ −
∑

α

uα
i K

αγ

ij . (12)

One can then use Fourier transform identities and the
correspondence between continuous and discrete Fourier
transforms to show that the spectral heat current (2) can be
calculated from the compact expression

qi→j (ω) ≈ − 2

tsimuω

∑
α,β∈{x,y,z}

Im
〈
v̂α

i (ω)∗Kαβ

ij v̂
β

j (ω)
〉
. (13)

Here, tsimu is the simulation time and the velocities v̂α
i (ω) and

v̂
β

j (ω) are the discrete Fourier transforms of atomic velocity
trajectories vα

i (t) = u̇α
i (t) (more details below in Sec. III A).

The heat current across any interface separating disjoint atom
sets L̃ and R̃, which we will choose to be the left and right
halves of the tube, is obtained by summing over atoms in each
set:

q(ω) =
∑
i∈L̃

∑
j∈R̃

qi→j (ω). (14)

B. Transmission and mean free paths

Having expressions (13)–(14) for the spectral heat current
available, we define the generalized phonon transmission
function as

T (ω) = q(ω)

kB	T
. (15)

In the ballistic limit, this transmission function is simply equal
to M(ω), the number of propagating modes [43], which can be
determined from the phonon band structure. The anharmonic
phonon-phonon interactions incorporated in NEMD render the
transmission function (15) dependent on the tube length L,
which can be phenomenologically taken into account through
the relation [44–47]

T (ω) = M(ω)

1 + L/
(ω)
, (16)

where 
(ω) is the effective phonon MFP. Equation (16)
smoothly interpolates between the ballistic [T (ω) = M(ω)]
and diffusive [T (ω) ∼ 1/L] limits. It can be derived by treating
the phonon-phonon scattering events as resistance sources
and combining the resistances incoherently [44] or from the
Boltzmann transport equation under the frequency-dependent
relaxation time approximation [47]. Note that the mean free
paths of Ref. [47] correspond to the decay length of the
phonon density, proportional to the square |u|2 of the phonon
amplitude, whereas our MFP definition corresponds to the
decay in phonon amplitude u. Hence the mean free paths differ
by a factor of two. Both definitions are correct as long as one
remains consistent when using the MFPs to calculate thermal
properties.

Equation (16) has been previously used [45,46] to develop
simplified models for the ballistic-diffusive transition in CNTs.
Here, in contrast, we use Eq. (16) to determine the mean
free paths from the relation between T (ω), M(ω) and tube
length L. This procedure was also used by Savic, Mingo, and

Stewart [48] to determine the impurity scattering MFPs in
CNTs, but the harmonic Green’s function simulations they
used could not account for the phonon-phonon interactions
incorporated in our simulations through the anharmonic terms
in the interatomic potential.

From the spectral heat current q(ω), we also calculate
the spectral decomposition of the thermal conductivity κ =
Q/(A|dT /dx|) as

κ(ω) = q(ω)

A	T
L. (17)

In the definition of κ , Q is the total heat current flowing along
the tube and A is the cross-sectional area, typically defined [12]
for the hollow tube as A = πd × 0.34 nm, where d the tube
diameter. In Eq. (17), we assumed dT /dx ≈ −	T/L for
the temperature gradient to allow for predicting the thermal
conductivity for tubes of arbitrary length by utilizing Eqs. (15)
and (16) and the MFPs:

κ(ω) = kBL

A

M(ω)

1 + L/
(ω)
. (18)

C. Wave-number decomposition of the transmission function

At each frequency ω, there are typically multiple prop-
agating phonon modes with different polarizations and wave
vectors. These degenerate modes may have different mean free
paths due to the different probabilities for the multiple scat-
tering events. Therefore the MFPs determined from Eq. (16)
correspond to an average or effective scattering length at each
frequency. To separately derive the mean free paths of different
phonon branches and to simplify the determination of the
relaxation times from the mean free paths, we decompose the
transmission function (15) into different angular wave-number
contributions.

Owing to the rotational symmetry of the nanotube, the
phonon states in a (n,n) nanotube can be labeled by their
angular wave number kθ ∈ {−n/2 + 1, . . . ,n/2} [49,50] (we
assume throughout that n is even). The label kθ signifies
the dependence of the phonon amplitude u ∼ exp(ikθ θ ) on
the azimuthal angle θ along the tube circumference. The
decomposition of the transmission function into kθ compo-
nents relies on decomposing the spectral heat current into
its angular wave-number components as q(ω) = ∑

kθ
q̃ (ω,kθ ).

This procedure, outlined in Appendix B, is similar to the one
presented in Ref. [51], where the authors decomposed the
transmission function in terms of the in-plane wave vectors at
solid-solid interfaces. There are, however, some differences
arising from the fact that that the tubes exhibit rotational
invariance instead of translational invariance.

From the decomposed spectral current, the wave-vector
decomposed transmission function is obtained as

T (ω,kθ ) = q̃ (ω,kθ )

kB	T
. (19)

The wave-number-decomposed mean free paths 
(ω,kθ ) can
then be determined from the formula analogous to Eq. (16):

T (ω,kθ ) = M(ω,kθ )

1 + L/
(ω,kθ )
. (20)
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Here, M(ω,kθ ) is the number of modes for given ω and
kθ , determined from the wave-number-decomposed band
structure shown below in Sec. III C for a (10,10) nanotube.

III. NUMERICAL RESULTS

A. Molecular dynamics setup

For the numerical results, we study thermal conduction in
a single-walled CNT using the computational NEMD setup
schematically depicted in Fig. 1. To generate the heat current
through the tube, the atoms located within the distance Lbath

from the left and right ends of the tube are coupled to hot
and cold Langevin heat baths at temperatures T + 	T/2 and
T − 	T/2, respectively. Two left and right-most translational
unit cells are maintained at fixed positions to prevent large
deformations and moving of the tube. The setup eliminates
the contact resistance between the tube and the heat baths
when the bath coupling time constant τbath is small and Lbath

is large [38], ensuring that the spectral heat current is only
limited by the internal conductance of the nanotube and does
not depend on τbath and Lbath.

The numerical results will be calculated for an armchair
CNT with (10,10) chirality. The diameter of the (10,10) tube
is d = 1.36 nm. The optimized Tersoff potential [52] is used
for modeling the interatomic interactions. The simulation time
step is 0.5 fs, the duration of the data collection run tsimu =
25 ns, the bath coupling time constant is chosen as τbath = 1 ps
and the length of the thermalized regions Lbath = 36 nm. The
mean bath temperature is fixed at T = 300 K and the values
of temperature bias 	T are 	T = 60 K, 	T = 100 K, and
	T = 200 K for L � 800 nm, L ∈ {1,2} μm, and L = 4 μm,
respectively. We have checked that the used values for 	T

are small enough to keep heat transfer in the linear regime by
confirming that the transmission functions remain practically
unchanged when the bias in reduced. The simulations are
performed using the LAMMPS simulation package [53,54].

We calculate the spectral heat current (13)–(14) across the
cross-section located at the middle of the tube, depicted by the

Umklapp
scattering

Normal
scattering

FIG. 1. (Color online) Schematic illustration of the NEMD setup
and phonon-phonon scattering processes. Thermal current in a CNT
is generated by coupling regions of length Lbath to Langevin heat baths
at temperatures T + 	T/2 and T − 	T/2 at the left and right ends
of the tube, respectively. Inside the unthermalized region of length L,
phonons traveling between the heat baths undergo phonon-phonon
scattering processes. Whereas the normal scattering processes only
redistribute phonon energies, the umklapp processes generate thermal
resistance, giving rise to the length-dependence of the spectral heat
current q(ω) evaluated at the middle cross-section of the tube (thick
dashed line).

thick dashed line in Fig. 1. We have checked that the spectral
current is insensitive to the exact position of the cross-section
by calculating the current spectra flowing across cross-sections
located at different positions along the tube and noting that the
spectra agree. For the calculation of q(ω), the interatomic force
constants K

αβ

ij appearing in Eq. (13) are determined from the
finite-difference derivatives of the interatomic potential energy
function. In the simulation run, the velocities vα

i (t) = u̇α
i (t) of

atoms located within the potential cutoff distance from the
cross-section in the middle of the tube are sampled at intervals
	ts = 5 fs for the duration of the simulation tsimu = Nf 	ts .
The trajectories are used to evaluate the discrete Fourier
transforms

v̂α
i (ωm) = 	ts

Nf −1∑
k=0

eiωmk	ts vα
i (k	ts) (21)

at the discrete frequencies ωm = 2πm/(Nf 	ts), m =
0,1, . . . ,Nf − 1. The discrete Fourier transforms are then used
to calculate the spectral heat current [Eqs. (13) and (14)]
flowing across the middle cross-section. The obtained sharply
fluctuating spectral heat current is smoothened by convolving
with a Gaussian window with standard deviation 	f = 0.1
THz. We have checked that the anharmonic contribution to
the spectral heat current, disregarded in Eq. (13), is negligible
by comparing the integral of Eq. (13) to the total heat current
Q (determined from the work done by the heat baths) and
confirming that the values agree up to statistical accuracy.

B. Spectral transmission and mean free paths

Figure 2 shows the transmission function (15) for four
different tube lengths L = 0.5 nm, 50 nm, 200 nm, and 1
μm. In the shortest tube, the unthermalized part of the tube
consists of only two translational unit cells, corresponding to
the length L ≈ 0.5 nm. The transmission through such a short
tube is, as expected, practically equal to the ballistic value
M(ω), the number of propagating modes in a (10,10) CNT

Frequency (THz)
0 10 20 30 40 50

T
(ω

)

0

10

20

30

40
Ballistic
L=0.5 nm
L=50 nm
L=200 nm
L=1 μm

FIG. 2. (Color online) Spectral transmission function T (ω) =
q(ω)/(kB	T ) for various tube lengths at T = 300 K, determined
from the NEMD simulations. As expected, increasing the tube length
reduces the transmission. For L = 0.5 nm, the spectral conductance
is very close to the ballistic value M(ω) determined by counting the
number of propagating modes from the phonon band structure of
Fig. 6.
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Frequency (THz)
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κ
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) 
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60
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L=50 nm
L=200 nm
L=600 nm
L=1 μm

FIG. 3. (Color online) Spectral thermal conductivity κ(ω) =
q(ω)L/(A	T ) for various tube lengths at T = 300 K, determined
from the NEMD simulations. The absolute contribution of high
frequencies (f � 15 THz) has converged as a function of length for
L = 1 μm due to the short mean free paths. The absolute contribution
of low-frequency vibrations, on the other hand, increases because of
the (partially) ballistic transport.

(black, solid line), showing that the heat current flowing in the
tube is only limited by the number of propagating modes and
not by contact resistance to heat baths.

As the tube length is increased to L = 50 nm, the transmis-
sion function decreases significantly due to phonon-phonon
scattering. The decrease in the transmission is especially strong
in the high frequencies due to the large available phase-space
for phonon-phonon scattering and the small group velocity.
For f � 5 THz, the transmission is still nearly equal to the
ballistic value for L = 50 nm, suggesting that MFP in this
frequency range is longer than 50 nm. For L = 1 μm, the
transmission is close to ballistic below 1 THz, implying that
such low-frequency modes can propagate ballistically even
through a 1-μm-long tube.

Figure 3 shows the spectral decomposition (17) of thermal
conductivity for various tube lengths. In the shortest tubes, the
spectral conductivity increases as a function of tube length in
the whole frequency range due to ballistic phonon transport.
Once the tube length exceeds the mean free path, phonon
transport becomes more diffusive and the spectral conductivity
eventually converges. In Fig. 3, this convergence can be
observed for the longest tubes for f � 12 THz, suggesting
that the MFPs in this frequency range are markedly below 600
nm. At low frequencies, the conductivity still significantly
increases, suggesting that the MFPs are in the micrometer
range.

The MFPs obtained by fitting 
(ω) to Eq. (16) are shown
in Fig. 4. The inset demonstrates the fitting procedure, where
M(ω)/T (ω) has been calculated for tube lengths L = 0.5 nm,
200 nm, 400 nm, 600 nm, 800 nm, 1 μm, 2 μm, and 4 μm. The
values of 
(ω) are obtained from the inverse slope of the linear
fit to the data points and they are independent of the tube length.
The shaded regions in Fig. 4 reflect the 92.5% confidence
interval for the slope. Figure shows that the MFP at high
frequencies f > 20 THz is around 
 ∼ 10–100 nm, reflecting
the strong reduction of the transmission in this frequency range
for a tube of length L = 200 nm. At low frequencies, however,

0.5 1 2 5 10 20 40
10 1

10 2

10 3

10 4

Frequency (THz)

Λ
(ω

) 
(n

m
)

L (nm)
0 250 500 750 1000

M
(ω

)/
T

(ω
)

1

2

3

4

Fit Λ(ω) ω
-0.97

f=1 THz

f=5 THz

f=10 THz

FIG. 4. (Color online) Log-log plot of the mean free path 
(ω) at
T = 300 K. The inset shows the scaled inverse transmission functions
M(ω)/T (ω) as a function of tube length L. The mean free paths
are determined from the inverse slopes of the least-square linear
fits (dashed, black lines in the inset) calculated using an automated
numerical routine at each frequency. The shaded regions in the main
figure correspond to the 92.5% confidence interval for the slope.
Below 0.25 THz, the confidence interval is very large (not shown)
due to numerical uncertainties, inhibiting the reliable determination
of mean free paths for very small frequencies.

MFP is longer and exceeds one micrometer below 2.9 THz,
reaching 
(ω) ≈ 25 μm for f = 0.25 THz. Between 1 THz
and 18 THz, the MFP can be seen to scale as 
(ω) ∼ ω−0.97.

To see how the long mean free paths of Fig. 4 affect the
conductivity, Fig. 5 shows TC κ = QL/(A	T ) determined
from NEMD simulations as a function of tube length L. The
total average heat current Q can be determined either by
integrating the spectral heat current q(ω) over the positive
frequencies or from the average power exchange with the

L (μm)
10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3

κ
 (

W
/m

K
)

0

500

1000

1500

2000

2500

κ
high-f

NEMD
Λ

low-f
(ω) ω-1

Λ
low-f

(ω)=25 μm

FIG. 5. (Color online) Thermal conductivity in semilogarithmic
scale. NEMD results (circles) are compared to the estimates κ =
κlow-f + κhigh-f and κ = κhigh-f for two different forms of κlow-f . Here,
κlow-f and κhigh-f are, respectively, the contributions of frequencies
below and above 0.25 THz to the integral of Eq. (18). The dash-
dotted line includes only the high-frequency contribution calculated
numerically by using the MFP data of Fig. 4. The low-frequency
contribution has been calculated analytically assuming either that

(ω) ∝ ω−1 or 
(ω) = 25 μm for low frequencies.
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heat baths. Figure shows that TC increases as a function
of tube length L even up to L = 4 μm, the longest simu-
lated tube length. The spectral decomposition (17) of TC shows
that the low-frequency phonons (f � 3 THz) are primarily
responsible for the increase of conductivity in the longest
simulated tubes (not shown).

Because simulations for long tubes are very time-
consuming, we have estimated TC for arbitrary L by using
the MFPs shown in Fig. 4 and the spectral decomposition (18)
of TC. Figure 5 also illustrates how the low [0,0.25] THz and
high [0.25,∞) THz frequency parts of the integral contribute to
the TC by separately showing the high-frequency contribution
κhigh-f and the total κ = κlow-f + κhigh-f , where MFP in κlow-f

has been assumed to scale as 
(ω) ∝ ω−1 or 
(ω) = 25 μm.
The decomposition is discussed in more detail in Appendix A.
The conductivity κhigh-f due to high-frequency phonons
predicts the conductivity very well for all the simulated tube
lengths, but the contribution of the low-frequency component
κlow-f determines the scaling of TC for longer lengths. This
contribution depends sensitively on the exact spectral form of
low-frequency MFP, which we cannot extract reliably from
the current simulations. If 
(ω) scales as 
(ω) ≈ v/ω for
ω → 0+, TC diverges logarithmically. If MFP diverges more
slowly or tends to a constant, κ converges as shown in Fig. 5.
We note that although TC of one-dimensional chains is known
to diverge following a power-law [55], it is unknown if CNTs
(or other physical systems) are truly one-dimensional in this
respect. More experiments and simulations for longer tubes
are still needed to settle the length-scaling of TC in long tubes.

C. Wave-number decomposition and relaxation times

We now turn to the calculation of the transmission functions
and mean free paths for different angular wave numbers
kθ . The phonon band structure of a (10,10) nanotube has
been calculated earlier by Ong and Pop [56] for different
kθ from the spectral energy density. For completeness, we
show the decomposed band structure in Fig. 6, calculated here
directly by determining the spatial Fourier transform of the
wave-number-decomposed force constant matrix (defined in
Appendix B) along the tube axis and diagonalization. As
shown earlier [49,50], the longitudinal acoustic (LA) and
twist (TW) modes, which have linear dispersion ω ∼ kx for
small wave vector kx , are constant in amplitude along the
tube circumference and therefore belong to the kθ = 0 branch.
The flexural (F) modes, which obey the quadratic dispersion
law ω ∼ k2

x at small wave vectors, can be seen to belong to the
kθ = ±1 branches. By separately calculating the transmissions
T (ω,kθ = 0) andT (ω,kθ = 1) from Eq. (19), we can therefore
separately study the damping of linear and quadratic modes.

The MFPs 
(ω,kθ = 0) are shown in Fig. 7(a). To
save computational resources, we calculated the decomposed
transmission functions T (ω,kθ ) (shown for selected lengths in
Appendix B) for a single length L = 1 μm and determined
MFP directly from Eq. (20) instead of performing calculations
for multiple lengths and performing linear fitting as above.
The simulation time duration was increased to tsimu = 100 ns
to enhance the statistical accuracy, allowing for reducing the
width of the Gaussian smoothing window to 	f = 0.05 THz
for better resolution at low frequencies. Figure 7(a) shows
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FIG. 6. (Color online) Wave-number-decomposed low-freque-
ncy band structure of a (10,10) CNT calculated using the optimized
Tersoff potential [52]. At low frequencies, the longitudinal acoustic
(LA) and twist (TW) modes with kθ = 0 have linear dispersion. The
flexural (F) mode with quadratic dispersion is doubly degenerate,
with the two branches corresponding to kθ = ±1. The wave vector
kx along the tube axis is scaled by π/acell, where acell = √

3aCC and
aCC is the nearest neighbor carbon-carbon distance.

that the MFPs of LA and TW modes are strongly frequency-
dependent at low frequencies and extend up to 10 μm.

To compare our results to the phonon lifetimes determined
from EMD simulations, we also show the frequency-dependent
relaxation time τ (ω,kθ ) = 
(ω,kθ )/v(ω,kθ ) in Fig. 7(b).
Because there are typically multiple phonon branches (index
by integer p) propagating at each ω and kθ , one needs to
choose which group velocity vp(ω,kθ ) to use in calculating
τ (ω,kθ ). We choose to use the maximum group velocity
vmax(ω,kθ ) = maxp vp(ω,kθ ) as the group velocity v(ω,kθ ) at
each frequency ω. We have checked that very similar results
would be obtained by employing the average group velocity at
each frequency ω in the calculation of τ (ω,kθ ).

Figure 7(b) shows that the relaxation time for kθ = 0
decreases linearly in the log-log axis as a function of frequency
for f � 0.6 THz. Linear regression delivers the fit τ (ω,kθ =
0) ∼ ω−1.23 (dashed line). Below f � 0.6 THz, however, the
power-law breaks down, suggesting that the divergence does

0 5 10 15 20
10

2

10
3

10
4

Λ
(ω

,k
θ=

0)
 (

nm
)

Frequency (THz)

Fit Λ(ω)~v
max

(ω)ω−1.23

(a)

0.5 1 2.5 5 10 20
10

1

10
2

10
3

Frequency (THz)

τ 
(p

s)

(b)

Fit τ(ω) ∝ ω−1.23

FIG. 7. (Color online) (a) Mean free path 
(ω,kθ ) for kθ = 0.
Below 5 THz, only the acoustic LA and TW modes can be excited
(see Fig. 6). The mean free path has been determined from Eq. (20)
for L = 1 μm. The relaxation time τ (ω,kθ ) shown in (b) is well fitted
by the power-law τ (ω,kθ = 0) ∼ ω−1.23 (dashed line).
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FIG. 8. (Color online) (a) Mean free path 
(ω,kθ ) for kθ = 1,
corresponding solely to the flexural (F) mode below f � 3 THz (see
Fig. 6). The mean free path has been determined from Eq. (20) for
L = 1 μm. The relaxation time τ (ω,kθ = 1) shown in (b) is well
fitted by the power-law τ (ω,kθ = 1) ∼ ω−1.08 (dashed line) above
0.2 THz.

not extend all the way to ω → 0+. Because of the difficulties in
determining the mean free paths at the very low frequencies, we
cannot, however, certainly conclude if the break-down of the
power-law is a physical phenomenon or a numerical artefact.

Figure 8 shows the MFP 
(ω,kθ ) and the relaxation time
τ (ω,kθ ) for the angular wave number kθ = 1, corresponding
to the F mode at low frequency. Below 10 THz, the relax-
ation time τ (ω,kθ = 1) follows the power-law τ (ω,kθ = 1) ∼
ω−1.08 down to f ≈ 0.2 THz. Below 0.2 THz, the power-law
seems to break down, but because the low-frequency MFPs
are prone to numerical uncertainties, we cannot rule out the
possibility that the relaxation time of the flexural mode could
actually diverge.

The found scaling laws for τ (ω,kθ ) differ from the
traditional umklapp scattering lifetime τU (ω) ∼ ω−2, which
has been applied in multiple works to estimate the length-
dependence of TC in CNTs [45,57,58], but which may not
be applicable for CNTs due to the strict selection rules for
phonon-phonon scattering [23,24]. EMD simulations [33]
have suggested τ (ω) ∼ ω−1.1 scaling for the TW phonon
lifetime in a (10,10) tube, which is close to τ (ω,kθ = 0) ∼
ω−1.23 we found from NEMD. On the other hand, the
same equilibrium simulations also predict τ (ω) ∼ ω−2 for the
flexural (F) mode, in contrast to τ (ω,kθ = 1) ∼ ω−1.08 found
from NEMD.

These differences demonstrate that the relaxation times
determined from NEMD are not directly comparable to the
relaxation times determined from EMD or first-principles
calculations: the latter methods reflect the total scattering
rate in thermal equilibrium, neglecting the different roles
of normal and umklapp processes in generating thermal
resistance and their complicated interplay in nonequilibrium
situations. Considering that thermal transport is inherently a
nonequilibrium process, we expect that the relaxation times
determined from the NEMD simulations are the actually
relevant scattering times that can be used to make predictions
of, say, the length-dependence of TC. Quantum effects, which
are expected to reduce the scattering rates particularly at low
temperatures, could also be partially included in the NEMD

method by replacing the classical heat baths employed in this
work by quantum heat baths [59].

IV. CONCLUSION

We have determined the frequency-dependent transmission
function and phonon mean free paths in carbon nanotubes
from nonequilibrium molecular dynamics simulations. The
calculations relied on determining the spectral heat current
for different tube lengths. Because our simulations exclude
both boundary and impurity scattering, the MFPs reflect the
scattering length in infinitely long, pristine tubes. Our results
showed that the MFPs are approximately proportional to ω−0.97

over a wide range of frequencies and exceed 10 μm for the
low-frequency (f < 0.5 THz) phonons. This leads to a thermal
conductivity that increases as a function of tube length even
in tubes as long as 4 μm. The determined MFPs can be used
to accurately predict the thermal conductivity of tubes shorter
than 4 μm and they also provide insight into the conductivity of
longer tubes. Relaxation times of selected phonon modes were
shown to obey power-laws as a function of frequency, with
generally different exponents than found using equilibrium
simulations.

The presented methods for determining the contributions
of different vibrational frequencies to thermal transfer are
expected to be very useful in thermal engineering of carbon
nanotube devices. Such calculations can be expected to im-
prove, for example, the efficiency of thermoelectric materials
by guiding the engineering process aiming at enhancing the
contact to the heat source and sink. The method can also
deliver transparent picture of the effect of nonlinearities on
thermal transfer, which is vital in enhancing the performance
of nonlinear thermal devices such as thermal diodes [17]. More
efficient design of such nonlinear devices could eventually
enable information processing using phonons [60].
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APPENDIX A: SPECTRAL DECOMPOSITION AND THE
LENGTH-DEPENDENCE OF THERMAL CONDUCTIVITY

In this Appendix, we discuss the separation of the thermal
conductivity (TC) into low and high-frequency components
in more detail. As stated in Sec. III B, we separate κ =
QL/(A	T ) into its low- and high-frequency components as
κ = κlow-f + κhigh-f by using the spectral decomposition (18):

κlow-f = kBL

A

∫ ωc

0

dω

2π

M(ω)

1 + L/
(ω)
(A1)

and

κhigh-f = kBL

A

∫ ωmax

ωc

dω

2π

M(ω)

1 + L/
(ω)
. (A2)
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Here, ωc = 2πfc is the cutoff frequency between the low and
high frequencies and ωmax = 2π × 50 THz is the maximum
vibrational frequency. The long-L limit of the high-frequency
contribution κhigh-f is simple to evaluate, because 
(ω)
obtained from NEMD simulations is bounded from above
in the integration range ωc � ω � ωmax. Therefore, for L 
maxω∈[ωc,ωmax] 
, the high-frequency contribution converges to
the value

κhigh-f = kB

A

∫ ωmax

ωc

dω

2π
M(ω)
(ω). (A3)

The long-L limit of the low-frequency part can be similarly
evaluated if MFP is bounded from above. If this is not the
case and MFP diverges at low frequencies as 
(ω) = bω−η

with η > 0, one can calculate the asymptotic behavior of the
low-frequency part (A1) by choosing the cutoff small enough
(e.g. fc = 0.5 THz) so that only the four acoustic modes can be
excited for f < fc so that M(ω) = 4. Then Eq. (A1) becomes
(for η �= 1)

κlow-f = 4kBL

A

∫ ωc

0

dω

2π

1

1 + Lωη/b
(A4)

= 4kBLωc

2πA
2F1

(
1,

1

η
,1 + 1

η
, − ωη

c

L

b

)
(A5)

= 4kB

2πA
�

(
1 + 1

η

)[
b1/η�

(
1 − 1

η

)
L1−1/η

+ bω1−η
c �

(
1

η
− 1

)
�

(
1

η

)−2]
+ O

(
1

L

)
, (A6)

where 2F1 is the hypergeometric function [61], written in the
third line using its asymptotic expansion for large L and the
gamma function. For η = 1, the integral (A1) is

κlow-f = 4kBb

A
ln

(
1 + Lωc

b

)
. (A7)

FIG. 9. (Color online) (a) Schematic description of the division
of the x-translational unit cell in a (4,4) armchair CNT into four
minimal unit cells (rectangles) labeled by the index l. The index
m ∈ {1,2,3,4} specifies the atom inside the minimal unit cell, as
shown in (b). Note that we have plotted the CNT in two dimensions
by choosing the vertical axis to correspond to be the azimuthal angle
θ around the tube. The horizontal x axis is the tube axis.

Equations (A6) and (A7) then directly lead to the conclusion
that TC converges for η < 1, diverges as κ(L) ∝ L1−1/η

for η > 1 and diverges logarithmically for η = 1. Similar
connection between the low-frequency scattering rates and
the divergence of TC has been earlier proposed using mode-
coupling theory [39] and by treating the finite length of the
tube as a source of boundary scattering [22].

APPENDIX B: DERIVATION OF THE WAVE-NUMBER
DECOMPOSITION OF THE TRANSMISSION FUNCTION

We outline here the decomposition of the spectral heat cur-
rent q(ω) into angular wave-number components q(ω,kθ ) for
an (n,n) nanotube. We assume throughout that the velocities
and the force constant matrix are represented in cylindrical
coordinates to respect the rotational symmetry of the tube.
The x-translational unit cell, which can be replicated along
the tube axis to produce the whole CNT, contains 4n atoms.
This unit cell can be divided into n minimal translational unit
cells, which repeat along the circumference as shown in Fig. 9.
Each atom in the x-translational unit cell can be labeled by
its indices l ∈ {1,2, . . . ,n} and m ∈ {1,2,3,4}, which specify
the minimal unit cell and the atom index inside the minimal
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FIG. 10. (Color online) Decomposed transmission function
T (ω; kθ ) for (a) kθ = 0 and (b) kθ = 1. At low frequencies, kθ = 0
corresponds to the LA and TW modes, whereas kθ = 1 corresponds
to the flexural (F) mode.
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cell, respectively. We denote the discrete Fourier transformed
velocity vectors of the atoms belonging to the unit cells at the
left and right sides of the imaginary plane separating the unit
cells by v̂L

l,m,α(ω) and v̂R
l,m,α(ω), respectively, where the greek

index α stands for the co-ordinates x, y and z. Each minimal
unit cell l is in angle θl = 2πl/n + θ0 with respect to the
positive y axis, where θ0 is a constant angle depending on the
chosen orientation of the positive y axis. The transformation
of the velocities to the angular wave-number basis is then

ṽL
kθ ,m,α(ω) =

∑
l∈{1,...,n}

eikθ θl v̂L
l,m,α(ω), (B1)

and similarly for v̂R . The force constant matrix K specifying
the force constants between the atoms located in these
neighboring unit cells can be similarly transformed into the
angular wave-number basis as

K̃
kθ

m1,α;m2,β
=

∑
l1∈{1,...,n}

eikθ (θl1 −θl2 )Kl1,m1,α;l2,m2,β , (B2)

where l2 is arbitrary. With these decompositions at hand, it
is straightforward to show that the decomposed spectral heat

current is

q̃ (ω,kθ ) = − 2

ωntsimu

∑
m1,m2

∑
α,β

× Im
〈
ṽL

kθ ,m1,α
(ω)∗K̃kθ

m1,α;m2,β
ṽR

kθ ,m2,β
(ω)

〉
. (B3)

Figure 10 shows the wave-number-decomposed transmis-
sion function (19) for (a) kθ = 0 and (b) kθ = 1. For kθ = 0,
only the LA and TW modes can be excited at low frequencies,
so the ballistic transmission in Fig. 10(a) is therefore equal to
two at low frequencies. For L = 200 nm, the low-frequency
transmission is close to two due to the long mean free path of
LA and TW modes. For L = 1 μm, however, the transmission
at f � 5 THz is already significantly smaller, suggesting that
MFP is of the order of micrometer. The MFP can also be seen
to decrease as a function of frequency.

For kθ = 1 [Fig. 10(b)], only the flexural F mode with
quadratic dispersion ω ∼ k2

x can be excited below f < 3 THz.
The ballistic transmission is therefore equal to unity. Again, the
transmission at low frequencies remains close to the ballistic
value even for L = 200 nm at T = 300 K. For L = 1 μm,
however, the flexural mode is visibly dampened, with the
damping increasing as a function of frequency.
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[47] K. Sääskilahti, J. Oksanen, and J. Tulkki, Phys. Rev. E 88,
012128 (2013).
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