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Finding the quantum thermoelectric with maximal efficiency and minimal
entropy production at given power output
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We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and
consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations
of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014)]. It shows how
to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii)
the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal
entropy production at that power output. These quantities are of quantum origin since they depend on system size
over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides
with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental
lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible
for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in
detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in
particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the
system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.
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I. INTRODUCTION

Thermoelectric effects in nanostructures [1–4] and
molecules [5,6] are of great current interest. They might
enable efficient electricity generation and refrigeration [7–9],
and could also lead to new types of sub-Kelvin refrigeration,
cooling electrons in solid-state samples to lower temperatures
than with conventional cryostats [1], or cooling fermionic
atomic gases [10–12]. However, they are also extremely
interesting at the level of fundamental physics since they
allow one to construct the simplest possible quantum machine
that converts heat flows into useful work (electrical power
in this case) or vice versa. This makes them an ideal case
study for quantum thermodynamics, i.e., the thermodynamics
of quantum systems [13].

The simplest heat engine is a thermocouple circuit, as
shown in Fig. 1. It consists of a pair of thermoelectrics with
opposite thermoelectric responses (filled and open circles)
and a load, connected in a ring. Between each such circuit
element is a big reservoir of electrons, the reservoir on the
left (L) is hotter than the others TL > TR , so heat flows from
left to right. One thermoelectric’s response causes an electric
current to flow in the opposite direction to the heat flow (filled
circle), while the other’s causes an electric current to flow in
the same direction as the heat flow (open circle). Thus, the
two thermoelectrics turn heat energy into electrical work: a
current flow I through the load. The load is assumed to be
a device that turns the electrical work into some other form
of work: it could be a battery charger (turning electrical work
into chemical work) or a motor (turning electrical work into
mechanical work).

The same thermocouple circuit can be made into a refrig-
erator simply by replacing the load with a power supply. The
power supply does work to establish the current I around the
circuit, and this current through the thermoelectrics can “drag”
heat out of reservoir L. In other words, the electrical current

and heat flow are the same as for the heat engine, but now
the former causes the latter rather than vice versa. Thus, the
refrigerator cools reservoir L, so TL < TR .

The laws of classical thermodynamics inform us that
entropy production can never be negative, and maximal
efficiency occurs when a system operates reversibly (zero
entropy production). Thus, it places fundamental bounds on
heat-engine and refrigerator efficiencies, known as Carnot
efficiencies. In both cases, the efficiency is defined as the
power output divided by the power input. For the heat engine,
the power input is the heat current out of the hotter reservoir
(reservoir L) JL and the power output is the electrical power
generated Pgen. Thus, the heat-engine (eng) efficiency is

ηeng = Pgen/JL. (1)

This efficiency can never exceed Carnot’s limit

ηCarnot
eng = 1 − TR/TL, (2)

where we recall that we have TL > TR .
For the refrigerator the situation is reversed, the load is

replaced by a power supply, and the power input is the electrical
power that the circuit absorbs from the power supply Pabs. The
power output is the heat current out of the colder reservoir
(reservoir L) JL. This is called the cooling power because it is
the rate at which the circuit removes heat energy from reservoir
L. Thus, the refrigerator (fri) efficiency is

ηfri = JL/Pabs. (3)

This efficiency is often called the coefficient of performance
or COP. This efficiency can never exceed Carnot’s limit

ηCarnot
fri = (TR/TL − 1)−1, (4)

where we recall that TL < TR (opposite of heat engine).
Strangely, the laws of classical thermodynamics do not

appear to place a fundamental bound on the power output
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FIG. 1. (Color online) (a) The simplest heat engine is a thermo-
couple circuit made of two thermoelectrics (filled and open circles).
The filled and open circles are quantum systems with opposite
thermoelectric responses, an example could be that in (b). For a
heat engine, we assume TL > TR , so heat flows as shown, generating
a current I , which provides power to a load (battery charger, motor,
etc.) that converts the electrical power into some other form of work.
The same thermocouple circuit can act as a refrigerator, if one replaces
the load with a power supply that generates the current I . This induces
the heat flow out of reservoir L, which thereby refrigerates reservoir
L, so TL < TR . Note that in both cases the circuit works because the
two thermoelectrics are electrically in series but thermally in parallel.
In (b), N indicates the number of transverse modes in the narrowest
part of the quantum system.

associated with reversible (Carnot efficient) operation. Most
textbooks say that reversibility requires “small” power output,
but rarely define what “small” means. The central objective
of Ref. [14] was to find the meaning of “small” and find a
fundamental upper bound on the efficiency of an irreversible
system in which the power output was not small.

Reference [14] did this for the class of quantum ther-
moelectrics that are well modeled by a scattering theory,
which enables one to straightforwardly treat quantum and
thermodynamic effects on an equal footing. It summarized
two principal results absent from classical thermodynamics.
First, there is a quantum bound (qb) on the power output,
and no quantum system can exceed this bound (open circles
in Fig. 2). Second, there is a upper bound on the efficiency
at any given power output less than this bound (thick black
curves in Fig. 2). The efficiency at given power output can
only reach Carnot efficiency when the power output is very
small compared to the quantum bound on power output. The
upper bound on efficiency then decays monotonically as one
increases the power output towards the quantum bound. The
objective of this paper is to explain in detail the methods used
to derive these results, along with the other results that were
summarized in Ref. [14].

A. Contents of this paper

This paper provides detailed derivations of the results
in Ref. [14]. The first part of this paper is an extended
introduction. Section II is a short review of the relevant

FIG. 2. (Color online) The thick black curves are qualitative
sketches of the maximum efficiency as a function of heat-engine
power output (main plot), or refrigerator cooling power (inset), with
the shaded regions being forbidden. Precise plot of such curves for
different temperature ratios TR/TL are shown in Fig. 9. The colored
loops (red, gray, and blue) are typical sketches of the efficiency versus
power of individual heat engines as we increase the load resistance
(direction of arrows on loop). The power output Pgen = IV vanishes
when the load resistance is zero (for which V = 0) or infinite (for
which I = 0), with a maximum at an intermediate resistance (open
square). The curves have a characteristic loop form [2], however, the
exact shape of the loop depends on many system-specific details, such
as charging effects. The dashed blue loop is for a typical nonoptimal
system (always well below the upper bound), while the solid red
and gray loops are for systems which achieve the upper bound for
a particular value of the load. The star marks the Curzon-Ahlborn
efficiency.

literature. Section III discusses how we define temperature,
heat, and entropy. Section IV recalls the connection between
efficiency and entropy production in any thermodynamic
machine. Section V reviews the nonlinear scattering theory,
which Sec. VII uses to make very simple overestimates of a
quantum system’s maximum power output.

The second part of this paper considers how to optimize
a system which is free of relaxation and has no phonons
or photons. Section VIII gives a hand-waving explanation
of the optimal heat engine, while Sec. IX gives the full
derivation. Section X gives a hand-waving explanation of the
optimal refrigerator, while Sec. XI gives the full derivation.
Section XII proposes a system which could in principle come
arbitrarily close to the optimal properties given in Secs. IX
and XI. Section XIII considers many quantum thermoelectrics
in parallel.

The third part of this paper considers certain effects
neglected in the above idealized system. Section XIV adds the
parasitic effect of phonon or photon carrying heat in parallel to
the electrons. Section XV treats relaxation within the quantum
system.

II. COMMENTS ON EXISTING LITERATURE

There is much interest in using thermoelectric effects to
cool fermionic atomic gases [10–12], which are hard to cool
via other methods. This physics is extremely similar to that in
this work, but there is a crucial difference. For the electronic
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systems that we consider, we can assume the temperatures to
be much less than the reservoir’s Fermi energy, and so take
all electrons to have the same Fermi wavelength. In contrast,
fermionic atomic gases have temperatures of order the Fermi
energy, so the high-energy particles in a reservoir have a
different wavelength from the low-energy ones. Thus, our
results do not apply to atomic gases, although our methodology
does [12].

A. Nonlinear systems and the figure of merit ZT

Engineers commonly state that wide-ranging applications
for thermoelectrics would require them to have a dimensionless
figure of merit ZT greater than three. This dimensionless
figure of merit is a dimensionless combination of the linear-
response coefficients [7] ZT = T GS2/�, for temperature T ,
Seebeck coefficient S, electrical conductance G, and thermal
conductance �. Yet, for us, ZT is just a way to characterize
the efficiency, via

ηeng = ηCarnot
eng

√
ZT + 1 − 1√
ZT + 1 + 1

,

with a similar relationship for refrigerators. Thus, someone
asking for a device with a ZT > 3 actually requires one with
an efficiency of more than one-third of Carnot efficiency. This
is crucial because the efficiency is a physical quantity in linear
and nonlinear situations, while ZT is only meaningful in the
linear-response regime [15–20].

Linear-response theory rarely fails for bulk semiconductors,
even when TL and TR are very different. Yet, it is completely
inadequate for the quantum systems that we consider here.
Linear-response theory requires the temperature drop on the
scale of the electron relaxation length lrel (distance traveled
before thermalizing) to be much less than the average tem-
perature. For a typical millimeter-thick bulk thermoelectric
between a diesel motor’s exhaust system (TL � 700 K) and its
surroundings (TR � 280 K), the relaxation length (inelastic
scattering length) is of order the mean-free path, typically
1–100 nm. The temperature drop on this scale is tens of
thousands of times smaller than the temperature drop across
the whole thermoelectric. This is absolutely tiny compared
with the average temperature, so linear-response [21] works
well, even though (TL − TR)/TL is of order one.

In contrast, for quantum systems (L � lrel), the whole
temperature drop occurs on the scale of a few nanometers
or less, and so linear-response theory is inapplicable whenever
(TL − TR)/TL is not small.

B. Carnot efficiency

A system must be reversible (create no entropy) to have
Carnot efficiency; proposals exist to achieve this in bulk [21]
or quantum [22–24] thermoelectric. It requires that electrons
only pass between reservoirs L and R at the energy where the
occupation probabilities are identical in the two reservoirs [22].
Thus, a thermoelectric requires two things to be reversible.
First, it must have a δ-function-like transmission [21–25],
which only lets electrons through at energy ε0. Second [22],
the load’s resistance must be such that e−V = ε0(1 − TR/TL),
so the reservoirs’ occupations are equal at ε0 (see Fig. 4).

By definition, this means the current vanishes, and thus
so does the power output Pgen. However, one can see how
Pgen vanishes by considering a quantum system which lets
electrons through in a tiny energy window � from ε0 to
ε0 + � (see Fig 5). When we take �

/
(kBTL,R) → 0, one has

Carnot efficiency, however, we will see [leading-order term in
Eq. (48)] that

Pgen ∝ 1

�
�2, (5)

which vanishes as �
/

(kBTL,R) → 0.

C. Heat-engine efficiency at finite power output
and Curzon-Ahlborn efficiency

To increase the power output beyond that of a reversible
system, one has to consider irreversible machines which
generate a finite amount of entropy per unit of work generated.
Curzon and Ahlborn [26] popularized the idea of studying the
efficiency of a heat engine running at its maximum power
output. For classical pumps, this efficiency is ηCA

eng = 1 −√
TL/TR , which is now called the Curzon-Ahlborn efficiency,

although already given in Refs. [27–29]. As refrigerators, these
pumps have an efficiency at maximum cooling power of zero,
although Refs. [30–33] discuss ways around this.

The response of a given heat engine is typically a “loop” of
efficiency versus power (see Fig. 2) as one varies the load on the
system [2]. For a peaked transmission function with width �

(see, e.g., Fig. 5), the loop moves to the left as one reduces �. In
the limit � → 0, the whole loop is squashed onto the Pgen = 0
axis. In linear-response language, this machine has ZT → ∞.
In this limit, the efficiency at maximum power can be very close
to that of Curzon and Ahlborn [34] (the star in Fig. 2), just as its
maximum efficiency can be that of Carnot [22] (see previous
section). However, its maximum power output is ∝e−V �/�

for small � (where V is finite, chosen to ensure maximum
power), which vanishes for � → 0, although it is much larger
than Eq. (5). Figure 2 shows that a system with larger � (such
as the red curve) operating near its maximum efficiency will
have both higher efficiency and higher power output than the
one with small � (leftmost gray curve) operating at maximum
power.

This paper shows how to derive the thick black curve
in Fig. 2, thereby showing that there is a fundamental
tradeoff between efficiency and power output in optimal
thermodynamic machines made from thermoelectrics [35]. As
such, our work overturns the idea that maximizing efficiency
at maximum power is the best route to machines with both
high efficiency and high power. It also overturns the idea
that systems with the narrowest transmission distributions
(the largest ZT in linear response) are automatically the best
thermoelectrics.

At this point, we mention that other works [36–39] have
studied efficiencies for various systems with finite-width
transmission functions, for which power outputs can be finite.
In particular, Ref. [39] considered a boxcar transmission
function, which is the form of transmission function that we
have shown can be made optimal [14].
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D. Pendry’s quantum bound on heat flow

An essential ingredient in this work is Pendry’s upper
bound [40] on the heat flow through a quantum system between
two reservoirs of fermions. He found this bound using a
scattering theory of the type discussed in Sec. V. It is a
concrete example of a general principle due to Bekenstein [41],
and the same bound applies in the presence of thermoelectric
effects [42]. The bound on the heat flow out of reservoir L

is achieved when all the electrons and holes arriving at the
quantum system from reservoir L escape into reservoir R

without impediment, while there is no back-flow of electrons
or holes from reservoir R to L. The easiest way to achieve
this is to couple reservoir L through the quantum system to a
reservoir R at zero temperature, and then ensure the quantum
system does not reflect any particles. In this case, the heat
current equals

J
qb
L = π2

6h
Nk2

BT 2
L, (6)

where N is the number of transverse modes in the quantum
system. We refer to this as the quantum bound (qb) on
heat flow because it depends on the quantum wave nature
of the electrons; it depends on N , which is given by the
cross-sectional area of the quantum system divided by λ2

F,
where λF is the electron’s Fermi wavelength. As such, J

qb
L is

ill defined within classical thermodynamics.

III. UNIQUELY DEFINING TEMPERATURE,
HEAT, AND ENTROPY

Works on classical thermodynamics have shown that the
definition of heat and entropy flows can be fraught with
difficulties. For example, the rate of change of entropy cannot
always be uniquely defined in classical continuum thermody-
namics [43–45]. Here, the situation is even more difficult since
the electrons within the quantum systems (circles in Fig. 1) are
not at equilibrium, and so their temperature cannot be defined.
Thus, it is crucial to specify the logic which leads to our
definitions of temperature, heat flow, and entropy flow.

Our definition of heat flow originated in Refs. [46–48], the
rate of change of entropy is then found using the Clausius
relation [49] (see following). To explain these quantities and
show they are unambiguous, we consider the following three-
step procedure for a heat engine. An analog procedure works
for a refrigerator.

Step 1. Reservoir L is initially decoupled from the rest of
the circuit [see Fig. 3(a)], has internal heat energy Q

(0)
L , and

is in internal equilibrium at temperature T
(0)
L . The rest of the

circuit is in equilibrium at temperature T
(0)
R with internal heat

energy Q
(0)
R . The internal heat energy is the total energy of

the reservoir’s electron gas minus the energy which that gas
would have in its ground state. As such, the internal energy
can be written as a sum over electrons and holes, with an
electron at energy ε above the reservoir’s chemical potential (or
a hole at energy ε below that chemical potential) contributing
ε to this internal heat energy. The initial entropies are then
S

(0)
i = Q

(0)
i

/
T

(0)
i for i = L,R.

Step 2. We connect reservoir L to the rest of the circuit [see
Fig. 3(b)] and leave it connected for a long time texpt. While

FIG. 3. (Color online) To implement the procedure in Sec. III,
one starts with the circuit unconnected, as in (a), one then connects
the circuit, as in (b). After a long time texpt, one disconnects the circuit,
returning to (a). The circles are the quantum thermoelectrics, as in
Fig. 1.

we assume texpt is long, we also assume that the reservoirs
are all large enough that the energy distributions within them
change very little during time texpt. Upon connecting the circuit
elements, we assume a transient response during a time ttrans,
after which the circuit achieves a steady state. We ensure that
texpt � ttrans, so the physics is dominated by this steady state.
Even then the flow will be noisy [50] due to the fact electrons
are discrete with probabilistic dynamics. So, we also ensure
that texpt is much longer than the noise correlation time, so that
the noise in the currents is negligible compared to the average
currents.

Step 3. After the time texpt, we disconnect reservoir L from
the rest of the circuit. Again, there will be a transient response,
however, we assume that a weak relaxation mechanism within
the reservoirs will cause the two parts of the circuit to each
relax to internal equilibrium [see Fig. 3(a)]. After this, one can
unambiguously identify the temperature Ti , internal energy
Qi , and Clausius entropy Si = Qi

/
Ti of the two parts of the

circuit (for i = L,R). Since the reservoirs are large, we assume
Ti = T

(0)
i .

Thus, we can unambiguously say that the heat current out
of reservoir i averaged over the time texpt is

〈Ji〉 = (Q(0)
i − Qi

)/
texpt. (7)

For the above thermocouple, we treat the currents for each
thermoelectric separately, writing the heat current out of
reservoir L as JL + JL′ , where JL is the heat current from
reservoir L into the lower thermoelectric in Fig. 1 (the
filled circle), and JL′ is the heat current from reservoir L

into the upper thermoelectric in Fig. 1 (the open circle).
Treating each thermoelectric separately is convenient, and also
allows one to generalize the results to “thermopiles,” which
contain hundreds of thermoelectrics arranged so that they are
electrically in series, but thermally in parallel.
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The average rate of change of entropy in the circuit is
〈Ṡcircuit〉 = 〈Ṡ〉 + 〈Ṡ ′〉, where 〈Ṡ〉 is the average rate of change
of entropy associated with the lower thermoelectric in Fig. 1,
while 〈Ṡ ′〉 is that for the upper thermoelectric. Then,

〈Ṡ〉 = 〈ṠL〉 + 〈ṠR〉 = −〈JL〉/TL − 〈JR〉/TR , (8)

while 〈Ṡ ′〉 is the same with JL,JR,TR replaced by JL′ ,JR′ ,TR′ .
We neglect the entropy of the thermoelectrics and load, by
assuming their initial and final states are the same. This will
be the case if they are small compared to the reservoirs, so their
initial and final states are simply given by the temperature TR .

The nonlinear scattering theory in Ref. [51] captures
long-time average currents (usually called the dc response
in electronics), such as electrical current 〈Ii〉 and heat current
〈Ji〉 (see references in Sec. V). It is believed to be exact for
noninteracting particles, and also applies when interactions can
be treated in a mean-field approximation (see again Sec. V).
A crucial aspect of the scattering theory is that we do not
need to describe the nonequilibrium state of the quantum
system during step 2. Instead, we need that quantum system’s
transmission function, defined in Sec. V.

In this paper, we will only discuss the long-time average of
the rates of flows (not the noisy instantaneous flows), and thus
will not explicitly indicate the average; so Ii , Ji , and Ṡi should
be interpreted as 〈Ii〉, 〈Ji〉, and 〈Ṡi〉.

IV. ENTROPY PRODUCTION

There are little known universal relations between effi-
ciency, power, and entropy production, which follow trivially
from the laws of thermodynamics [52]. Consider the lower
thermoelectric in Fig. 1(a) (filled circle), with JL and JR being
steady-state heat currents into it from reservoirs L and R.
Then, the first law of thermodynamics is

JR + JL = Pgen, (9)

where Pgen is the electrical power generated. The Clausius
relation for the rate of change of total entropy averaged over
long times as in Eq. (8) is

Ṡ = −JL

TL

+ JL − Pgen

TR

, (10)

where we have used Eq. (9) to eliminate JR .
For a heat engine, we take JL to be positive, which means

TL > TR and JR is negative. We use Eq. (1) to replace JL with
Pgen/ηeng in Eq. (10). Then, the rate of entropy production by
a heat engine with efficiency ηeng(Pgen) at power output Pgen

is

Ṡ(Pgen) = Pgen

TR

(
ηCarnot

eng

ηeng(Pgen)
− 1

)
, (11)

where the Carnot efficiency ηCarnot
eng is given in Eq. (2). Hence,

knowing the efficiency at power Pgen tells us the entropy
production at that power. Maximizing the former minimizes
the latter.

For refrigeration, the load in Fig. 1 is replaced by a power
supply, the thermoelectric thus absorbs a power Pabs to extract
heat from the cold reservoir. We take reservoir L as cold (TL <

TR), so JL is positive. We replace Pgen by −Pabs in Eqs. (9)

and (10). We then use Eq. (3) to replace Pabs by JL/ηfri. Then,
the rate of entropy production by a refrigerator at cooling
power JL is

Ṡ(JL) = JL

TR

(
1

ηfri(JL)
− 1

ηCarnot
fri

)
, (12)

where the Carnot efficiency ηCarnot
fri is given in Eq. (4). Hence,

knowing a refrigerator’s efficiency at cooling power JL gives
us its entropy production, and we see that maximizing the
former minimizes the latter.

Equations (11) and (12) hold for systems modeled by
scattering theory because this theory satisfies the laws of
thermodynamics [42,53]. The rate of entropy production is
zero when the efficiency is that of Carnot, but becomes
increasingly positive as the efficiency reduces. In this paper,
we calculate the maximum efficiency for given power output,
and then use Eqs. (11) and (12) to get the minimum rate of
entropy production at that power output.

V. NONLINEAR SCATTERING THEORY

This work uses Christen and Büttiker’s nonlinear scattering
theory [51], which treats electron-electron interactions as
mean-field charging effects. References [17,18,54] added
thermoelectric effects by following works on linear response
[46–48]. Particle and heat flows are given by the transmission
function TRL(ε) for electrons to go from left (L) to right (R)
at energy ε, where TRL(ε) is a self-consistently determined
function of TL, TR , and V . In short, this self-consistency
condition originates from the fact that electrons injected
from the leads change the charge distribution in the quantum
system, which in turn changes the behavior of those injected
electrons (via electron-electron interactions). The transmission
function can be determined self-consistently with the charge
distribution, if the latter is treated in a time-independent mean-
field manner (neglecting single-electron effects). We note that
the same nonlinear scattering theory was also derived for
resonant level models [22,36] using functional renormalization
group (RG) to treat single-electron charging effects [37].

The scattering theory for the heat current is based on the
observation that an electron leaving reservoir i at energy ε is
carrying heat ε − μi out of that reservoir [48], where μi is the
reservoir’s chemical potential. Thus, a reservoir is cooled by
removing an electron above the Fermi surface, but heated by
removing an electron below the Fermi surface. It is convenient
to treat empty states below a reference chemical potential
(which we define as ε = 0) as “holes.” Then, we do not need
to keep track of a full Fermi sea of electrons, but only the holes
in that Fermi sea. Then, the heat currents out of reservoirs L

and R and into the quantum system are

JL = 1

h

∑
μ

∫ ∞

0
dε (ε − μe−VL) T

μμ

RL(ε)
[
f

μ

L (ε) − f
μ

R (ε)
]
,

(13)

JR = 1

h

∑
μ

∫ ∞

0
dε (ε − μe−VR) T

μμ

RL(ε)
[
f

μ

R (ε) − f
μ

L (ε)
]
,

(14)
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where e− is the electron charge (e− < 0), so e−Vi is the
chemical potential of reservoir i measured from the reference
chemical potential (ε = 0). The sum is over μ = 1 for
“electron” states (full states above the reference chemical
potential), and μ = −1 for “hole” states (empty states below
that chemical potential). The Fermi function for particles
entering from reservoir j is

f
μ

j (ε) = {1 + exp[(ε − μe−Vj )/(kBTj )]}−1. (15)

The transmission function T
νμ

ij (ε) is the probability that a
particle μ with energy ε entering the quantum system from
reservoir j will exit into reservoir i as a particle ν with energy
ε. We only allow ν = μ here since we do not consider electron
to hole scattering within the quantum system (only common
when superconductors are present). Interactions mean that
T

μμ

RL(ε) is a self-consistently determined function of TL, TR VL,
and VR .

The system generates power Pgen = (VR − VL)IL, so

Pgen = 1

h

∑
μ

∫ ∞

0
dε μe−(VR − VL) T

μμ

RL(ε)
[
f

μ

L (ε) − f
μ

R (ε)
]
.

(16)

It is easy to verify that Eqs. (13)–(16) satisfy the first law of
thermodynamics [Eq. (9)]. This theory assumes the quantum
system to be relaxation free, although decoherence is allowed
as it does not change the structure of Eqs. (13)–(16). Relaxation
is discussed in Sec. XV.

We define the voltage drop as V = VR − VL. Without loss
of generality, we take the reference chemical potential to be
that of reservoir L, so

VL = 0, VR = V, (17)

then JL and Pgen coincide with Eqs. (8) and (9) in Ref. [14].
Numerous works have found the properties

of thermoelectric systems from their transmission
functions TRL(ε). Linear-response examples include
Refs. [5,46–48,55–66], while nonlinear responses were
considered in Refs. [17,18,36,37,54,67–71] (see Refs. [2–4]
for recent reviews). However, here we do not ask what is
the efficiency of a given system, we ask what is the system
that would achieve the highest efficiency, and what is this
efficiency? This is similar in spirit to Ref. [21], except that we
maximize the efficiency for given power output.

We need to answer this question in the context of the mean-
field treatment of electron-electron interactions [51], in which
the transmission function for any given system is the solution
of the above-mentioned self-consistency procedure. Despite
this complexity, any transmission function (including all mean-
field interactions) must obey

0 � T
μμ

RL(ε) � N for all ε, (18)

where N is the number of transverse modes at the narrowest
point in the nanostructure (see Fig. 1). Let us assume that
this is the only constraint on the transmission function. Let us
assume that for any given TL, TR , and V , a clever physicist
could engineer any desired transmission function, so long as it
obeys Eq. (18). Presumably, they could do this either by solving
the self-consistency equations for T

μμ

RL(ε) or by experimental

trial and error. Thus, in this work, we find the T
μμ

RL(ε) which
maximizes the efficiency given solely the constraint in Eq. (18),
and get this maximum efficiency. We then rely on future
physicists to find a way to construct a system with this T

μμ

RL(ε)
(although some hints are given in Sec. XII).

VI. FROM THERMOELECTRIC OPTIMIZATION TO
THERMOCOUPLE OPTIMIZATION

The rest of this paper considers optimizing a single
thermoelectric. However, an optimal thermocouple heat en-
gine (or refrigerator) consists of two systems with opposite
thermoelectric responses (full and open circles in Fig. 1). So,
here we explain how to get the optimal thermocouple from the
optimal thermoelectric.

Suppose the optimal system between L and R (the full
circle) has a given transmission function T

μ,μ

RL (ε), which we
will find in Sec. IX. This system generates an electron flow
parallel to heat flow (so electric current is antiparallel to
heat flow, implying a negative Peltier coefficient). The system
between L and R′ (the open circle) must have the opposite
response. For this we interchange the role played by electrons
and holes compared with T

μ,μ

RL (ε), so the optimal system
between L and R′ has

T
μ,μ

R′L(ε) = T
−μ,−μ

RL (ε). (19)

If the optimal bias for the system between L and R is V

(which we will also find in Sec. IX), then the optimal bias
for the system between L and R′ is −V . Then, the heat flow
from reservoir L into R′ equals that from L into R, while the
electrical current from L into R′ is opposite to that from L into
R, and so Pgen is the same for each thermoelectric. The load
across the thermocouple (the two thermoelectrics) must be
chosen such that the bias across the thermocouple is 2V . The
condition that the charge current out of L equals that into L will
then ensure that both thermoelectrics are at their optimal bias.

In the rest of this paper we discuss power output and heat
input per thermoelectric. For a thermocouple, one simply
needs to multiply these by two, so the efficiency is unchanged
but the power output is doubled.

VII. SIMPLE ESTIMATE OF BOUNDS
ON POWER OUTPUT

One of the principal results of Ref. [14] is the quantum
bounds on the power output of heat engines and refrigerators.
The exact derivation of these bounds is given in Secs. IX A
and XI A. Here, we give simple arguments for their basic form
based on Pendry’s limit of heat flow discussed in Sec. II D.

For a refrigerator, it is natural to argue that the upper bound
on cooling power will be closely related to Pendry’s bound
[Eq. (6)]. We will show in Sec. XI A that this is the case. A
two-lead thermoelectric can extract as much as half of J

qb
L . In

other words, the cooling power of any refrigerator must obey

JL � 1

2
J

qb
L = π2

12h
Nk2

BT 2
L. (20)

Now, let us turn to a heat engine operating between a hot
reservoir L and cold reservoir R. Following Pendry’s logic, we
can expect that the heat current into the quantum system from

115425-6



FINDING THE QUANTUM THERMOELECTRIC WITH . . . PHYSICAL REVIEW B 91, 115425 (2015)

reservoir L cannot be more than J overestimate
L = π2

6h
Nk2

B(T 2
L −

T 2
R). Similarly, no heat engine can exceed Carnot’s efficiency

[Eq. (2)]. Thus, we can safely assume any system’s power
output is less than

P overestimate
gen = ηCarnot

eng J overestimate
L

= π2Nk2
B(TL + TR)(TL − TR)2

6h TL

. (21)

We know this is a significant overestimate because maximal
heat flow cannot coincide with Carnot efficiency. Maximum
heat flow requires T

μμ

RL(ε) is maximal for all ε and μ,
while Carnot efficiency requires a T

μμ

RL(ε) with a δ-function-
like dependence on ε (see Sec. II B). Nonetheless, the full
calculation in Sec. IX A shows that the true quantum bound on
power output is such that [72]

Pgen � P qb2
gen ≡ A0

π2

h
Nk2

B(TL − TR)2, (22)

where A0 � 0.0321. Thus, the simple overestimate of the
bound P overestimate

gen differs from the true bound P
qb2
gen by a factor

of (1 + TR/TL)/(6A0). In other words, it overestimates the
quantum bound by a factor between 5.19 and 10.38 (that is,
5.19 when TR = 0 and 10.38 when TR = TL). This is not bad
for such a simple estimate.

VIII. GUESSING THE OPTIMAL TRANSMISSION
FOR A HEAT ENGINE

Here, we use simple arguments to guess the transmission
function which will maximize a heat engine’s efficiency for
a given power output. We consider the flow of electrons
from reservoir L to reservoir R [the filled circle Fig. 1(a),
remembering e− < 0, so electron flow is in the opposite
direction to I ]. To produce power, the electrical current must
flow against a bias, so we require e−V to be positive, with V as
in Eq. (17). Inspection of the integrand of Eq. (16) shows that
it only gives positive contributions to the power output Pgen,
when μ[f μ

L (ε) − f
μ

R (ε)] > 0. From Eq. (15), one can show
that f

μ

L (ε) and f
μ

R (ε) cross at

ε0 = μe−V/(1 − TR/TL) (23)

(see Fig. 4). Since e−V is positive, we maximize the power
output by blocking the transmission of those electrons (μ = 1)
which have ε < ε0, and blocking the transmission all holes
(μ = −1). For μ = 1, all energies above ε0 add to the power
output. Hence, maximizing transmission for all ε > ε0 will
maximize the power output, giving Pgen = P

qb
gen. However, a

FIG. 4. (Color online) Sketch of Fermi functions f
μ

L (ε) and
f

μ

L (ε) in Eq. (15), when μe−V is positive, and TL > TR . Equation (23)
gives the point where the two curves cross ε0.

FIG. 5. (Color online) How the optimal “boxcar” transmission
changes with increasing required power output. At maximum power
output, a heat engine has ε1 = ∞ while ε0 remains finite. At maximum
cooling power, a refrigerator has ε1 = ∞ and ε0 = 0. The qualitative
features follow this sketch for all TR/TL, however, the details depend
on TR/TL (see Fig. 8).

detailed calculation, such as that in Sec. IX, is required to
find the V which will maximize Pgen, remembering that Pgen

depends directly on V as well as indirectly (via the above
choice of ε0).

Now, we consider maximizing the efficiency at a given
power output Pgen, where Pgen < P

qb
gen. Comparing the inte-

grands in Eqs. (13) and (16), we see that JL contains an
extra factor of energy ε compared to Pgen. As a result, the
transmission of electrons (μ = 1) with large ε enhances the
heat current much more than it enhances the power output. This
means that the higher an electron’s ε is, the less efficiently it
contributes to power production. Thus, one would guess that
it is optimal to have an upper cutoff on transmission ε1, which
would be just high enough to ensure the desired power output
Pgen, but no higher. Then, the transmission function will look
like a “band-pass filter” (the “boxcar” form in Fig. 5), with
ε0 and ε1 further apart for higher power outputs. This guess
is correct, however, the choice of V affects both ε0 and ε1, so
the calculation in Sec. IX is necessary to find the V , ε0, and ε1

which maximize the efficiency for given Pgen.

IX. MAXIMIZING HEAT-ENGINE EFFICIENCY
FOR GIVEN POWER OUTPUT

Now, we present the central calculations of this paper,
finding the maximum efficiency of a quantum thermoelectric
with given power output. In this section, we consider heat
engines, while Sec. XI addresses refrigerators.

For a heat engine, our objective is to find the transmission
function T

μμ

RL(ε) and bias V that maximize the efficiency
ηeng(Pgen) for given power output Pgen. To do this, we treat
T

μμ

RL(ε) as a set of many slices each of width δ → 0 [see the
sketch in Fig. 6(a)]. We define τμ

γ as the height of the γ th
slice, which is at energy εγ ≡ γ δ. Our objective is to find

FIG. 6. (Color online) A completely arbitrary transmission func-
tion T

μμ

RL(ε) (see Sec. IX). We take it to have infinitely many slices of
width δ → 0, so slice γ has energy εγ ≡ γ δ and height τμ

γ . We find
the optimal height for each slice.
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the optimal value of τμ
γ for each μ,γ , and optimal values of

the bias V , all under the constraint of fixed Pgen. Often, such
optimization problems are formidable, however, this one is
fairly straightforward.

The efficiency is maximum for a fixed power Pgen if JL is
minimum for that Pgen. If we make an infinitesimal change of
τμ
γ and V , we note that

δPgen = ∂Pgen

∂τ
μ
γ

∣∣∣∣
V

δτμ
γ + P ′

gen δV, (24)

δJL = ∂JL

∂τ
μ
γ

∣∣∣∣
V

δτμ
γ + J ′

L δV, (25)

where |x indicates that the derivative is taken at constant x, and
the primed indicates ∂/∂V for fixed transmission functions. If
we want to fix Pgen as we change τμ

γ , we must change the bias
V to compensate. For this, we set δPgen = 0 in Eq. (25) and
substitute the result for δV into Eq. (24). Then, JL decreases
(increasing efficiency) for an infinitesimal increase of τμ

γ at
fixed Pgen if

∂JL

∂τ
μ
γ

∣∣∣∣
Pgen

= ∂JL

∂τ
μ
γ

∣∣∣∣
V

− J ′
L

P ′
gen

∂Pgen

∂τ
μ
γ

∣∣∣∣
V

< 0. (26)

Comparing Eqs. (13) and (16), one sees that

∂JL

∂τ
μ
γ

∣∣∣∣
V

= εγ

μe−V

∂Pgen

∂τ
μ
γ

∣∣∣∣
V

, (27)

where V is given in Eq. (17). Thus, the efficiency ηeng(Pgen)
grows with a small increase of τμ

γ if(
εγ − μe−V

J ′
L

P ′
gen

)
∂Pgen

∂τ
μ
γ

∣∣∣∣
V

< 0, (28)

where Pgen, P ′
gen, JL, J ′

L, and e−V are positive.
For what follows, let us define two energies

ε0 = e−V/(1 − TR/TL), (29)

ε1 = e−V J ′
L/P ′

gen. (30)

One can see that (∂Pgen/∂τμ
γ )|V > 0 when both μ = 1 and

ε > ε0, and is negative otherwise. Thus, for μ = 1, Eq. (28) is
satisfied when εγ is between ε0 and ε1. For μ = −1, Eq. (28)
is never satisfied.

A heat engine is only useful if Pgen > 0, and this is only true
for ε0 < ε1. Hence, if μ = 1 and ε0 < ε < ε1, then ηeng(Pgen)
is maximum for τμ

γ at its maximum value τμ
γ = N . For all

other μ and εγ , ηeng(Pgen) is maximum for τμ
γ at its minimum

value τμ
γ = 0. Since the left-hand side of Eq. (28) is not zero

for any εγ 
= ε0,ε1, there are no stationary points, which is why
τμ
γ never takes a value between its maximum and minimum

values. Thus, the optimal T
μμ

RL(ε) is a “boxcar” or “top-hat”
function

T
μμ

RL(ε)=
{
N for μ = 1 and ε0 <ε<ε1,

0 otherwise
(31)

[see Fig. 6(b)]. It hence acts as a band-pass filter, only allowing
flow between L and R for electrons (μ = 1) in the energy
window between ε0 to ε1.

Substituting a boxcar transmission function with arbitrary
ε0 and ε1 into Eqs. (13) and (16) gives

JL = N [FL(ε0) − FR(ε0) − FL(ε1) + FR(ε1)], (32)

Pgen=Ne−V [GL(ε0) − GR(ε0) − GL(ε1) + GR(ε1)], (33)

where we define

Fj (ε) = 1

h

∫ ∞

ε

x dx

1 + exp[(x − e−Vj )/(kBTj )]
, (34)

Gj (ε) = 1

h

∫ ∞

ε

dx

1 + exp[(x − e−Vj )/(kBTj )]
, (35)

which are both positive for any ε > 0. Remembering that we
took VL = 0 and VR = V , these integrals are

FL(ε) = εGL(ε) − (kBTL)2

h
Li2[−e−ε/(kBTL)], (36)

FR(ε) = εGR(ε) − (kBTR)2

h
Li2[−e−(ε−e−V )/(kBTR )], (37)

GL(ε) = kBTL

h
ln[1 + e−ε/(kBTL)], (38)

GR(ε) = kBTR

h
ln[1 + e−(ε−e−V )/(kBTR )], (39)

for dilogarithm function Li2(z) = ∫∞
0 t dt/(et/z − 1).

We are only interested in cases where ε0 fulfills the
condition in Eq. (29), in this case (ε0 − e−V )/(kBTR) =
ε0/(kBTL), which means GR(ε0) and FR(ε0) are related to
GL(ε0) and FL(ε0) by

GR(ε0) = TR

TL

GL(ε0), (40)

FR(ε0) − ε0GR(ε0) = T 2
R

T 2
L

[FL(ε0) − ε0GL(ε0)] . (41)

Equation (30) tells us that ε1 depends on JL and Pgen, but
that these depend in turn on ε1. Hence, to find ε1, we substitute
Eqs. (32) and (33) into Eq. (30) to get a transcendental equation
for ε1 as a function of V for given TR/TL. This equation is too
hard to solve analytically (except in the high and low power
limits, discussed in Secs. IX A and IX B, respectively). The red
curve in Fig. 7(a) is a numerical solution for TR/TL = 0.2.

Having found ε1 as a function of V for given TR/TL, we
can use Eqs. (32) and (33) to get JL(V ) and Pgen(V ). We can
then invert the second relation to get V (Pgen). At this point,
we can find JL(Pgen), and then use Eq. (1) to get the quantity
that we desire: the maximum efficiency at given power output
ηeng(Pgen).

In Sec. IX A, we do this procedure analytically for high
power (Pgen = P

qb2
gen ), and in Sec. IX B, we do this procedure

analytically for low power (Pgen � P
qb2
gen ). For other cases, we

only have a numerical solution for the transcendental equation
for ε1 as a function of V,TR/TL, so we must do everything
numerically.

Figure 8(a) gives the values of � = (ε1 − ε0) and e−V

which result from solving the transcendental equation
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FIG. 7. (Color online) Solutions of the transcendental equations
giving optimal ε1 (heat engine) or ε0 (refrigerator). In (a), the red
curve is the optimal ε1(V ) for ε1 > ε0, and the thick black line is ε0

in Eq. (29). The red circle and red arrow indicate the low and high
power limits discussed in the text. In (b), the red curve is the optimal
ε0(V ) for ε0 < ε1, and the thick black line is ε1 in Eq. (57).

numerically for a variety of different TR/TL. Equation (29)
then relates ε0 to e−V . The qualitative behavior of the
resulting boxcar transmission function is shown in Fig. 5. This
numerical evaluation enables us to find the efficiency as a
function of Pgen and TR/TL, which we plot in Fig. 9(a).

A. Quantum bound on heat-engine power output

Here, we want to find the highest possible power output
of the heat engine. In the previous section, we had the
power as a function of two independent parameters V and

FIG. 8. (Color online) (a) Plots of optimal � (left) and e−V

(right) for a heat engine with given power output Pgen for TR/TL =
0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. We get ε0 from e−V by using Eq. (29).
(b) Plots of optimal � (left) and e−V (right) for a refrigerator with a
given cooling power output JL for TR/TL = 1.05, 1.2, 1.5, 2, 4, and
10. We get ε1 from e−V by using Eq. (57).

FIG. 9. (Color online) Efficiencies of (a) heat engines and (b)
refrigerators. In (a) the curves are the maximum allowed heat-
engine efficiency as a function of power outputs for TR/TL =
0.05,0.2,0.4,0.6,0.8 (from top to bottom). In (b) the curves are the
maximum allowed refrigerator efficiency as a function of cooling
power for TR/TL = 1.05,1.2,1.5,2,4 (from top to bottom). In both
(a) and (b) the horizontal black lines indicate Carnot efficiency for
each TR/TL, while the dashed black curves are the analytic theory for
small cooling power, given in Eq. (51) or (63). The circles mark the
analytic result for maximum power output.

ε1, with ε0 given by Eq. (29). However, we know that
Eq. (30) will then determine a line in this two-dimensional
parameter space[(Fig. 7(a)], which we can parametrize by the
parameter V . The maximum possible power corresponds to
P ′

gen = 0, where we recall P ′
gen ≡ dPgen/dV . This has two

consequences: the first is that from Eq. (29), we see that
P ′

gen = 0 means that ε1 → ∞. Thus, the transmission function
T

μμ

RL(ε), taking the form of a Heaviside step function θ (ε − ε0),
where ε0 is given in Eq. (29). Taking Eq. (33) combined with
Eq. (40) for ε1 → ∞ gives

Pgen(ε1 → ∞) = Ne−V

(
1 − TR

TL

)
GL

(
e−V

1 − TR/TL

)
.

The second consequence of P ′
gen = 0 is that the V derivative

of this expression must be zero. This gives us the condition
that

(1 + B0) ln[1 + B0] + B0 ln[B0] = 0, (42)

where we define B0 = exp[−e−V/(kBTL − kBTR)] = exp[−
ε0/(kBTL)]. Numerically solving this equation gives B0 �
0.318. Equation (29) means that this corresponds to e−V =
−kB(TL − TR) ln[0.318] = 1.146 kB(TL − TR), indicated by
the red arrow in Fig. 7(a). Substituting this back into Pgen(ε1 →
∞) gives the maximum achievable value of Pgen:

P qb2
gen = A0

π2

h
Nk2

B(TL − TR)2 (43)

with

A0 ≡ B0 ln2[B0]/[π2(1 + B0)] � 0.0321. (44)
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We refer to this as the quantum bound (qb) on power
output [72] because of its origin in the Fermi wavelength of the
electrons λF. We see this in the fact that P

qb2
gen is proportional

to the number of transverse modes in the quantum system
N , which is given by the cross-sectional area of the quantum
system divided by λ2

F. This quantity has no analog in classical
thermodynamics.

The efficiency at this maximum power P
qb2
gen is

ηeng
(
P qb2

gen

) = ηCarnot
eng /[1 + C0(1 + TR/TL)], (45)

with

C0 = −(1 + B0)Li2(−B0)/(B0 ln2[B0]) � 0.936. (46)

As such, it varies with TR/TL, but is always more than
0.3 ηCarnot

eng . This efficiency is less than Curzon and Ahlborn’s
efficiency for all TR/TL (although not much less). However,
the power output here is infinitely larger than the maximum
power output of systems that achieve Curzon and Ahlborn’s
efficiency (see Sec. II C).

The form of Eq. (45) is very different from Curzon and
Ahlborn’s efficiency. However, we note in passing that Eq. (45)
can easily be written as ηeng(P qb2

gen ) = ηCarnot
eng /[(1 + 2C0) −

C0η
Carnot
eng ], which is reminiscent of the efficiency at maximum

power found for very different systems (certain classical
stochastic heat engines) in Eq. (31) of Ref. [73].

B. Optimal heat engine at low power output

Now, we turn to the opposite limit, that of low power output
Pgen � P

qb2
gen , where we expect the maximum efficiency to

be close to Carnot efficiency. In this limit, ε1 is close to ε0.
Defining � = ε1 − ε0, we expand Eqs. (32) and (33) in small
� up to order �3. This gives

JL = Pgen

1 − TR/TL

+ N �3 (1 − TR/TL)

3h kBTR

g(x0) , (47)

Pgen = N ε0 �2 (1 − TR/TL)2

2h kBTR

×
[
g(x0) + � (1 + TR/TL)

3 kBTR

dg(x0)

dx0

]
, (48)

where Eq. (29) was used to write e−V in terms of ε0, and we
defined x0 = ε0/(kBTL) and g(x) = ex/(1 + ex)2. Thus, for
small � we find that

ηeng(�) = ηCarnot
eng

(
1 − 2�

3x0kBTL

+ . . .

)
. (49)

Equation (30) gives a transcendental equation for x0 and �.
However, � drops out when it is small, and the transcendental
equation reduces to

x0 tanh[x0/2] = 3, (50)

for which x0 ≡ ε0/(kBTL) � 3.24. Equation (29) means that
this corresponds to e−V = 3.24 kB(TL − TR), indicated by the
circle in Fig. 7(a). Now, we can use Eq. (48) to lowest order in
� to rewrite Eq. (49) in terms of Pgen. This gives the efficiency

for small Pgen as

ηeng(Pgen) = ηCarnot
eng

(
1 − 0.478

√
TR

TL

Pgen

P
qb2
gen

+ . . .

)
, (51)

where the ellipsis indicates terms of order (Pgen/P
qb2
gen ) or

higher. Equation (11) then gives the minimum rate of entropy
production at power output Pgen:

Ṡ(Pgen) = 0.478
P

qb2
gen√

TLTR

(
Pgen

P
qb2
gen

)3/2

+ O
[
P 2

gen

]
. (52)

Thus, the maximal efficiency at small Pgen is that of Carnot
minus a term that grows like P

1/2
gen [dashed curves in Fig. 9(a)],

and the associated minimal rate of entropy production goes
like P

3/2
gen .

Note that Eq. (49) shows that Carnot efficiency occurs at
any x0 (i.e., any ε0) when � is strictly zero (and so Pgen is
strictly zero). However, for arbitrary x0 the factor 0.478 in
Eq. (51) is replaced by

√
8π2A0/[9x3

0g(x0)]. The value of x0

that satisfied Eq. (50) is exactly the one which minimizes this
prefactor (its minimum being 0.478), and thus maximizes the
efficiency for any small but finite Pgen.

X. GUESSING THE OPTIMAL TRANSMISSION
FOR A REFRIGERATOR

Here, we use simple arguments to guess the transmission
function which maximizes a refrigerator’s efficiency for given
cooling power. The arguments are similar to those for heat
engines (Sec. VIII), although some crucial differences will
appear.

We consider the flow of electrons from reservoir L to
reservoir R [the filled circle in Fig. 1(a), remembering e− < 0
so electrons flow in the opposite direction to I ]. To refrigerate,
the thermoelectric must absorb power, so the electrical current
must be due to a bias; this requires e−V to be negative, with
V as in Eq. (17).

Inspection of the integrand of Eq. (13) shows that it only
gives positive contributions to the cooling power output JL,
when [f μ

L (ε) − f
μ

R (ε)] > 0. Since TL < TR and e−V < 0, we
can use Eq. (15) to show that this is never true for holes
(μ = −1), and is only true for electrons (μ = 1) with energies
ε < ε1, where

ε1 = −e−V/(TR/TL − 1). (53)

Thus, it is counterproductive to allow the transmission of
electrons with ε > ε1, or the transmission of any holes.
Note that this argument gives us an upper cutoff on electron
transmission energies, despite the fact it gave a lower cutoff for
the heat engine [see Eq. (23) and the text around it]. All electron
(μ = 1) energies from zero to ε1 contribute positively to the
cooling power JL. To maximize the cooling power, one needs
to maximize [f μ

L (ε) − f
μ

R (ε)]; this is done by taking e−V →
−∞, for which ε1 → ∞. This logic gives the maximum
cooling power, which Sec. XI will show equals 1

2J
qb
L .

Now, we consider maximizing the efficiency at a given
cooling output JL, when JL < 1

2J
qb
L . Comparing the integrands

in Eqs. (13) and (16), we see that the extra factor of ε in
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JL means that allowing the transmission of electrons at low
energies has a small effect on cooling power, while costing
a similar electrical power at higher energies. Thus, it would
seem to be optimal to have a lower cutoff on transmission ε0,
which would be just low enough to ensure the desired cooling
power JL, but no lower. Then, the transmission function will
act as a “band-pass filter” (the “boxcar” in Fig. 5), with ε0

and ε1 further apart for higher cooling power. This is correct,
however, the choice of V affects ε0 and ε1, so the calculation in
Sec. XI is necessary to find the V , ε0, and ε1 which maximize
the efficiency for cooling power JL.

XI. MAXIMIZING REFRIGERATOR EFFICIENCY FOR
GIVEN COOLING POWER

Here, we find the maximum refrigerator efficiency, also
called the coefficient of performance (COP), for given cooling
power JL. The method is very similar to that for heat
engines, and here we mainly summarize the differences. The
refrigerator efficiency increases for a fixed cooling power JL

if the electrical power absorbed Pabs = −Pgen decreases for
fixed JL. This is so if

∂Pabs

∂τ
μ
γ

∣∣∣∣
JL

= ∂Pabs

∂τ
μ
γ

∣∣∣∣
V

− P ′
abs

J ′
L

∂JL

∂τ
μ
γ

∣∣∣∣
V

< 0, (54)

where we recall that the primed means (d/dV ). This is nothing
but Eq. (26) with JL → Pabs and Pgen → JL. Using Eq. (27),
we see that ηfri(JL) grows with τμ

γ for(−μe−V

εγ

− P ′
abs

J ′
L

)
∂JL

∂τ
μ
γ

∣∣∣∣
V

< 0, (55)

where Pabs, P ′
abs, JL, J ′

L, and −e−V are all positive.
To proceed, we define the following energies:

ε0 = −e−V J ′
L/P ′

abs, (56)

ε1 = −e−V/(TR/TL − 1). (57)

Then, one can see that (∂JL/∂τμ
γ )|V is positive when both

μ = 1 and ε < εfri
1 , and is negative otherwise. Thus, for μ =

−1, Eq. (55) is never satisfied. For μ = 1, Eq. (55) is satisfied
when εγ is between εfri

0 and εfri
1 . A refrigerator is only useful if

JL > 0 (i.e., it removes heat from the cold reservoir), and this
is only true for εfri

0 < εfri
1 . Hence, if μ = 1 and εfri

0 < ε < εfri
1 ,

then ηfri(JL) grows upon increasing τμ
γ . Thus, the optimum

is when such τμ
γ = N . For all other μ and εγ , ηfri(JL) grows

upon decreasing τμ
γ . Thus, the optimum is when such τμ

γ = 0.
This gives the boxcar transmission function in Eq. (31), with ε0

and ε1 given by Eqs. (56) and (57). Comparing with Eqs. (29)
and (30), we see these energies are the opposite way around for
a refrigerator compared to a heat engine (up to a minus sign).

Substituting Eqs. (32) and (33) into Eq. (56), one gets a
transcendental equation for ε0 as a function of V for given
TR/TL. This equation is too hard to solve analytically (except
in the high and low power limits, discussed in Secs. XI A
and XI B). The red curve in Fig. 7(b) is a numerical solution
for TR/TL = 1.5.

Having found ε0 as a function of V for given TR/TL, we can
use Eqs. (32) and (33) to get JL(V ) and Pabs(V ) = −Pgen(V ).
We can then invert the first relation to get V (JL). Now, we can

find Pabs(JL), and then use Eq. (3) to get the quantity that we
desire: the maximum efficiency (or COP) ηfri(JL) at cooling
power JL.

Figure 8(b) gives the values of � = (ε1 − ε0) and e−V

which result from solving the transcendental equation numeri-
cally. As noted, ε1 is related to e−V by Eq. (57). The qualitative
behavior of the resulting boxcar transmission function is
sketched in Fig. 5. This numerical evaluation enables us to
find efficiency as a function of JL and TR/TL, which we plot
in Fig. 9(b).

A. Quantum bound on refrigerator cooling power

To find the maximum allowed cooling power JL, we
look for the place where J ′

L = 0. From Eq. (56) we see
that this immediately implies ε0 = 0. Taking Eq. (32) with
ε0 = 0, we note by using Eq. (34) that FL(0) − FR(0) grows
monotonically as one takes −e−V → ∞. Similarly, for ε1

given by Eq. (30), we note by using Eq. (34) and TR >

TL that FR(ε1) − FL(ε1) grows monotonically as one takes
−e−V → ∞. Thus, we can conclude that JL is maximal for
−e−V → ∞, which implies ε1 → ∞ via Eq. (57). Physically,
this corresponds to all electrons arriving at the quantum system
from reservoir L being transmitted into reservoir R, but all
holes arriving from reservoir L being reflected back into
reservoir L. At the same time, reservoir R is so strongly biased
that it has no electrons with ε > 0 (i.e., no electrons above
reservoir L’s chemical potential) to carry heat from R to L.

In this limit, FL(ε1) = FL(ε1) = FR(ε0) = 0, so the maxi-
mal refrigerator cooling power is

JL = π2

12h
Nk2

BT 2
L, (58)

where we used the fact that Li2[1] = π2/12. This is exactly
half the quantum bound on heat current that can flow out of
reservoir L given in Eq. (6). The quantum bound is achieved
by coupling reservoir L to another reservoir with a temperature
of absolute zero, through a contact with N transverse mode.
By definition, a refrigerator is cooling reservoir L below the
temperature of the other reservoirs around it. In doing so, we
show its cooling power is always less than or equal to J

qb
L /2.

However, it is intriguing that the maximum cooling power
is independent of the temperature of the environment TR of
the reservoir being cooled (reservoir L). In short, the best
refrigerator can remove all electrons (or all holes) that reach
it from reservoir L, but it cannot remove all electrons and all
holes at the same time.

It is easy to see that the efficiency of the refrigerator
(COP) at this maximum possible cooling power is zero,
simply because |V | → ∞, so the power absorbed Pabs →
∞. However, one gets exponentially close to this limit for
−e−V � kBTR , for which Pabs is large but finite, and so
ηfri(JL) remains finite [see Fig. 9(b)].

B. Optimal refrigerator at low cooling power

Now, we turn to the opposite limit, that of low cooling power
output JL � J

qb
L , where we expect the maximum efficiency

to be close to Carnot efficiency. In this limit, ε0 is close to ε1.
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Defining � = ε1 − ε0, we expand Eqs. (32) and (33) in small
� up to order �3. This gives

JL = Pabs

TR/TL − 1
− N �3 (TR/TL − 1)

3h kBTR

g(x1) , (59)

Pabs = N ε1 �2 (TR/TL − 1)2

2h kBTR

×
[
g(x1) − � (TR/TL + 1)

3 kBTR

dg(x1)

dx1

]
, (60)

where Eq. (57) was used to write e−V in terms of ε1, and
we define x1 = ε1/(kBTL) and g(x) = ex/(1 + ex)2. Thus, for
small � we find that the efficiency is

ηfri(�) = ηCarnot
fri

(
1 − 2�

3x1kBTL

+ . . .

)
. (61)

Note that this is the same Eq. (49) for the heat engine at low
power output, except that x0 is replaced by x1, and the Carnot
efficiency is that of the refrigerator rather than that of the heat
engine.

Equation (56) gives a transcendental equation for x1 and �.
However, � drops out when it is small, and the transcendental
equation reduces to

x1 tanh[x1/2] = 3, (62)

for which x1 ≡ ε1/(kBTL) = 3.2436 . . . . Again, this is the
same as for a heat engine [Eq. (50)], but with x1 replacing
x0. Equation (57) means that this corresponds to −e−V =
3.2436 kB(TR − TL), indicated by the circle in Fig. 7(b). Now,
we can use Eq. (59) to lowest order in � to rewrite Eq. (61)
in terms of JL. This gives the efficiency (or coefficient of
performance, COP) for small JL as

ηfri(JL) = ηCarnot
fri

(
1 − 1.09

√
TR

TR − TL

JL

J
qb
L

+ . . .

)
,

(63)

where the ellipsis indicates terms of order (JL/J
qb
L ) or higher.

Equation (12) gives the minimum rate of entropy generation
at cooling power output JL as

Ṡ(JL) = 1.09
J

qb
L

TL

√
1 − TL

TR

(
JL

J
qb
L

)3/2

+ O
[
J 2

L

]
.

(64)

Thus, we conclude that the maximum efficiency at small JL

is that of Carnot minus a term that grows like J
1/2
L [dashed

curves in Fig. 9(b)], while the associated minimum entropy
production goes like J

3/2
L .

We note that Carnot efficiency occurs at JL = 0 at any x1 =
ε1/(kBTL). However, then the 1.09 factor in Eq. (63) becomes√

4π2/[27x3
1g(x1)]. The condition in Eq. (62) minimizes this

factor (the minimum being 1.09), and thereby maximizes the
efficiency for given JL.

XII. IMPLEMENTATION WITH A CHAIN
OF QUANTUM SYSTEMS

The previous sections have shown that maximum efficiency
(at given power output) occurs when the thermoelectric

system has a boxcar transmission function with the right
position and width. In the limit of maximum power, the
boxcar becomes a Heaviside step function. Here, we give a
detailed recipe for engineering such transmission functions
for noninteracting electrons, and then discuss how to include
mean-field interaction effects.

A Heaviside step function is easily implemented with point
contact, whose transmission function is [74]

TL,isl(ε) =
{

1 + exp

[
−ε − E(V )

Dtunnel

]}−1

, (65)

where E(V ) is the height of the energy barrier induced by the
point contact, and Dtunnel is a measure of tunneling through
the point contact. A sufficiently long point contact exhibits
negligible tunneling Dtunnel → 0, so the transmission function
simplifies to the desired Heaviside step function θ [ε − E(V )].

For a potential implementation of a boxcar function we
consider a chain of sites (quantum dots or molecules) with
one level per site, as sketched in Fig. 10(a). The objective is
that the hoppings between sites {ti} will cause the states to
hybridize to form a band centered at E0, with a width given
by the hopping [75]. Neglecting electron-electron interactions,
the hopping Hamiltonian for five sites in the chain (k = 5) can
be written as

Hchain =

⎛
⎜⎜⎜⎝

−ia0/2 t1 0 0 0
t1 0 t2 0 0
0 t2 0 t3 0
0 0 t3 0 t4
0 0 0 t4 −ia0/2

⎞
⎟⎟⎟⎠ . (66)

This is easily generalized to arbitrary chain length k. Here,
we treat a0 as a phenomenological parameter, however, in
reality it would be given by |t0|2 multiplied by the density
of states in the reservoir. The fact that particles escape from
the chain into the reservoirs means the wave function for any
given particle in the chain will decay with time. To model
this, the Hamiltonian must be non-Hermitian, with the non-
Hermiticity entering in the matrix elements for coupling to the
reservoirs (top-left and bottom-right matrix elements). These

FIG. 10. (Color online) (a) A chain of single-level quantum dots
with their energy levels aligned at energy E0. (b) Transmission
function when all hoppings are equal (note the strong oscillations).
(c) Transmission function when all hoppings are carefully chosen
(see text). To aid comparison, all bandwidths in the plots have been
normalized.
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induce an imaginary contribution to each eigenstate’s energy
Ei , with the wave function of any eigenstate decaying at a
rate given by the imaginary part of Ei . The non-Hermiticity
of Hchain also means that its left and right eigenvectors are
different, defining |ψ (r)

i 〉 as the ith right eigenvector of the
matrix Hchain, and 〈ψ (l)

i | as the ith left eigenvector, we have
〈ψ (l)

i |ψ (r)
j 〉 = δij and 〈ψ (l)

i |Hchain|ψ (r)
i 〉 = Ei . The resolution of

unity is
∑

i |ψ (r)
i 〉 〈ψ (l)

i | = 1, where 1 is the k × k unit matrix.
We define |1〉 as the vector whose first element is one while

all its other elements are zero, and |k〉 as the vector whose last
element (the kth element) is one while all its other elements are
zero. Then, the transmission probability at energy ε is given
by

TRL(ε) = |〈k| [ε − Hchain]−1|1〉|2 a0 , (67)

where [. . .]−1 is a matrix inverse. To evaluate this matrix
inverse, we introduce a resolution of unity to the left and right
of [ε − Hchain]−1. This gives

TRL =
∑

i

∣∣∣∣∣
〈
k
∣∣ψ (r)

i

〉 〈
ψ

(l)
i

∣∣1〉
ε − Ei

∣∣∣∣∣
2

a0. (68)

For any given set of hoppings a0,t1, . . . ,tk , one can easily
use a suitable eigenvector finder (we used Mathematica) to
evaluate this equation numerically, while an analytic solution
is straightforward [76] for k � 3. When all hoppings in the
chain are equal, there is a mismatch between the electron’s
hopping dynamics in the chain and their free motion in the
reservoirs. This causes resonances in the transmission, giving
the Fabry-Perot–type oscillations in Fig. 10(b) for k = 5.
However, we can carefully tune the hoppings (to be smallest
in the middle of the chain and increasing towards the ends) to
get the smooth transmission functions in Fig. 10(c). The k = 5
curve in Fig. 10(c) has t1 = t4 = 0.39a0 and t2 = t3 = 0.28a0,
and we choose a0 = 1.91 to normalize the bandwidth to 1. As
the number of sites in the chain k increases, the transmission
function tends to the desired boxcar function.

The above logic assumes no electron-electron interactions.
When we include interaction effects at the mean-field level,
things get more complicated. If the states in the chain are all
at the same energy E0 when the chain is unbiased, they will
not be aligned when there is a bias between the the reservoirs
because the reservoirs also act as gates on the chain states. To
engineer a chain where the energies are aligned at the optimal
bias, one must adjust the confinement potential of the dots in
the chain (or adjust the chemistry of the molecules in the chain)
so that their energies are sufficiently out of alignment at zero
bias that they all align at optimal bias. In principle, we have
the control to do this. However, in practice it would require a
great deal of trial-and-error experimental fine tuning. We do
not enter further into such practical issues here. Rather, we use
the above example to show that there is no fundamental reason
that the bound on efficiency cannot be achieved.

XIII. MANY QUANTUM SYSTEMS IN PARALLEL

To increase the efficiency at given power output, one must
increase the number of transverse modes N . This is because
the efficiency decays with the power output divided by the

quantum bounds in Eqs. (43) and (58), and these bounds go
like N . However, a strong thermoelectric response requires
a transmission function that is highly energy dependent;
this typically only occurs when the quantum system (point
contact, quantum dot, or molecule) has dimensions of about a
wavelength, which implies that N is of order one. Crucial
exceptions (beyond the scope of this work) are systems
containing superconductors, either SNS structures [1] or
Andreev interferometers [77] (see also Ref. [58] and references
therein), where strong thermoelectric effects occur for large N .

In the absence of a superconductor, the only way to get large
N is to construct a device consisting of many N = 1 systems
in parallel, such as a surface covered with a certain density of
such systems [24,25]. In this case, P

qb2
gen and J

qb
L in Eqs. (43)

and (58) become bounds on the power per unit area, with N

being replaced by the number of transverse modes per unit
area. With this one modification, all calculations and results in
this paper can be applied directly to such a situation. Carnot
efficiency is achieved for a large enough surface area that the
power per unit area is much less than P

qb2
gen and J

qb
L .

It is worth noting that the number of modes per unit area
cannot exceed λ−2

F , for Fermi wavelength λF. From this we
can get a feeling for the magnitude of the bounds discussed
in this paper. Take a typical semiconductor thermoelectric
(with λF ∼ 10−8 m), placed between reservoirs at 700 and
300 K (typical temperatures for a thermoelectric recovering
electricity from the heat in the exhaust gases of a diesel engined
car). Equation (43) tells us that to get 100 W of power output
from a semiconductor thermoelectric one needs a cross section
of at least 4 mm2. Then, Eq. (51) tells us that to get this power
at 90% of Carnot efficiency, one needs a cross section of at
least 0.4 cm2. Remarkably, it is quantum mechanics which
gives these bounds, even though the cross sections in question
are macroscopic.

XIV. PHONONS AND PHOTONS CARRYING HEAT IN
PARALLEL WITH ELECTRONS

Any chargeless excitation (such as phonons or photons) will
carry heat from hot to cold, irrespective of the thermoelectric
properties of the system. While some of the phonons and
photons will flow through the thermoelectric quantum system,
most will flow via other routes (see Fig. 11). A number of
theories for these phonon or photon heat currents take the
form

Jph = α
(
T κ

L − T κ
R

)
, (69)

where Jph is the heat flow out of the L reservoir due to phonons
or photons. The textbook example of such a theory is that of
blackbody radiation between the two reservoirs; then, κ = 4
and α is the Stefan-Boltzmann constant. An example relevant
to suspended sub-Kelvin nanostructures is a situation where
a finite number Nph of phonon or photon modes carry heat
between the two reservoirs [17,40,78,79]; then, κ = 2 and
α � Nphπ

2k2
B/(6h).

One of the biggest practical challenges for quantum
thermoelectrics is that phonons and photons will often carry
much more heat than the electrons. This is simply because
the hot reservoir can typically radiate heat in all directions as
phonons or photons, while electrons only carry heat through
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FIG. 11. (Color online) The thermocouple heat engine in Fig. 1,
showing the heat flow due to phonon and photons, which carry heat
from hot to cold by all possible routes (in parallel with the heat carried
by the electrons). This always reduces the efficiency, so it should be
minimized with suitable thermal insulation.

the few nanostructures connected to that reservoir. Thus, in
many cases the phonon or photon heat flow will dominate
over the electronic one. However, progress is being made in
blocking phonon and photon flow, by suspending the nanos-
tructure to minimize phonon flow [78] and engineering the
electromagnetic environment to minimize photon flow [79],
and it can be hoped that phonon and phonon effects will be
greatly reduced in the future. Hence, here we consider the full
range from weak to strong phonon or photon heat flows.

For compactness in what follows, we will only refer to
phonon heat flows (usually the dominant parasitic effect).
However, strictly one should consider Jph as the sum of
the heat flow carried by phonons, photons, and any more
exotic chargeless excitations that might exist in a given circuit
(mechanical oscillations, spin waves, etc.).

A. Heat engine with phonons

For heat engines, the phonon heat flow is in parallel with
electronic heat flow. Thus, the heat flow for a given Pgen is
(JL + Jph), rather than just JL (as it was in the absence of
phonons). Thus, the efficiency in the presence of the phonons
is

ηe+ph
eng (Pgen) = Pgen

JL(Pgen) + Jph
. (70)

Writing this in terms of the efficiency, we get

ηe+ph
eng (Pgen) = [η−1

eng(Pgen) + Jph/Pgen
]−1

, (71)

where ηeng(Pgen) is the efficiency for Jph = 0. Given the
maximum efficiency at given power in the absence of phonons,
we can use this result to find the maximum efficiency for a
given phonon heat flow Jph. An example of this is shown in
Fig. 12(a). It shows that for finite Jph, Carnot efficiency is not
possible at any power output.

Phonons have a huge effect on the efficiency at small power
output. Whenever Jph is nonzero, the efficiency vanishes at
zero power output, with

ηe+ph
eng (Pgen) = Pgen

/
Jph for Pgen � Jph. (72)

As Jph increases, the range of applicability of this small
Pgen approximation (shown as dashed lines in Fig. 12) grows

FIG. 12. (Color online) Plots of the maximum efficiency allowed
when the there is a phonon heat flow Jph in parallel with the heat
carried by the electrons. The curves in (a) are for TR/TL = 0.2,
with Jph = 0,0.01,0.1,1 (from top to bottom); the curves come from
Eq. (71) with ηeng(Pgen) given in Fig. 9(a). The curves in (b) are for
TR/TL = 1.5, with Jph = 0,0.02,0.1,0.4 (from top to bottom); the
curves come from Eq. (73) with ηeng(Pgen) given in Fig. 9(b). The
maximum cooling power (open circles) is ( 1

2 J
qb
L − Jph).

towards the maximum power P
qb
eng (open circles). In contrast,

phonon heat flows have little effect on the efficiency near
the maximum power output, until these flows become strong
enough that Jph ∼ Pgen.

For strong phonon flow, where Jph � Pgen, Eq. (72) applies
at all powers up to the maximum P

qb2
gen . Then, the efficiency is

maximal when the power is maximal, where maximal power
is the quantum bound given in Eq. (43). Thus, the system with
both maximal power and maximal efficiency is that with a
Heaviside step transmission function (see Sec. XII).

B. Refrigerator with phonons

For a refrigerator to extract heat from a reservoir at rate
J in the presence of phonons carrying a back-flow of heat
Jph, that refrigerator must extract heat at a rate JL = J + Jph.
Note that, for clarity, in this section we take Jph to be positive
when TL < TR [opposite sign of that in Eq. (69)]. Thus, the
efficiency, or COP, in the presence of phonons is the heat
current extracted J divided by the electrical power required to
extract heat at the rate JL = (J + Jph). This means that

η
e+ph
fri (J ) = J ηfri(J + Jph)

J + Jph
, (73)

where ηfri(J ) is the efficiency for Jph = 0. We can use this
result to find the maximum efficiency for a given phonon heat
flow Jph. An example is shown in Fig. 12(b).

Equation (73) means that the phonon flow suppresses the
maximum cooling power, so J must now obey

J � 1
2J

qb
L − Jph (74)

with J
qb
L given in Eq. (6). Thus, the upper bound (open circles)

in Fig. 12(b) moves to the left as Jph increases.
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When the reservoir being refrigerated (reservoir L) is at
ambient temperature TR , then Jph = 0 while J

qb
L is finite.

However, as reservoir L is refrigerated (reducing TL), Jph

grows, while J
qb
L shrinks. As a result, at some point (before

TL gets to zero) one arrives at Jph = 1
2J

qb
L , and further cooling

of reservoir L is impossible. Thus, given the TL of Jph for
a given system, one can easily find the lowest temperature
that reservoir L can be refrigerated to by solving the equation
Jph = 1

2J
qb
L for TL. To achieve this temperature, one needs the

refrigerator with the maximum cooling power (rather than
the most efficient one): this is a system with a Heaviside
step transmission function (see Sec. XII). Such a system’s
refrigeration capacities were discussed in Ref. [17].

We also note that, as with the heat engine, phonons have a
huge effect on the efficiency at small cooling power, as can be
seen in Fig. 12(b). Whenever 0 < Jph < 1

2J
qb
L , the efficiency

vanishes for small cooling power, with

η
e+ph
fri (J ) = J

ηfri(Jph)

Jph
for J � Jph. (75)

XV. RELAXATION IN A QUANTUM SYSTEM
WITHOUT B FIELD

Elsewhere in this paper, we neglected relaxation in the
quantum system. In other words, we assumed that electrons
traverse the system in a time much less than the time for
inelastic scattering from phonons, photons, or other electrons.
We now consider systems in which there is such relaxation,
and ask if this relaxation could enable a system to exceed
the bounds found above for relaxationless systems. To make
progress, we restrict our interest to systems with negligible
external magnetic field (B field) [80]. As yet, we have not
been able to consider the rich interplay of relaxation and B
field [59,61,81].

We use the voltage-probe model [82] shown in Fig. 13(a).
A system with relaxation is modeled as a phase-coherent
scatterer coupled to a fictitious reservoir M (a region in which
relaxation occurs instantaneously). The rate of the relaxation
is controlled by the transmission of the lead coupling to
reservoir M . We then separate the phase-coherent scatterer
into scatterers 1, 2, and 3, as shown in Fig. 13(b), each with
their own transmission functions Tij (ε) with i,j ∈ L,M,R.
We assume that the transmission is unchanged under reversal
of direction, so Tij (ε) = Tji(ε) for all ε and i,j . This condition
is guaranteed by time-reversal symmetry whenever the B field
has a negligible effect on the electron and hole dynamics.
However, it also applies for any B field when all particles relax
as they traverse the quantum system [then TLR(ε) = TRL(ε) =
0, which is sufficient to force Tij (ε) = Tji(ε) for all i,j ].

If the relaxation involves electron-phonon or electron-
photon interactions (typically any system which is not sub-
Kelvin), the phonons or photons with which the electrons
interact usually flow easily between the system and the
reservoirs. Thus, these phonons or photons can carry heat
current between the fictitious reservoir M and reservoirs L,R

(dashed arrows in Fig. 13). The total electrical and heat currents
into reservoir M must be zero, and this constraint determines
reservoir M’s bias VM and temperature TM .

FIG. 13. (Color online) (a) A quantum system in which relax-
ation occurs is modeled phenomenologically by a coherent quantum
system coupled to a third fictitious reservoir M in which the relaxation
occurs. (b) The same model after we have separated the system’s
scattering matrix into three components. The dashed arrows are the
exchange of phonons or photons. The arm containing scatterers 1 and
2 is shown in (c) for a heat engine, and in (d) for a refrigerator.

A. Method of overestimation

The optimal choice of TML and TRM depends on TM , while
TM depend on the heat current, and thus on TML and TRM .
The solution and optimization of this self-consistency problem
has been beyond our ability to resolve, even though we have
restricted ourselves to a simple model of relaxation in a system
with negligible B field. Instead, we make a simplification
which leads to an overestimate of the efficiency. We assume
VM,TM are free parameters (not determined from TML and
TRM ), with TM between TL and TR . If we find the optimal TML

and TRM for given TM , and then find the optimal TM (irrespec-
tive of whether it is consistent with TML and TRM or not), we
have an overestimate of the maximal efficiency. Even with this
simplification, we have only been able to address the low power
and high power limits. However, we show in the following that
this overestimate is sufficient to prove the following.

(1) At low power, relaxation cannot make the system’s
efficiency exceed that of the optimal relaxation-free system
with Nmax modes.

(2) Relaxation cannot make a system’s power exceed that
of the maximum possible power of a relaxation-free system
with Nmax modes.
Defining NL and NR as the number of transverse modes in
the system to the left and right of the region where relaxation
occurs,

Nmax = max[NL,NR], (76)

B. Efficiency of heat engine with relaxation

To get the efficiency for our model of a quantum system
with relaxation, we must find the efficiency for the system
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in Fig. 13(b). This system has two “arms.” One arm contains
scatterers 1 and 2, and we define its efficiency as η(1&2)

eng . The
other arm contains scatterer 3, and we define its efficiency as
η(3)

eng. The efficiency of the full system ηtotal
eng (Pgen) is given by

1

ηtotal
eng (Pgen)

= prel

η
(1&2)
eng (prelPgen)

+ qrel

η
(3)
eng(qrelPgen)

. (77)

Here, prel is the proportion of transmitted electrons that have
passed through the arm containing scatterers 1 and 2, while
qrel = (1 − prel) is the proportion that have passed through the
arm containing scatterer 3. Physically, prel is the probability
that an electron entering the quantum system relaxes before
transmitting, while qrel is the probability that it transmits before
relaxing. One sees from Eq. (77) that the maximal efficiency
for a given prel occurs when both η(1&2)

eng and η(3)
eng are maximal.

The upper bound on η(3)
eng is that given in Sec. IX with qrelNL

modes to the left and qrelNR modes to the right. Our objective
now is to find the maximum η(1&2)

eng with N1 = prelNL modes on
the left and N2 = prelNR modes on the right. More precisely,
our objective is to find an overestimate of this maximum. For
the heat flows indicated in Fig. 13(c), the efficiency is

η(1&2)
eng ≡ P (1&2)

gen /J

= 1

J

[
P (1)

gen(J1; TM,TL) + P (2)
gen(J2; TR,TM )

]
, (78)

where J1 = J − J
ph
1 − J ph and J2 = J − J

ph
2 − J ph − P (1)

gen.
One sees that η(1&2)

eng is maximal for given TM when J ph =
J

ph
1 = J

ph
2 = 0 (these heat currents cannot be negative because

TL > TM > TR). Thus, to get our overestimate of the maximal
efficiency for given TM , we assume these phonon and photon
heat currents are zero. Then, with a little algebra, one finds
that

1 − η(1&2)
eng

(
P (1&2)

gen

) = (1 − η(1)
eng

(
P (1)

gen

))(
1 − η(2)

eng

(
P (2)

gen

))
,

where P (1)
gen and P (1)

gen are related to P (1&2)
gen by

P (μ)
gen = P (1&2)

gen η(μ)
eng

/
η(1&2)

eng (79)

for μ = 1,2. For given TM , one maximizes η(1&2)
eng by inde-

pendently maximizing η(1)
eng and η(2)

eng. For low powers, Eq. (51)
with P,N,TR → P1,N1,TM gives η(1)

eng, while with P,N,TL →
P2,N2,TM gives η(2)

eng. In this limit, we can treat efficiencies in
Eq. (79) to zeroth order in P (1&2)

gen , taking them to be Carnot
efficiencies, so

P (1)
gen � TL − TM

TL − TR

P (1&2)
gen , P (1)

gen � TM − TR

TL − TR

P (1&2)
gen .

Then, some algebra gives the overestimate of efficiency at low
powers for given TM to be

η(1&2)
eng � ηCarnot

eng

(
1 − 0.478

√
TR

TL

Pgen Krel

P
qb2
gen (N = 1)

)
, (80)

with P
qb2
gen (N = 1) given by Eq. (43) with N = 1, and

Krel =
√

1

N1

TR(TL − TM )

TM (TL − TR)
+
√

1

N2

TL(TM − TR)

TM (TL − TR)
, (81)

where N1 = prelNL and N2 = prelNL are, respectively, the
number of transmission modes in scattering matrices 1 and 2.
The overestimate of η(1&2)

eng is maximal when TM is chosen to
minimize Krel. The two minima of Krel are at TM = TR and
TM = TL, for which the values of Krel are 1/

√
N1 and 1/

√
N2,

respectively. Thus, we have

Krel � 1/
√

prelNmax , (82)

with Nmax in Eq. (76). Thus, whatever TM may be,

η(1&2)
eng

(
P (1&2)

gen

)

� ηCarnot
eng

⎛
⎝1 − 0.478

√√√√TR

TL

P
(1&2)
gen

P
qb2
gen (prelNmax)

⎞
⎠.

(83)

Since P (1&2)
gen = prelPgen, we can simplify Eq. (83) by noting

that

P (1&2)
gen

P
qb2
gen (prelNmax)

= Pgen

P
qb2
gen (Nmax)

, (84)

where Pgen is the total power generated by the combined
system made of scatterers 1, 2, and 3. Then, substituting the
result into Eq. (77), we get an overestimate of the efficiency at
power output Pgen which is equal to the upper bound we found
in the absence of relaxation [Eq. (51)].

Thus, we can conclude that for small power outputs, no
quantum system with relaxation within it can exceed the
upper bound on efficiency found for a relaxation-free system
with Nmax transverse modes. Since the proof is based on an
overestimate of the efficiency for a system with relaxation,
we cannot say if a system with finite relaxation can approach
the bound in Eq. (51). Unlike in the relaxation-free case, we
cannot say what properties the quantum system with relaxation
(as given in terms of the properties of the effective scatterers
1, 2, and 3) are necessary to maximize the efficiency at given
power output. We simply know that it cannot exceed Eq. (51).

C. Refrigerator with relaxation

Our objective is to find an overestimate of the maximal
efficiency of a refrigerator that is made of quantum systems
in which relaxation occurs. The efficiency of the system with
relaxation ηtotal

fri (Pgen) is given by

ηtotal
fri (JL) = prelη

(1&2)
fri (prelJL) + qrelη

(3)
fri (qrelJL), (85)

thus we need to find an upper bound on η
(1&2)
fri . We make

an overestimate of this efficiency by taking TM to be a free
parameter between TL and TR . For given TM , the efficiency of
the combined systems 1 and 2 is

η
(1&2)
fri (J ) = J

/[
P

(1)
abs(J1) + P

(2)
abs(J2)

]
, (86)

where J1 = J + J
ph
1 + J ph and J2 = J + J

ph
2 + J ph + P

(1)
abs

[see Fig. 13(d)]. This efficiency is maximized when
J

ph
1 ,J

ph
2 ,J ph = 0 (since TL < TM < TR means these currents

are not negative). Then, a little algebra gives

1 + 1

η
(1&2)
fri (J )

=
[

1 + 1

η
(1)
fri (J )

][
1 + 1

η
(2)
fri (J2)

]
, (87)
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where J2 = J + P
(1)
abs = J [1 + 1/η

(1)
fri (J )]. Thus, to maximize

η
(1&2)
fri (J ) for given TM , one must maximize both η

(1)
fri and η

(2)
fri .

For low power, this can be done using Eq. (63) (much as for
the heat engine in Sec. XV B) giving

η
(1&2)
fri � ηCarnot

fri

(
1 − 1.09

√
TR

TR − TL

JLKrel

J
qb
L (N = 1)

)
, (88)

where Krel is given in Eq. (81), and J
qb
L (N = 1) is given by

Eq. (58) with N = 1. The overestimate of η
(1&2)
fri is maximal

when Krel is minimal [see Eq. (82)]. Substituting this into
Eq. (85), we see that the efficiency with relaxation does not
exceed the result in Eq. (63) for a relaxation-free system with
Nmax transverse modes.

D. Quantum bounds on power with relaxation

For a heat engine, the arm with scatterers 1 and 2 has a
maximum power

P (1&2)
gen � A0

π2

h
k2

B[N1(TL − TM )2 + N2(TM − TR)2].

Since (TL − TM )2 + (TM − TR)2 � (TL − TR)2, the power of
the full system cannot exceed the maximum power of a
relaxationless system [Eq. (43)] with Nmax modes.

For a refrigerator, the arm containing scatterers 1 and 2 has
a maximum cooling power

J �
{

π2N1k
2
BT 2

L

/
(12h),

π2N2k
2
BT 2

M

/
(12h) − P

(1)
abs ,

(89)

where P
(1)
abs is the electrical power absorbed by scatter 1. The

upper (lower) term is the limit on the heat flow into scatterer
1 (scatterer 2), noting that the heat flow into scatterer 2 is J +
P

(1)
abs . Unless N2 � N1, the lower limit is the more restrictive

one. In any case, the cooling power of the full system can

never exceed the maximum power of a relaxationless system
[Eq. (58)] with Nmax modes.

XVI. CONCLUSIONS

The upper bound on efficiency at zero power (i.e., Carnot
efficiency) is classical since it is independent of wavelike
nature of the electrons. However, this work on thermoelectrics
shows that the upper bound on efficiency at finite power is
quantum, depending on the ratio of the thermoelectric’s cross
section to the electrons’ Fermi wavelength. If one thought that
electrons were classical (strictly zero wavelength), one would
believe that Carnot efficiency was achievable at any power
output. Quantum mechanics appears to tell us that this is not so.

However, a crucial point for future work is to discover how
universal our bounds on efficiency at finite power are. Our
bounds currently rely on the quantum system being (a) well
modeled by the nonlinear scattering theory with its mean-field
treatment of electron-electron interactions, (b) coupled to only
two reservoirs (hot and cold), and (c) relaxation free. Under
certain conditions, we have also shown that they apply when
there is relaxation in the quantum system. We cannot yet prove
that our results are as general as Pendry’s bound on heat
flow [40], which applies for arbitrary relaxation and for more
than two reservoirs [42], as well as for electronic Luttinger
liquids [83] and bosons [40]. It also remains to be seen if
our bound occurs in systems with strong electron-electron
interactions (Coulomb blockade, Kondo physics, etc.). More
generally, we wonder whether similar bounds apply to those
thermodynamic machines that do not rely on thermoelectric
effects, such as Carnot heat engines.

ACKNOWLEDGMENTS
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1957), p. 41.

[29] I. I. Novikov, At. Energ. 3, 409 (1957) [J. Nucl. Energy II 7, 125
(1958)].

[30] S. Velasco, J. M. M. Roco, A. Medina, and A. C. Hernández,
Phys. Rev. Lett. 78, 3241 (1997).

[31] C. de Tomás, A. C. Hernández, and J. M. M. Roco, Phys. Rev.
E 85, 010104(R) (2012)

[32] Y. Apertet, H. Ouerdane, A. Michot, C. Goupil, and P. Lecoeur,
Europhys. Lett. 103, 40001 (2013).

[33] L. A. Correa, J. P. Palao, G. Adesso, and D. Alonso, Phys. Rev.
E 90, 062124 (2014).

[34] M. Esposito, K. Lindenberg, and C. Van den Broeck, Europhys.
Lett. 85, 60010 (2009).

[35] This point is easily overlooked in plots where power is in units
of each system’s maximum power, such as Fig. 4 of Ref. [2]. It
is easy to misread such a plot as implying that the system with
ZT → ∞ is the most efficient at all powers.

[36] N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82,
235428 (2010).

[37] D. M. Kennes, D. Schuricht, and V. Meden, Europhys. Lett. 102,
57003 (2013) (2013).

[38] M. Leijnse, M. R. Wegewijs, and K. Flensberg, Phys. Rev. B 82,
045412 (2010).

[39] S. Hershfield, K. A. Muttalib, and B. J. Nartowt, Phys. Rev. B
88, 085426 (2013).

[40] J. B. Pendry, J. Phys. A.: Math. Gen. 16, 2161 (1983).
[41] J. D. Bekenstein, Phys. Rev. Lett. 46, 623 (1981); Phys. Rev. D

30, 1669 (1984).
[42] R. S. Whitney, Phys. Rev. B 87, 115404 (2013).
[43] W. Kern, Z. Phys. B 20, 215 (1975).
[44] W. A. Day, Acta Mech. 27, 251 (1977).
[45] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible

Thermodynamics (Springer, Berlin, 2001)
[46] H.-L. Engquist and P. W. Anderson, Phys. Rev. B 24, 1151

(1981).
[47] U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).
[48] P. N. Butcher, J. Phys.: Condens. Matter 2, 4869 (1990).
[49] Reference [47] instead considered the von Neumann entropy.
[50] Ya. M. Blanter, and M. Büttiker, Phys. Rep. 336, 1
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