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Radiative heat transfer in nonlinear Kerr media

Chinmay Khandekar,1 Adi Pick,2 Steven G. Johnson,3 and Alejandro W. Rodriguez1

1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 15 June 2014; revised manuscript received 4 February 2015; published 5 March 2015)

We obtain a fluctuation-dissipation theorem describing thermal electromagnetic fluctuation effects in nonlinear
media that we exploit in conjunction with a stochastic Langevin framework to study thermal radiation from Kerr
(χ (3)) photonic cavities coupled to external environments at and out of equilibrium. We show that, in addition
to thermal broadening due to two-photon absorption, the emissivity of such cavities can exhibit asymmetric,
non-Lorentzian line shapes due to self-phase modulation. When the local temperature of the cavity is larger than
that of the external bath, we find that the heat transfer into the bath exceeds the radiation from a corresponding
linear blackbody at the same local temperature. We predict that these temperature-tunable thermal processes can
be observed in practical, nanophotonic cavities operating at relatively small temperatures.
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I. INTRODUCTION

The radiative properties of bodies play a fundamental role
on the physics of many naturally occurring processes and
emerging nanotechnologies [1,2]. Central to the theoretical
understanding of these electromagnetic fluctuation effects is
the fluctuation-dissipation theorem of electromagnetic fields,
developed decades ago by Rytov and others [3–5] in order
to describe radiative transport in macroscopic media. The
same formalism has been recently employed in combination
with new theoretical techniques [6,7] to demonstrate strong
modifications of the thermal properties of nanostructured
bodies, including designable selective emitters [8] and greater
than blackbody heat transport between bodies in the near field
[9]. To date, these studies have focused primarily on linear
media, where emission depends only on the linear response
functions of the underlying materials. A cubic (χ (3)) nonlinear-
ity, however, can convert light from one frequency to another
or alter the dissipation rate [10] and hence the fluctuation
statistics. We show that these phenomena lead to a variety of
interesting effects in nonlinear radiators, such as line-shape al-
terations, temperature-dependent emission, and even radiation
exceeding the blackbody limit in nonequilibrium systems.

In this paper, we obtain a nonlinear fluctuation-dissipation
theorem (FDT) that describes radiative thermal effects in
nonlinear χ (3) media, extending previous work on nonlinear
oscillators [11]. Since nonlinear optical effects are generally
weak in bulk materials, we focus on nanostructured resonant
systems with strong effective nonlinear interactions [10,12].
Such systems are susceptible to universal descriptions based on
the coupled-mode theory framework [13,14], which we exploit
to investigate the ways in which nonlinearities can enable
interesting and designable radiative effects. In particular,
we show that self-phase modulation (SPM) and two-photon
absorption (TPA) effects lead to strong modifications of their
emissivity, including thermal broadening and non-Lorentzian,
asymmetric line shapes. These nonlinear effects pave the
way for additional material tunability, including designable,
temperature-dependent selective emitters and absorbers. We
also consider nonequilibrium situations and show that TPA
results in selective heat transfer exceeding the blackbody

limit, a phenomenon that has only been observed in situations
involving multiple bodies in the near field [9]. Finally, we
show that recently proposed wavelength-scale cavities with
ultralarge dimensionless lifetimes Q � 108 and small mode
volumes V ∼ (λ/n)3 can be designed to display these strongly
nonlinear effects at infrared wavelengths and near room
temperature.

Fluctuation-dissipation relations in nonlinear media have
been a subject of much interest in recent decades, starting with
the early work of Bernard and Callen [15], Stratonovich [16],
and Klimontovich [17]. The effects of nonlinearities of both
conservative and dissipative nature on the Brownian motion
of resonant systems have been studied in the context of van
der Pol oscillators [17], optomechanical systems [18], and
mechanical Duffing oscillators [11,19]. Despite the relatively
large body of work involving noise in nonlinear systems, the
role and consequences of nonlinear damping in mechanical
oscillators have only recently begun to be explored [19,20],
and there remains much to be known about the underlying
physical mechanisms in such systems. The effects of nonlinear
noise are also non-negligible and of great importance in a
variety of applications, e.g., microelectromechanical system
(MEMS) sensors [21], frequency stabilization [22], frequency
mixing [23], and filtering [24]. While there is increased interest
in studying nonlinear effects in micro- and nanomechanical
oscillators, studies of nonlinear effects on thermal radiation
remain scarce and are largely restricted to driven systems with
conservative nonlinearities, e.g., resonators based on rf-driven
Josephson junctions [25] or optomechanical oscillators [26].
(The situation is different in the quantum regime, where the
effects of SPM on the tunneling rate and quantum statistics
of photons have been well studied [27,28].) Following an
approach analogous to the treatment of nonlinear friction
in mechanical oscillators [11], we extend previous work
on Duffing oscillators to the case of nonlinear photonic
cavities coupled to external baths or channels, a situation of
direct relevance to current-generation experiments on radiative
thermal transport in photonic media [29]. Interestingly, we find
that effects arising from the interference of radiation reflected
and emitted from the cavity into the external bath are crucial
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in order to observe thermal radiation enhancements in realistic
situations, such as in cases where the external-bath temperature
is at or near room temperature. We believe that these photonic
systems not only offer opportunities for understanding the
role of nonlinear damping on fluctuations, but also extend
the functionality and tunability of devices based on thermal
radiation. As we argue below, while these effects require very
strong optical nonlinearities, the increasing accessibility of
ultrahigh Q resonators with small modal volumes [12,30–33],
such as the nanobeam cavity explored below, offers hope that
they may soon be within the reach of experiments.

II. LANGEVIN FRAMEWORK

We begin by introducing the Langevin equations of motion
of a single-mode nonlinear χ (3) cavity coupled to an external
bath (a single output channel) and an internal reservoir (a
lossy channel). As described in Ref. [34], the coupled-mode
equations for the field amplitude are given by

da

dt
= [i(ω0 − α|a|2) − γ ]a +

√
2γes+ + Dξ, (1)

s− = −s+ +
√

2γea, (2)

where |a|2 is the mode energy, |s±|2 are the input (output)
power from (to) the external bath (e.g., a waveguide), and ω0

and γ = γe + γd are the frequency and linear decay rate of
the mode. The linear decay channels include linear absorption
from coupling to phonons or other dissipative degrees of free-
dom (γd ) as well as decay into the external environment (γe).
The real and imaginary parts of the nonlinear coefficient α are
given by the overlap integral α = 3

4ω0
∫

ε0χ
(3)|E|4/(

∫
ε|E|2)2

of the linear cavity fields E and lead to SPM and TPA,
respectively [34]. In addition to radiation coming from the
external bath ∼s+, Eq. (1) includes a stochastic Langevin
source Dξ (t) given by the product of a normalized “diffusion
coefficient” D, relating amplitude fluctuations to dissipation
from the internal (phonon) reservoir, and a time-dependent
stochastic process ξ (t) whose form and properties can be
derived from very general statistical considerations [16,35,36].
For linear systems (α = 0), the stochastic terms are uncor-
related white-noise sources (assuming a narrow bandwidth
γ � ω0) satisfying

〈s∗
+(t)s+(t ′)〉 = kBTeδ(t − t ′), (3)

〈ξ ∗(t)ξ (t ′)〉 = kBTdδ(t − t ′), (4)

D(γd ) =
√

2γd, (5)

where 〈· · · 〉 is a thermodynamic ensemble average, and Td and
Te are the local temperatures of the internal and external baths,
respectively.

The presence of nonlinear dissipation ∼ Im α|a|2 means
that D must also depend on a and Im α [35]. Note that Re α

does not play any role in nonlinear dissipation. This intuitive
result also follows from a microscopic Hamiltonian approach
where Re α appears in the isolated system Hamiltonian as
the quartic nonlinearity term while Im α represents system-

heat bath nonlinear coupling [28]. As a result, the diffusion
coefficient D which captures the cavity-bath interaction in
Eq. (1) does not depend on Re α. (Interestingly, in the case
of a driven quantum oscillator, the real part of χ (3) affects
the tunneling rate between states and hence the fluctuation
statistics [27].) Such a nonlinear FDT can be obtained
from very general statistical considerations such as energy
equipartition [16,35,36], derived under the assumption that
the system is at equilibrium, i.e., T = Te = Td. As described in
Appendix A, one can apply a standard procedure to transform
the stochastic ordinary differential equation (ODE) Eq. (1) into
a Fokker-Planck (FP) equation for the probability distribution
P (a,a∗) [37], which in our case is given by

dP (a,a∗)

dt
= − ∂

∂a
KaP − ∂

∂a∗ Ka∗P + 1

2

∂2

∂a∂a∗ Kaa∗P,

(6)

with Fokker-Planck coefficients,

Ka = [i(ω0 − Re α|a|2) − (γ − Im α|a|2)]a + λD
∂D

∂a∗ ,

Ka∗ = [−i(ω0 − Re α|a|2) − (γ − Im α|a|2)]a∗ + λD
∂D

∂a
,

Kaa∗ = Ka∗a = (2γe + D2), Kaa = Ka∗a∗ = 0.

The precise meaning of these coefficients depends on the
integration rule used to describe the stochastic ODE. Here,
λ = 0, 1

2 ,1 correspond to Ito, Stratonovich, and kinetic in-
terpretations of stochastic calculus, respectively [37]. The
parameters λ and D must of course ensure that the statistical
properties of the system are consistent with the laws of
thermodynamics.

Based on the standard working hypothesis of statistical
mechanics, the equilibrium state is described by the Maxwell-
Boltzmann distribution e−U/kBT , where U is the energy in the
cavity field. Since the nonlinearity is considered perturbatively
in the derivation of the coupled mode equations [38], nonlinear
contributions to the cavity energy |a|2 can be safely neglected
[39]. More generally, however, for an undriven oscillator,
the nonlinear contribution to the oscillator energy can be
ignored if the shift in the frequency is much smaller than the
cavity eigenfrequency [28], which is the case for the passive,
nonlinear cavity considered here. This well-known result can
be verified by solving Eq. (6) in the absence of nonlinear
dissipation (Im α = 0), in which case the fluctuation statistics
remain unchanged and one finds that terms ∼ Re α do not affect
the steady-state probability distribution [35,40]. It follows that
the equilibrium state of the system is described by the Gibbs
distribution e−|a|2/kBT and the stochastic equations must be
interpreted according to the kinetic rule λ = 1, provided that
the diffusion coefficient D has the form

D(a,a∗) =
√

2(γd − Im α|a|2). (7)

Hence, the only modification to the diffusion coefficient is
the addition of the nonlinear dissipation rate Im α|a|2. Note
that the particular form or choice of multiplicative noise will
determine the corresponding stochastic interpretation, and vice
versa. For instance, it is also possible to choose the internal
noise in Eq. (1) to be of the form

√
2γdξ1 + D(a,a∗)ξ2, where
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ξ1,2 are independent Gaussian noise sources, provided that
D = √−2 Im αa∗ and that the stochastic ODE is interpreted
according to the Stratonovich rule λ = 1

2 [28]. Our choice of
interpretation here is chosen purely for convenience.

III. THERMAL RADIATION

Equations (1) and (7) can be solved to obtain both the
equilibrium and nonequilibrium behavior of the system.
Since they do not admit closed-form analytical solutions,
we instead solve the stochastic ODE numerically using the
Euler-Maruyama method [41], involving a simple forward-
difference discretization which for the kinetic calculus results
in additional terms compared to an Ito discretization [37]. To
lowest order in the discretization,

�a = [i(ω0 − α|a|2) − γ ]a�t + D�Wξ

+ ∂D

∂a
�a�Wξ + ∂D

∂a∗ �a∗�Wξ +
√

2γe�Ws+,

where �a ≡ a(t + �t) − a(t) and �Wf ≡ Wf (t + �t) −
Wf (t) = f �t is a Wiener process [41] corresponding to the
white-noise stochastic signal f ∈ {ξ,s+}. It follows that to first
order in �t , the discretized ODE is given by

�a = [i(ω0 − α|a|2) + Im α|ξ |2 − γ ]a�t

+ 2
√

γd − Im α|a|2�Wξ +
√

2γe�Ws+, (8)

where the additional discretization term ∼ Im α|ξ |2 arises in
the kinetic and not the Ito calculus.

Equilibrium. In what follows, we demonstrate numerically
that the system described by Eqs. (1) and (7) thermalizes and
satisfies all of the properties of an equilibrium thermodynamic
system, including equipartition and detailed balance, but that
nonlinearities lead to strong modifications of the emissivity
of the cavity. We consider the equilibrium situation T ≡
Td = Te, in which case 〈|s+|2〉 = 〈|ξ |2〉 = kBT . To begin with,
we motivate our numerical results by performing a simple
mean-field approximation known as statistical linearization
[42], which captures basic features but ignores correlation
effects stemming from nonlinearities. Specifically, making the
substitution |a(t)|2 → 〈|a(t)|2〉 = kBT in Eq. (1), and solving
for the steady-state linear response of the system, we obtain
the emissivity of the cavity ε(ω) ≡ 2γe〈|a(ω)|2〉/kBT , defined
as the emitted power into the external bath normalized by kBT

in the limit s+ → 0. In particular, we find

ε(ω) = 4γe(γd − Im αkBT )

δω2
T + (γ − Im αkBT )2

� 1, (9)

where δωT ≡ ω − ω0 + Re αkBT and ε � 1, as expected from
Kirchoff’s law [3,5].

Equation (9) can be integrated to verify the self-consistency
condition 〈|a(t)|2〉 = ∫

dω
2π

〈|a(ω)|2〉 = kBT , as required by
equipartition. It can also be combined with Eq. (2) to show
that detailed balance 〈|s−(ω)|2〉 = 〈|s+(ω)|2〉 is satisfied, i.e.,
there is no net transfer of heat from the cavity to the external
bath and vice versa. More interestingly, the presence of α

leads to a temperature-dependent change in the frequency
and bandwidth of the cavity proportional to Re α and Im α,
respectively. These properties are validated by a full solution
of the ODE, as illustrated on the inset of Fig. 1, which shows

FIG. 1. (Color online) Peak emissivity εmax of a cavity coupled
to an external bath, both at temperature T , as a function of
nonlinear coupling |ζ | = |α|kBT γe/γ

2, for different ratios of the
linear dissipation γe and external coupling γd rates. The inset shows
the emissivity ε(ω) for γe = γd , corresponding to a cavity with perfect
linear emissivity, for multiple values of ζ , illustrating the effects of
SPM (red/blue) and TPA (green) on the spectrum.

the numerically computed emissivity ε(ω) for a few values
of the dimensionless nonlinear coupling ζ ≡ αkBT γe/γ

2.
Although Eq. (9) yields good agreement with our numerical
results for small |ζ | � 0.5, at larger temperatures correlation
effects become relevant and statistical linearization is no longer
able to describe (even qualitatively) the spectral features. For
instance, in the absence of TPA and for large ζ (such as
ζ = 6 in Fig. 1), SPM leads to asymmetrical broadening of the
spectrum: broadening is most pronounced along the direction
of the frequency shift, as determined by the sign of Re α. This
effect is known as “frequency straddling,” which has been
predicted in the context of Duffing mechanical oscillators
[37,43,44], and arises due to frequency mixing within the
cavity bandwidth, as captured by the perturbative expansion
of the emissivity in powers of α in Eq. (11). In particular,
at equilibrium one finds that the first-order correction to the
emissivity ∼−(Re αkBT ), and so SPM enhances and reduces
thermal contributions from red- and blue-detuned frequencies,
or vice versa depending on the sign of Re α. Intuitively, the
density of states within the cavity favors frequency conversion
away from the resonance. Hence, photons on the red side of the
resonance will experience larger frequency shifts than those
on the blue side for Re α > 0 (redshifting), and vice versa for
Re α < 0 (blueshifting). Note that equipartition 〈|a|2〉 = kBT

and detailed balance 〈|s+(ω)|2〉 = 〈|s−(ω)|2〉 are satisfied even
in the presence of strong correlations.

The above SPM and TPA effects pave the way for designing
temperature-tunable thermal emissivities. For instance, it is
well known that in a linear system, a cavity can become a
perfect emitter or absorber when the emission and dissipation
rates are equal, i.e., γe = γd [45]. It follows from Eq. (9) that in
the nonlinear case there is a modified rate-matching condition
whereby ε = 1 is achieved only at the critical temperature
Tc where γe = γd − Im α(kBTc). Hence, a system designed to
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have γe > γd (since Im α < 0 in any passive system [10]) at
room temperature will become a perfect emitter at Tc � 300 K.
To illustrate this phenomenon, Fig. 1 shows the variation of
the peak emissivity of the cavity, εmax, by tuning the effective
nonlinearity |ζ | for multiple values of γe/γd .

Nonequilibrium. We now consider nonequilibrium condi-
tions and demonstrate that TPA can lead to thermal radiation
exceeding the blackbody limit. Assuming local equilibrium
conditions, 〈|s+|2〉 = kBTe, 〈|ξ |2〉 = kBTd, the heat transfer
between the cavity and external bath is given by

H =
∫ ∞

−∞

dω

2π
(〈|s−(ω)|2〉 − 〈|s+(ω)|2〉)

=
∫ ∞

−∞

dω

2π
�(ω)kB�T, (10)

where �T ≡ Td − Te and �(ω) is known as the spectral
transfer function [7], or the heat exchange between the two
systems compared to two blackbodies. [The transfer function
of a blackbody �BB(ω) = 1 at all frequencies.]

To begin with, we consider a perturbative expansion of
Eq. (1) in powers of α, described in Appendix B, which we
find to be accurate to within a few percent up to |ζ | ≈ 0.5.
In this case we find that statistical linearization does not even
qualitatively describe the behavior of the system at small α.
To linear order in α, perturbation theory leads to the following
expressions for the energy and output-power spectra:

〈|a(ω)|2〉 = 2γ kBTeff

δω2 + γ 2
− 4δωγ Re α(kBTeff)2

(δω2 + γ 2)2

+ 2 Im α
(
k2

BTeff
)

(δω2 + γ 2)

[
Td + 2γ 2(Td − 2Teff)

δω2 + γ 2

]
,

(11)

�(ω) = 4γeγd

δω2 + γ 2

− 8δωγeγd Re α(kBTeff)

(δω2 + γ 2)2
− 1

�T

4γe Im αkB

(δω2 + γ 2)

×
[
TeffTd + [2γ 2Teff + (δω2 − γ 2)Te](Td − 2Teff)

δω2 + γ 2

]
,

(12)

where δω ≡ ω − ω0 and Teff = γeTe+γdTd

γ
is the effective

temperature 〈|a(t)|2〉/kB of the cavity in the linear regime.
At finite α, the effective temperature is given by

T NL
eff = Teff − 2 Im αkBTeff

γ
(Td − Teff) , (13)

which reduces to Teff in the absence of nonlinearities and at
equilibrium. Furthermore, one can also show that in the linear
regime, � � �BB and reaches its maximum at the resonance
frequency when γe = γd . For finite Im α �= 0, we find that
T NL

eff > Teff , irrespective of system parameters and that under
certain conditions � increases above one. Thus, one arrives at
the result that, out of equilibrium, the rate at which energy is
drawn from the phonon bath can be larger than the rate at which
energy radiates from the cavity, causing the effective tem-
perature and overall heat transfer to increase above its linear
value, a phenomenon associated with the presence of excess
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FIG. 2. (Color online) Peak (on-resonance) spectral transfer
function �max ≡ �(ω0) normalized by the blackbody �BB (top), and
net heat transfer H (ζ ) normalized by Hmax(0) (bottom), as a function
of nonlinear coupling |ζ | = |α|kBT γe/γ

2, for a system consisting
of a cavity at temperature Td coupled to an external bath at Te = 0,
for multiple configurations of γe/γd and Re α/Im α at T = Td. The
inset shows a cavity design supporting a mode at λ ≈ 2.09 μm with
lifetime Q ≈ 108 and modal volume V ≈ 0.8(λ/n)3, along with its
corresponding Hz and Ey field profiles.

heat [46]. Note that T NL
eff is not affected by Re α to first order

since the perturbation is odd in δω and therefore integrates to
zero. One can show that the peak transfer can increase above
one whenever d�(ω0)

d(− Im α) [Teff(3Td + 2Te − 4Teff) − TeTd] > 0 is
satisfied, which occurs, for instance, when Td � Te, in which
case d�(ω0)

d(− Im α) > 0. Thus, when a linear system has nearly
perfect emissivity, any small amount of TPA can push its
radiation above the blackbody limit. For example, the peak
emissivity of a system with γe = γd , Te = 0, and subject to
TPA, is given from Eq. (13) by η ≡ �(ω0)

�BB
= 1 − Im α(kBTd)

2γ
,

which increases above one with increasing − Im α.
Figure 2 shows the peak spectral transfer ηmax =

�max/�BB, along with the normalized, frequency-integrated
heat transfer H (ζ )/Hmax(0) as a function of |ζ |, computed
by integrating Eq. (1) numerically. Here Hmax(0) denotes the
maximum possible heat transfer in the linear regime which
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occurs under the rate-matching condition γe = γd . (The inset
shows a realistic structure where such nonlinear radiation
effects can potentially be observed.) The largest increase in η

occurs when �T is largest and so in the figure we consider the
case Te = 0, for multiple values of Re α/ Im α and γe/γd . As
|ζ | increases from zero, ηmax increases and in certain regimes
becomes greater than one. At larger ζ , the enhancement is
spoiled due to thermal broadening causing energy in the cavity
to leak out at a faster rate, thereby weakening nonlinearities
and causing ηmax → 0 as |ζ | → ∞. The maximum η is
determined by a competition between these two effects, with
thermal broadening becoming less detrimental and leading
to larger enhancements with decreasing γe/γd . We find that
TPA does not just enhance �(ω) but also increases the total

heat transfer and, in particular, H (ζ )
Hmax(0) = 2T NL

eff
�T

→ 2Td
�T

= 2 in
the limit as |ζ | → ∞ (not shown), increasing monotonically
with increasing ζ . As expected, H is bounded by the largest
achievable effective temperature T NL

eff � Td, or alternatively
by the maximum rate at which energy can be drawn from the
phonon bath. Examination of the reverse scenario (Te > Td), in
which the external bath is held at a higher temperature than the
cavity, also leads to similar enhancements. However, because
only the internal bath experiences nonlinear dissipation, the
system exhibits nonreciprocal behavior with respect to Td �
Te, which is evident in Eq. (12). Moreover, we find that
T NL

eff in this reverse scenario always decreases with increasing
TPA. Such nonreciprocity in the heat exchange is absent in
linear systems and could potentially be useful in technological
applications, such as for thermal rectification [47,48].

To illustrate the range of thermal tunability offered by TPA,
we consider the on-resonance heat transfer �max ≡ �(ω0) in
the highly nonequilibrium regime Te = 0 and for Re α = 0.
While SPM offers some degree of tunability, we find that TPA
has a significantly larger impact on the radiation rate of the
cavity. In this regime, Eq. (12) simplifies and yields �max =
4γeγd

γ 2 [1 + (− Im α)
γ

(3 − 4 γd

γ
)kBTd], from which it follows that

at small ζ � 0.5, where Eq. (12) is applicable, �max scales
linearly with Td and depends on the ratio γd

γ
, increasing

above its linear value whenever 3γe � γd . Furthermore, one
finds that the largest temperature variation, related to the
slope (− Im α)

γ
(3 − 4 γd

γ
), is obtained in the limit γe � γd and

γe,γd → 0, corresponding to a cavity with negligible linear
emissivity, large ζ � 1 (for a fixed temperature and Im α), and
narrow bandwidth. Interestingly, we find that even for small
ζ < 1 and γe/γd ∼ 20, the emissivity of the cavity can increase
dramatically from φmax ≈ 0.2 at ζ = 0.4 to φmax ≈ 0.9 at
ζ = 0.8.

As mentioned above, it turns out that a nonlinear mechan-
ical oscillator interacting with a medium through nonlinear
friction exhibits similar spectral characteristics [11,28]. How-
ever, in contrast to our photonic radiator, enhancements in the
spectral peak due to nonlinear friction are only observed when
the nonlinear dissipation rate is much larger than the linear loss
rate, or equivalently when the source of nonlinear friction is at
a very high temperature compared to the internal phonon tem-
perature [11]. While realizing these experimental conditions
in mechanical oscillators, including the need to have isolated
linear and nonlinear heat baths operating at vastly different
temperatures, seems difficult, a photonic cavity offers alter-

native ways of observing thermal radiation above the linear
blackbody limit, creating opportunities for studying nonlinear
damping. First, while in the case of a mechanical oscillator one
observes large enhancements only when the internal dissipa-
tion and hence the bandwidth γd → 0, the introduction of an
external radiative channel in a photonic system enables large
thermal enhancement with finite γd and hence larger band-
widths. In particular, as long as the linear cavity losses are dom-
inated by radiation to the external bath, corresponding to the
situation γd � γe, the total cavity bandwidth γe can be large
while still allowing internal losses to be dominated by nonlin-
ear friction. Second, while in the case of mechanical oscillators
one observes nonlinear enhancement only when the external
(linear dissipation) temperature is small compared to the inter-
nal (nonlinear dissipation) temperature, Te � Td, interference
effects associated with the presence of the external bath in the
photonic system ameliorate this experimentally onerous con-
straint. In particular, the heat exchanged between the photonic
cavity and external bath depends on the sensitive interference
between reflected and emitted radiation from the cavity,
described by Eq. (2). These interference effects result in am-
plitude correlations ∼ Im α〈s∗

+aa∗ξ 〉, corresponding to the last
term of Eq. (12), whose contribution to the heat transfer cannot
be ignored in situations where Te � Td. (In their absence, the
spectrum of the cavity resembles that of a mechanical oscillator
and one can no longer observe significant enhancements in
thermal radiation unless Te � Td.) For illustration, consider
a situation in which the cavity and external channel are held
at temperatures such that Td = 2Te. In this case, we find that
the maximum transfer increases from �max ≈ 0.6 at ζ = 0
to �max ≈ 1.2 at ζ = 1 almost entirely due to interference be-
tween the reflected and emitted radiation from the cavity, in the
absence of which �max actually decreases with increasing ζ .

IV. CONCLUSION

We conclude by proposing a practical system where the
above-mentioned effects can potentially be observed. In order
to reach the strongly nonlinear regime, it is desirable to have
|ζ | = |α|kBT γe

γ 2 ∼ 1. Given a choice of operating temperature,
the goal is therefore to design a cavity with a large Purcell
factor α/γ ∼ Q/V . If the goal is to observe large enhance-
ments from TPA, it is also desirable to operate with materials
and wavelengths where the nonlinear figure of merit (FOM)

n2
λβTPA

� 1, corresponding to large TPA where n2 and βTPA are
the Kerr and the TPA coefficients, respectively [10]. All of
these conditions can be achieved in a number of material
systems and geometries. For illustration, we consider the Ge
nanobeam cavity shown in the inset of Fig. 2 and based on the
family of nanobeam cavities described in Ref. [31], which
supports a mode at λ = 2.09 μm. At this wavelength, Ge
has an index of refraction n ≈ 4 and Kerr coefficient χ (3) ≈
(1.2 − 11i) × 10−17 (m/V)2 [10,49], corresponding to a FOM
≈ 0.008. This yields a mode with α ≈ 0.001(χ (3)/ε0λ

3), Q ≈
108, and modal volume V ≈ 0.8(λ/n)3, leading to |ζ | ≈ 1
for operation at T = 1000 K. (Large Purcell factors such
as these were recently predicted in a similar, albeit silicon,
platform [31].) We note that there are other possible cavity
designs, wavelengths, and material choices, including GaP
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and ZnSe, and that it is also possible to operate with larger
bandwidths at the expense of larger temperatures and/or
smaller mode volumes. Because these thermal effects scale
linearly with the Purcell factor, we believe that nanophotonic
cavities with ultrasmall modal volumes and bandwidths are
the most promising candidates for experimental realization.
This is in contrast to the situation encountered in traditional
nonlinear devices involving incident (nonthermal) light, where
the threshold power for observing strong nonlinear effects
∼V/Q2 and therefore favors designs that sacrifice modal
volume in favor of smaller bandwidths [12].

Finally, we note that the predictions above offer only a
glimpse of the potentially interesting radiative phenomena that
can arise in passive nonlinear media at and out of equilibrium.
In future work, it may be interesting to consider the impact
of other nonlinear phenomena on thermal radiation, including
free-carrier absorption and third harmonic generation, as well
as applications of the Kerr effect to thermal rectification
[47,48]. In a related context of optomechanics, the coupling
of photonic and mechanical resonances leads to different
nonlinear effects that are also manifested in the radiation
spectrum of photonic cavities, often studied in the presence
of incident, nonthermal radiation pressure [18,50]. We believe
that electronic nonlinearities such as the Kerr effect in
semiconductors offer an alternative approach to exploring
similar ideas involving nonlinear fluctuations.
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APPENDIX A: FOKKER-PLANCK EQUATION

In this Appendix, we review the procedure for deriving
the FP equation [Eq. (6)] from the corresponding nonlinear
Langevin equation [Eq. (2)], which can be written in the
following simplified form:

ȧ = f (a,a∗) + D(a,a∗)ξ +
√

2γes+,

f (a,a∗) = i(ω0 − α|a|2)a − γa,

where D is the diffusion coefficient, and ξ and s+ are
delta-correlated white-noise sources obtained by taking the
derivative of standard Wiener processes [41], ξ = Ẇξ and
s+ = Ẇs . For a finite discretization time �t , the coupled-mode
equations can be written as follows [37]:

a(t) − a(t − �t)

�t
= f (λa(t) + (1 − λ)a(t − �t))

+D(λa(t) + (1 − λ)a(t − �t))

× [W1(t) − W1(t − �t)]

�t

+
√

2γe

[W1(t) − W1(t − �t)]

�t
, (A1)

where the choice of 0 � λ � 1 determines the correspond-
ing stochastic interpretation rule. Specifically, λ = 0, 1

2 ,1
correspond to Ito, Stratonovich and kinetic interpretations
of stochastic calculus, respectively [37]. Taylor expanding
each term and defining �a ≡ a(t) − a(t − �t) and �Wi =
Wi(t) − Wi(t − �t), with �Wi denoting a standard Brown-
ian increment with zero mean and variance 〈�W ∗

i �Wi〉 =
kBT �t , one finds the following expression to O(�t),

�a = f (a,a∗)�t + D�W1 + λD
∂D

∂a
�W1�W1

+ λD
∂D

∂a∗ �W ∗
1 �W1 +

√
2γe�W2. (A2)

Transforming the Langevin equation into a FP Partial Dif-
ferential Equation (PDE) involves a standard procedure [37]
and leads to an equation of the form ∂P

∂t
= −∑

α
∂

∂aα
KαP +∑

α,β
∂2

∂aα∂aβ
Kα,βP , where the FP coefficients are given by

Kα = lim
�t→0

〈aα(t) − aα(t − �t)〉
�t

,

Kα,β = lim
�t→0

〈[aα(t) − aα(t − �t)][aβ(t) − aβ(t − �t)]〉
�t

.

Carrying out the above limiting procedures, one obtains the
FP equation given in Eq. (6).

APPENDIX B: PERTURBATION THEORY

In this Appendix, we derive perturbative expressions for the
energy spectrum 〈|a(ω)|2〉 and transfer function �(ω) of the
nonlinear cavity. For convenience, we define α = α1 − α2i,
with α2 = − Im α > 0, as required by any passive nonlinear
system. We begin by defining a perturbed cavity field a(t) =
a0(t) + δa(t), where a0 is the linear cavity field and δa is a
correction of linear order in α. Plugging in the perturbed field
into the coupled-mode equations and ignoring terms O(α2)
and higher, one obtains the coupled equations

ȧ0 = (iω0 − γ )a0 +
√

2γdξ +
√

2γes+, (B1)

δ̇a = (iω0 − γ )δa − (iα + α2)|a0|2a0 + α2√
2γd

|a0|2ξ. (B2)

Fourier transforming both equations, their solution to first
order in α can be written as

a0(ω) = D(ω)−1[
√

2γdξ (ω) +
√

2γes+(ω)], (B3)

δa(ω) = D(ω)−1

√
2γd

F{α2|a0|2ξ − (iα1 + α2)
√

2γd |a0|2a0},
(B4)

where D(ω) ≡ i(ω − ω0) + γ and F ≡ ∫
dte−iωt denotes the

Fourier transform operator.

1. Energy spectrum

We first compute the energy spectrum of the perturbed
cavity which, to first order in δa, is given by

〈|a(ω)|2〉 = 〈|a0(ω)|2〉 + 2 Re{〈a∗
0 (ω)δa(ω)〉}. (B5)
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As discussed below, the second term can be obtained by ex-
ploiting the following linear, two-point correlation functions:

〈a∗
0 (ω)ξ (ω′)〉 =

√
2γdkBTdδ(ω − ω′)

D∗(ω)
, (B6)

〈a0(ω)ξ (ω′)〉 =
√

2γdkBTdδ(ω + ω′)
D(ω)

, (B7)

〈a∗
0 (ω)s+(ω′)〉 =

√
2γekBTeδ(ω − ω′)

D∗(ω)
, (B8)

〈a0(ω)s+(ω′)〉 =
√

2γekBTeδ(ω + ω′)
D(ω)

, (B9)

〈a∗
0 (ω)a0(ω′)〉 = γ kBTeffδ(ω − ω′)

D(ω)D∗(ω)
, (B10)

where Teff = γeTe+γdTd

γ
denotes the linear effective temperature

of the cavity. In deriving Eqs. (B6)–(B10), we employed
the fact that s+ and ξ are uncorrelated white-noise sources
described by Eqs. (3) and (5). Equation (B10) is precisely the
zeroth-order term of the energy spectrum (in the absence of
nonlinearities), while the first-order correction is given by the
more complicated expression

〈a∗
0 (ω)δa(ω′)〉 =

〈
[
√

2γdξ
∗(ω) + √

2γes
∗
+(ω)] 1√

2γd
G(ω′)

D∗(ω)D(ω′)

〉
,

(B11)

where the function

G(ω) ≡ F[α2|a0|2(ξ −
√

2γda0) − iα1

√
2γd |a0|2a0]

=
∫ ∞

−∞
dx

∫ ∞

−∞
dte−i(ω−x)t

∫ ∞

−∞
dω1e

−iω1t

×
∫ ∞

−∞
dω2e

iω2t a∗
0 (ω1)a0(ω2)[α2{ξ (x) −

√
2γda0(x)}

− iα1

√
2γda0(x)],

encapsulates the spectral response of the perturbed cavity field,
here simplified by exploiting the relation F{|a0|2} = F{a0} �

F{a∗
0}. Focusing first on the α2 terms of the numerator of

Eq. (B11), one obtains

α2

∫ ∞

−∞
dx

∫ ∞

−∞
dt

∫ ∞

−∞
dω1

×
∫ ∞

−∞
dω2e

−i(ω′+ω1−ω2−x)t a∗
0 (ω1)a0(ω2)

× [ξ (x) −
√

2γda0(x)]

[
ξ ∗(ω) +

√
γe

γd

s∗
+(ω)

]
.

The ensemble average of the expression under the integrals
involves four-point correlation functions and is given by

〈· · · 〉 = 〈a∗
0 (ω1)a0(ω2)ξ (x)ξ ∗(ω)〉

+
√

γe

γd

〈a∗
0 (ω1)a0(ω2)ξ (x)s∗

+(ω)〉

−
√

2γd〈a∗
0 (ω1)a0(ω2)a0(x)ξ ∗(ω)〉

−
√

2γe〈a∗
0 (ω1)a0(ω2)a0(x)s∗

+(ω)〉.

Because the noise sources follow Gaussian distributions,
four-point correlation functions can be written in terms of
products of two-point correlation functions via Wick’s theorem
[35]. Summing the resulting two-point correlation functions,
described by Eqs. (B6)–(B10), one obtains the following three
terms:

Teff

[
Td − 2γdTd + 2γeTe

D(ω)

]
δ(ω − ω′)

D∗(ω)D(ω′)
,

2γdTd + 2γeTe

D(ω)
[Td − Teff]

δ(ω − ω′)
D∗(ω)D(ω′)

,

2γdTd + 2γeTe

D∗(−ω)

[
Td − Teff

γ 2 + iω0γ

γ 2 + ω2
0

]
δ(ω − ω′)

D∗(ω)D(ω′)
.

It follows that the α2 term in Eq. (B11) is given by

α2k
2
B

|D(ω)|2
[
TeffTd − 2γ T 2

eff

D(ω)
+ 2γ TeffTd

D(ω)
− 2γ T 2

eff

D(ω)

+ γ TeffTd

D∗(−ω)
− 2γ T 2

eff

D(ω)

γ 2 + iω0γ

γ 2 + ω2
0

]
. (B12)

Note that the last two terms can be neglected since the
quantities ∝D∗(−ω) involve off-resonant, counter-rotating
fields and, furthermore, our coupled-mode theory is only valid
in the regime γ � ω0. Performing a similar calculation for the
α1 term yields

−iα1k
2
B

|D(ω)|2
[

2γ T 2
eff

D(ω)
+ 2γ T 2

eff

D(ω)
+ 2γ T 2

eff

D∗(−ω)

γ 2 + iω0γ

γ 2 + ω2
0

]
. (B13)

Putting together the above two expressions for both real and
imaginary α and neglecting counter-rotating terms, one obtains
the energy spectrum in Eq. (11).

2. Spectral transfer function

The spectral transfer function is defined as the relative
power transfer from the cavity into the output channel divided
by their temperature difference,

�(ω) = 〈|s−(ω)|2〉 − 〈|s+(ω)|2〉
kB�T

.

To first order in α, the outgoing power is given by

〈|s−(ω)|2〉 = 〈|s+(ω)|2〉 + 2γeSaa(ω)

− 2
√

2γe Re{〈s∗
+(ω) [a0(ω) + δa(ω)]〉}, (B14)

where the first and second terms are the incident power and
energy spectra of the cavity, obtained above, and so it only
remains to calculate the third term, or the interference between
the incoming and outgoing radiation. Following the same
procedure as before, the zeroth- and first-order correction
terms are given by 〈s∗

+(ω)a0(ω)〉 =
√

2γeTd

D∗(ω) and

〈s∗
+(ω)δa(ω)〉

= 1√
2γd

∫ ∞

−∞
dx

∫ ∞

−∞
dt

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2e

−i(ω′+ω1−ω2−x)t

× [α2a
∗(ω1)a(ω2){ξ (x) −

√
2γda(x)}s∗

+(ω)

− iα1

√
2γda

∗(ω1)a(ω2)a(x)s∗
+(ω)].
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As before, these can be broken down into contributions from
α2 and α1, which yields

α2
√

2γek
2
B

|D(ω)|2
{

− TeffTe + Te(Td − Teff)

+TeD
∗(ω)

D∗(−ω)

[
Td − Teff

(
γ 2 + iω0γ

γ 2 + ω2
0

)] }
(B15)

and

−α1k
2
B

[
2
√

2γeTeffTe

D(ω)2
+

√
2γeTeffTe

D(ω)D∗(−ω)

]
, (B16)

respectively. As before, the counter-rotating terms
∼D∗(ω) can be neglected, leading to the following
expression:

〈s∗
+(ω)δa(ω)〉 = −4α2γeTe [Td − 2Teff]

γ 2(ω − ω0)2

|D(ω)|4

+ 8α1γeTeTeff
γ (ω − ω0)

|D(ω)|4 . (B17)

Finally, after collecting like terms, one obtains the spectral
transfer function in Eq. (12).
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