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Effects of a random gauge field on the conductivity of graphene sheets with disordered ripples
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We study the effect of disordered ripples on the conductivity of monolayer graphene flakes. We calculate
the relaxation times and the Boltzmann conductivities associated with two mechanisms. First, we study the
conductivity correction due to an external in-plane magnetic field B‖. Due to the irregular local curvature
found in graphene sheets deposited over a substrate, B‖ can be mapped into an effective random magnetic field
perpendicular to the graphene surface. Second, we study the electron momentum relaxation due to intrinsic
pseudomagnetic fields originated from deformations and strain. We find that the competition between these
mechanisms gives rise to a strong anisotropy in the conductivity tensor. This result provides a new strategy to
quantitatively infer the strength of pseudomagnetic fields in rippled graphene flakes.
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I. INTRODUCTION

The electronic transport properties of bulk graphene
are quite remarkable [1–4]. At room temperature graphene
on SiO2 substrates has mobilities [5] as high as μ ≈
15 000 cm2 V−1 s−1, which are significantly larger than
those of any other semiconductor. At low temperatures,
however, the typical mobilities increase only up to μ ≈
200 000 cm2 V−1 s −1, which is a disappointing figure com-
pared with those of high-quality GaAs heterostructures. These
observations triggered intense theoretical and experimental
activity to understand the disorder mechanisms that limit
the mobility in graphene (see, for instance, Refs. [1–4]
for a review). The theoretical understanding, acquired from
analysis of the Boltzmann equation [1,3], numerical simu-
lations [2,6,7], and field theoretical techniques [8], is that
extrinsic disorder such as ad-atoms absorbed in the graphene
surface and substrate charge inhomogeneities and intrinsic
disorder such as vacancies play a key role.

Motivated by recent experiments [9–12], we study the
effect of extrinsic and intrinsic random gauge potential
disorder due to strain. We show that, although unlikely to
be dominant in graphene deposited over standard substrates,
these kinds of disorder make unique and sizable contributions
to the conductivity. For high-quality substrates, there is even
experimental evidence [12] that random strain could be a good
candidate for the leading electron relaxation mechanism in
on-substrate graphene.

Standard electronic transport experiments use samples
where graphene flakes are deposited over an insulating
substrate. In this setting, it has been experimentally established
that the graphene surface is characterized by disordered static
ripples [13–16]. For SiO2 substrates, the latter have typical
lengths of λ ≈ 5 − 30 nm and characteristic heights of hrms ≈
0.2 − 0.5 nm.

Lattice deformations due to ripples change the distance
between the atoms in the graphene sheet. At the quantum level,
site lattice displacements change the orbital bonding between
the corresponding atoms, modifying the electronic structure
of the material. In graphene, whose low-energy electronic
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properties are nicely described by a nearest-neighbor tight-
binding model [1], the occurrence of ripples changes the tight-
binding hopping terms [1,17,18]. For distortions with length
scales much larger than the lattice parameter, characteristic of
most samples [13–16], it has been shown that the tight-binding
model can be mapped into an effective Dirac Hamiltonian with
a pseudomagnetic vector potential [1,19–21] that depends on
the lattice distortions. Hence, random ripples give rise to an
intrinsic random gauge potential. The experimental evidence
of pseudomagnetic fields is scarce and indirect but quite
remarkable. Strain fields have been invoked to associate the
local density of states observed in graphene nanobubbles [22]
to Landau levels with energies corresponding to very high
magnetic fields. To the best of our knowledge, no transport
experiment has yet observed manifestations of this physical
picture.

Random magnetic fields can also be achieved by realizing
that disordered ripples in graphene and the roughness at semi-
conductor interface heterostructures share several common
features. Starting in the late 1980s, a number of ingenious
methods were used to characterize the interface roughness in
heterostructures [23–25]. One idea is particularly suited for
graphene studies: By applying a strong magnetic field B‖,
aligned with the plane of a heterostructure interface confin-
ing a two-dimensional electron gas (2DEG), the (smooth)
interface roughness disorder gives origin to a local random
magnetic field perpendicular to the 2DEG surface. Analysis
of the electronic transport properties as a function of the
applied magnetic field gives quantitative information about
the interface roughness.

This setting was nicely explored in a recent experiment [9],
which combined information on the average conductivity and
its weak localization correction [26,27] in graphene to extract
the sample characteristic λ and hrms. This procedure has
also been used in the experimental study of other graphene
systems [10,11]. Theory [28] shows that an applied B‖ on
a rough surface gives rise to an effective dephasing �φ and
to suppression of the weak localization peak. In addition to
this quantum correction, the random magnetic field due to B‖
also contributes to the electron momentum relaxation, which
at high doping is accounted for by the Boltzmann theory [9].
This nice analysis does not consider the effect of intrinsic
pseudomagnetic fields due to strain, discussed above.
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Our focus is different. We study the combined effect of
intrinsic and extrinsic random magnetic fields on the Drude
conductivity. We revisit the analysis of the Boltzmann equation
in graphene [1,2,4,29] and calculate the contributions of
random magnetic fields to the Drude conductivity. We show
that the conductivity corrections due to an applied in-plane
magnetic field B‖ on a rippled graphene flake depend on the
direction of B‖ and are very anisotropic. We find that this
result can be reconciled with the experimental findings in
Ref. [9] by theoretically treating the effect of strain and B‖
on the same footing. We also show that the combined effect
of both sources of random magnetic fields provides a new
experimental path to quantitatively probe the effects of strain
fields in the low-energy electronic dynamics of graphene.

The paper is structured as follows: In Sec. II we present
the disorder model we employ to describe ripples and the
corresponding effective Hamiltonian. We briefly explain the
origin of an effective random field due to an applied in-plane
magnetic field B‖, as well as from the intrinsic strain field
due to ripples. In Sec. III we calculate the contributions
to the Drude conductivity due to B‖ and strain using the
Boltzmann transport equation. We show how to account for
the disorder potential anisotropy and discuss its consequences
comparing with experiments. Finally, in Sec. IV we present
our conclusions and an outlook.

II. MODEL HAMILTONIAN

In this section we present a model to study the effect of
extrinsic and intrinsic sources of random magnetic fields in
the dynamics of electrons in corrugated graphene monolayer
samples. Close to the charge neutrality point, the electronic
dispersion relation of pristine graphene monolayers is linear
and has two degenerate components, with corresponding K

and K ′ valley indices [1]. In the presence of a magnetic field,
the effective electronic Hamiltonian for the K valley reads

HK = vF σ · [ p + eA(r)] = HK
0 + V (r), (1)

where the vector potential A(r) has been included in HK

by minimal coupling. Here vF ≈ 106 m/s, σ are the Pauli
matrices acting on the sublattice space, and p is the electron
momentum operator. The Hamiltonian for the K ′ valley has a
similar structure [1].

In this description, a generic long-ranged disorder potential,
V (r), is represented in both K and K ′ valleys by

V (r) =
∑

i

σiV
(i)(r), (2)

where i = 0 stands for scalar disorder (with σ0 = I2) and
i = 1,2 for vector potential disorder, while i = 3 represents a
mass term. The focus of our study is (intrinsic and extrinsic)
disordered gauge fields, associated with V (1) and V (2). In this
paper we do not consider scalar disorder.

Let us introduce

〈k′s ′|V |ks〉 = 1
2 [1 + ss ′ei(θ−θ ′)]V (0)

k−k′

+ seiθ

2

(
V

(1)
k−k′ − iV

(2)
k−k′

)

+ s ′e−iθ ′

2

(
V

(1)
k−k′ + iV

(2)
k−k′

)
, (3)

where the spinor

|ks〉 = 1√
2A

(
1

seiθ

)
eik·r (4)

is an eigenstate of HK
0 , θ = tan−1(ky/kx), s indicates particle

(s = +1) or hole (s = −1) doping, and

V
(i)
k−k′ = 1

A

∫
d r ei(k−k′)·r V (i)(r) (5)

is the momentum representation of V (i). Since we deal with
elastic processes, in the remainder of the paper we assume that
s = s ′.

At low temperatures, scalar disorder (short and long ranged)
is the main source of momentum relaxation in graphene
systems [2,4]. In this paper we use a phenomenological
transport time τs to account for effects of scalar disorder in
the conductivity. We assume that τs is much shorter than the
characteristic transport times due to random gauge fields. In
Sec. IV, where we compare our results to experiments, we
show that τs indeed dominates the conductivity in graphene,
but some transport properties are only explained by including
effects due to random gauge fields.

The ripple disorder model employed in this study is defined
as follows: We describe the graphene sheet surface by z =
h(r), where h is the surface displacement with respect to the
reference plane z = 0 at the position r = (x,y). The average of
h is set to 0. In line with the experiments on graphene deposited
over a substrate [9,13–16], we further assume that the typical
heights hrms are much smaller than the ripple lengths λ.

We model the ripple fluctuations in h(r) by the correlation
function

〈h(r)h(r ′)〉 = h2
rms F

( |r − r ′|
λ

)
, (6)

where 〈· · · 〉 denotes the average over disorder. Although
theory predicts a power-law height-height correlation function
for free-standing membranes [30], experiments support single-
parameter correlations for the (static) ripples of graphene
deposited over a substrate. For later convenience, let us define

h(q) = 1

A

∫
d reiq·rh(r), (7)

where A is the sample size. In reciprocal space,

〈h(q)h(q ′)〉 = h2
rms F (q)δq,−q ′ , (8)

where F (q) is the Fourier transform of the correlation function
F (|r − r ′|).

We address two mechanisms that generate random magnetic
fields. First, we study the case of an external strong magnetic
field B‖ applied parallel to the graphene sheet. We show that,
due to the ripples, B‖ gives rise to a random effective magnetic
field Bext(r) perpendicular to the graphene surface. Next, we
discuss the intrinsic pseudomagnetic field Bint originating
from the strain field corresponding to the graphene sheet profile
height h(r).
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FIG. 1. (Color online) Sketch of h(r) along the x direction.
Ripple amplitudes δh are enhanced and made comparable with λ

to aid the illustration. For convenience, we take B‖ = B‖ x̂.

A. Random magnetic fields due to ripples and
an in-plane external B field

Let us first consider the setup of a magnetic field applied
parallel to the sample, z = 0, which has been experimentally
investigated in a variety of systems [9,23–25]. For notational
convenience, in what follows we fix the direction of B‖ along
the x axis; namely, B‖ = B‖ x̂.

As illustrated in Fig. 1, the parallel magnetic field B‖ has a
component perpendicular to the surface z = h(r) that is given
by

Bext(r) = −B‖ · n̂(r). (9)

At the point r0 = (x0,y0), the surface z = h(r) has a unit
normal vector,

n̂(r0) = 1√
1 + (

∂h
∂x

)2 + (
∂h
∂y

)2

⎛
⎝∂h/∂x

∂h/∂y

−1

⎞
⎠

∣∣∣∣∣∣
r=r0

. (10)

We assume that the typical displacement magnitude is
characterized by δh. For δh � λ, we write

n̂(r0) ≈ (∂h/∂x,∂h/∂y,−1)|r=r0 . (11)

Hence, the effective local perpendicular magnetic field reads

Bext(r) = −B‖ · ∇h(r) (12)

and is expressed, in a convenient gauge for B‖ = B‖ x̂, by the
vector potential

Ax(r) = 0 and Ay(r) = −B‖h(r) . (13)

Figure 2(a) illustrates a typical disorder realization of h(r)
with fluctuations characterized by the Gaussian correlation
function F (x) = exp (−x2/2λ2). The corresponding magnetic
field Bext(r), normal to the graphene sheet, is shown in
Fig. 2(b). While h(r) displays an isotropic disorder, Bext(r)
is clearly anisotropic. The anisotropy direction of Bext(r)
depends on the orientation of B‖.

The anisotropy is quantified by inspecting the autocorrela-
tion function

〈Bext(r)Bext(r ′)〉 = B2
‖

〈
∂h(r)

∂x

∂h(r ′)
∂x ′

〉
, (14)
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FIG. 2. (Color online) Typical disorder realization of (a) h(r),
characterized by a Gaussian correlation function F ; (b) the corre-
sponding Bext(r) for an external B‖ applied along the x direction,
defined in Eq. (12); and (c) Bint(r) due to lattice deformations, given
by Eq. (19).

which can be expressed in terms of F by direct differentiation.
Alternatively, going to reciprocal space, one writes

〈
∂h(r)

∂x

∂h(r ′)
∂x ′

〉
= h2

rms

∑
q

q2
x F (q)e−iq·(r−r ′)

= −h2
rms

d2

dx2
F (ρ), (15)

with ρ = r − r ′.
Let us calculate 〈Bext(r)Bext(r ′)〉 for the case where h(r) is

characterized by a Gaussian correlation function, the same as in

115403-3



BURGOS, WARNES, LIMA, AND LEWENKOPF PHYSICAL REVIEW B 91, 115403 (2015)

FIG. 3. (Color online) Extrinsic and intrinsic magnetic-field cor-
relation functions: (a) Cext(r − r ′) = 〈Bext(r)Bext(r ′)〉 for an ex-
ternal B‖ applied along the x direction and (b) Cint(r − r ′) =
〈Bint(r)Bint(r ′)〉 due to strain, in units of h4

rms/λ
6(�β/ea)2, both

corresponding to a ripple disordered surface h(r) characterized by
a Gaussian correlation function.

Fig. 2(a). The corresponding Bext(r) autocorrelation function
reads

〈Bext(r)Bext(r ′)〉 = B2
‖
h2

rms

λ2

[
1 −

(
ρ

λ

)2

cos2 α

]
e
− ρ2

2λ2 , (16)

where α is the angle between B‖ (or the x axis) and ρ.
Figure 3(a) shows the Bext(r) autocorrelation function

obtained by averaging over 105 ripple disorder realizations of
h(r), as defined by Eq. (6) with a Gaussian correlation function
F (for more details see, for instance, Ref. [6]). As expected, it
coincides with Eq. (16) and expresses the anisotropy captured
by a visual inspection of Fig. 2(b).

B. Pseudomagnetic fields due to strain

The out-of-plane deformations of a rippled membrane
described by h(r) can be associated with the strain tensor

uij (r) given by [19,31,32]

uxx ≈ 1

2

(
∂h

∂x

)2

, uyy ≈ 1

2

(
∂h

∂y

)2

, and

uxy ≈ 1

2

(
∂h

∂x

∂h

∂y

)
. (17)

For simplicity, we have neglected the effect of in-plane
deformations.

The effect of strain on the low-energy electronic structure
of graphene can be accounted for by introducing a scalar and
a vector gauge potential in the Dirac equation [20,21,30]. The
scalar term reads

V (0)(r) = g[uxx(r) + uyy(r)], (18)

while, for the K valley and for an armchair crystallographic
orientation along the x axis, A = (Ax,Ay) is given by

Ax(r) = �βκ

ea
[uxx(r) − uyy(r)],

Ay(r) = −2
�βκ

ea
uxy(r), (19)

where a = 1.42 Å is the bond length between nearest-
neighboring carbon atoms, and e is the electron charge.
Here g ≈ 4 eV, κ ≈ 1/3, and β = −∂ log t/∂ log a ≈ 2 are
dimensionless material-dependent parameters [19,31] that
characterize the coupling between the Dirac electrons and the
lattice deformations, where t ≈ 3 eV is the hopping integral
between nearest-neighbor π orbitals.

In summary, for any given h(r) one can readily calculate
the pseudomagnetic field Bint = ∇ × A. Since Az = 0 and
neither Ax nor Ay depends on z, Bint = Bint ẑ. Figure 2(c)
shows the Bint corresponding to the random rippled surface
h(r) in Fig. 2(a). Note that the typical correlation length of
Bint(r) is much shorter than that of h(r).

Let us calculate 〈Bint(r)Bint(r ′)〉 for a random Gaussian-
correlated h(r), corresponding to Eq. (6) with F (x) = e−x2/2λ2

.
To this end, we calculate the Fourier transform of the intrinsic
pseudomagnetic field, namely,

Bint(q) = i
�βκ

ea
[qyuxx(q) + 2qxuxy(q) − qyuyy(q)], (20)

with

uij (q) = −1

2

∑
q ′

q ′
i(qj − q ′

j )h(q ′)h(q − q ′), (21)

where i and j label the Cartesian coordinates.
We use Eqs. (20) and (21) to write the correlation function of

Bint in momentum space. The evaluation of 〈Bint(q)Bint(−q)〉
amounts to computing the corresponding 〈uij (q)ui ′j ′(−q)〉,
which results in four-h correlation functions. This can be
done exactly for Gaussian fluctuations and provides a good
qualitative estimate for other cases [30].

We obtain

〈Bint(q)Bint(−q)〉 = h4
rmsπ

32λ2A

(
�βκ

ea

)2

q2

× [16 + λ4q4 sin2 3θ ]e−λ2q2/4, (22)
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where θ is the angle between q and the x direction. By Fourier
transforming back to coordinate space, we arrive at

Cint(r − r ′)≡〈Bint(r)Bint(r ′)〉 = h4
rms

λ6

(
�βκ

ea

)2

×
[
8 − 20

ρ2

λ2
+ 9

ρ4

λ4
− 2

ρ6

λ6
sin2 3α

]
e−ρ2/λ2

,

(23)

where α is the angle between ρ = r − r ′ and the x axis [33].
The correlation function Cint(r − r ′) has six symmetry

axes, reflecting the underlying graphene honeycomb lattice
symmetry [19]. In other words, information about the graphene
crystal structure survives disorder averaging. Figure 3(b)
shows Cint(r − r ′) obtained from 105 numerical realizations
of Gaussian-correlated disorder for h(r). The numerical
simulations serve as a helpful test to check our analytical
results. As in the previous subsection, we verify excellent
agreement within the statistical precision.

III. DRUDE-BOLTZMANN CONDUCTIVITY

In this section we use the effective Dirac Hamiltonian,
Eq. (1), to calculate the transport time and the Drude-
Boltzmann conductivity of graphene monolayers in the
presence of random gauge fields. High-mobility graphene
samples have typical electronic mean free paths of � �
50 nm. Recalling [1] that the carrier density is related to the
Fermi wave number by kF = √

π |n|, one readily obtains that
kF � � 1 already for a doping where |n| ≈ 1011 cm−2. This
indicates that even for modest carrier densities a semiclassical
transport description is justified. For |n| � 1011 cm−2 the
typical graphene conductivity in good samples is much larger
than e2/h, the order of magnitude of quantum contributions
to the electronic transport, such as weak localization [2,26,27]
and universal conductance fluctuations [34]. In such situations,
the Boltzmann approach is very successful in assessing the
conductivity, as shown by direct comparison with numerical
simulations using an atomistic basis [6,35]. As one approaches
the charge neutrality point, and kF � � 1, the semiclassical
method is no longer suited and one has to resort to more
sophisticated approaches [2,8].

We now discuss how to add gauge field disorder in
the Boltzmann approach. For long-ranged disorder, some
authors [36–38] argue that it can be advantageous to include the
disorder potential in the classical Liouvillian evolution, that is,
to treat V (r) on the left-hand side of the Boltzmann equation.
This approach is justified in the “classical” regime, where
kF λ � 1, that is, where random fields with a characteristic
length λ vary slowly on the scale of k−1

F . In typical graphene
samples, where the ripple sizes λ are of the order of a few
to 10 nm [13–16], the latter inequality holds for a carrier
density |n| � 1012 cm−2, which is much higher than the
doping studied in most experiments [1].

In this study, we calculate transport times for both short-
and long-ranged disorder by evaluating the corresponding
Boltzmann collision integral (on the right-hand side of the
equation). As mentioned in Sec. I, for graphene on standard
substrates (the case of interest here), the random gauge field

contribution to the conductivity is not the dominant one.
Hence, the electron mean free path due to ripples is larger than
� and the arguments justifying the semiclassical approximation
hold.

The Boltzmann equation for graphene under a uniform
electric field E reads [1,39]

−eE · ∂εk,s

∂ p
∂f0

∂ε
=

∑
k′,s ′

(gk,s − gk′,s ′ )Wk′,s←k,s , (24)

where εk,s = svF �|k|, f0 is the Fermi distribution function,
gk = fk − f0 is the deviation from equilibrium due to the
electric field, and Wk′,s ′←k,s is the transition rate from state
(k,s) to state (k′,s), which we calculate using the Fermi golden
rule, namely,

Wk′,s ′←k,s = 2π

�
〈|〈k′s ′|V |ks〉|2〉δ(εk,s − εk′,s ′ ), (25)

where V is a generic long-ranged disorder potential
parametrized by Eq. (2). The δ function reflects the fact that
we are dealing with elastic processes and, hence, s = s ′. In our
model, the transition rates do not depend on s. Accordingly
we drop this index whenever its omission does not introduce
an ambiguity.

The scattering processes we address are anisotropic. Cal-
culation of the transport properties in this case is slightly
different [40,41] from that in the standard isotropic case [39].
In this study, we adapt the nice method developed by
Tokura [42]—which is briefly described in what follows—to
calculate the transport times of massless Dirac electrons in
graphene.

In both situations of interest, the scattering potential
correlation functions have at least one symmetry axis. For
convenience, we choose the x axis along a symmetry axis and
define [42]

gk =
(

− ∂f0

∂εk

)
evk τ (θ ) · E, (26)

where τ (θ ) is the relaxation time vector to be solved. We
recall that θ is the angle between k and the x axis. Note that τ

depends explicitly on θ and implicitly on |k|.
The current density (spin and valley degeneracies included)

is given by

j = 4

A
∑

k

evkgk

= e2

π2

∫ ∞

0
dkk

(
− ∂f0

∂εk

)∫ 2π

0
dθ vk vk[τ (θ ) · E], (27)

from which one obtains the conductivity tensor

σ = e2|εF |
�2π2

∫ 2π

0
dθ

(
τx(θ ) cos θ τy(θ ) cos θ

τx(θ ) sin θ τy(θ ) sin θ

)
, (28)

where εF is the Fermi energy, measured with respect to the
charge neutrality point energy. For the sake of simplicity, in
Eq. (28) we have taken the zero-temperature limit, namely,
−∂f0/∂ε = δ(ε − εF ).

By substituting the ansatz, (26), in the Boltzmann equa-
tion, Eq. (24), one obtains an integral equation for τ (θ ),
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namely,

cos θ =
∫ 2π

0
dθ ′[τx(θ ) − τx(θ ′)]W(θ,θ ′), (29)

sin θ =
∫ 2π

0
dθ ′[τy(θ ) − τy(θ ′)]W(θ,θ ′), (30)

where θ ′ is the angle between k′ and the x axis, and

W(θ,θ ′) = A
(2π )2

∫ ∞

0
dk′k′Wk′,s←k,s

= A|εF |
2πv2

F �3
〈|〈k′,s|V |k,s〉|2〉, (31)

where, due to the zero-temperature limit, k = k′ = kF .
The matrix element 〈k′,s|V |k,s〉 depends on q = k − k′

and ϕ = π/2 + (θ + θ ′)/2, the angle between q and the x

axis. Hence, W(θ,θ ′) is better cast as W(qζ ,ϕ). We use the
standard notation ζ = |θ − θ ′| and qζ = 2kF sin(ζ/2).

By expressing τx and τy in terms of a Fourier series, one
transforms Eqs. (29) and (30) into an (infinite) set of algebraic
equations. Using the x-axis symmetry and that W(θ,θ ′) =
W(θ ′,θ ) [43], one shows that [42]

τx(θ ) =
∞∑

n=1

τ (n)
x cos[(2n − 1)θ ], (32)

τy(θ ) =
∞∑

n=1

τ (n)
y sin[(2n − 1)θ ]. (33)

By inserting the above relations into Eq. (28), one concludes
that the conductivity tensor is diagonal, with

σxx = e2|εF |
�2π

τ (1)
x and σyy = e2|εF |

�2π
τ (1)
y , (34)

which supports the interpretation of τ (1) as a transport time
vector.

The symmetry W(θ,θ ′) = W(θ ′,θ ) implies that
W(qζ ,ϕ) = W(qζ ,ϕ + π ) = W(qζ ,ϕ − π ). In turn,

W(qζ ,ϕ) =
∞∑

n=0

Wn(qζ ) cos(2nϕ), (35)

with an obvious inversion relation.
By using the Fourier expansions for τ (θ ) and W (qζ ,ϕ),

Eqs. (29) and (30) can be cast in matrix form [42],

δl,1 =
∞∑

n=1

M−
l,nτ

(n)
x and δl,1 =

∞∑
n=1

M+
l,nτ

(n)
y , (36)

where the matrix elements of M± are [42]

M±
l,n = (−1)l−n

2
[(1 + δl,n)J|l−n|,n+l−1 ± Jn+l−1,|l−n|], (37)

with

Jn,m =
∫ 2π

0
dζ Wn(qζ )[cos(nζ ) − cos(mζ )]. (38)

Finally, by inverting M± in Eq. (36), one writes the vector
transport time components as

τ (1)
x = [(M−)−1]11 and τ (1)

y = [(M+)−1]11. (39)

Note that for isotropic scattering, all Wn with n > 0 are 0
and M± is diagonal, with elements Kl,l = J0,2l−1. Hence, the
vector transport time components coincide, τ (1)

x = τ (1)
y = τ (1),

and read

1

τ (1)
= J0,1 =

∫ 2π

0
dζW0(qζ )(1 − cos ζ ), (40)

which is the standard expression for the transport time in
isotropic systems.

A. Effect of an in-plane magnetic field

Let us now calculate the effect of an external parallel
magnetic field on the conductivity. From Eq. (13) we write
the effective disorder potential for the K valley as

Vext(r) = vF eσyAy(r) = −vF eB‖h(r)σy. (41)

We recall that h(r) varies slowly in the scale of the lattice
spacing, and hence, Vext(r) is long-ranged and does not mix
valleys.

The momentum relaxation rate Wk′←k reads

Wk′←k = δ(k − k′)
2πe2vF

�2
B2

‖ sin2

(
θ + θ ′

2

)
Ch(q)

A , (42)

where

Ch(q) =
∫

d r eiq·r 〈h(0)h(r)〉 (43)

is the form factor of the height-height correlation function.
Here 〈· · · 〉 indicates the disorder average.

From Eq. (31) we obtain

W(q,ϕ) = (eB‖)2|εF |
4π�3

Ch(q)(1 + cos 2ϕ), (44)

which has only two nonzero Fourier components, namely,

Wn(q) = (eB‖)2|εF |
4π�3

Ch(q), for n = 0,1, (45)

while Wn(q) = 0 for n � 2. In this case, the M± matrix is
tridiagonal and reads [42]

M± =

⎛
⎜⎜⎜⎜⎜⎝

(
1 ∓ 1

2

)
J0,1 − 1

2J1,2 0 · · ·
− 1

2J1,2 J0,3 − 1
2J1,4 · · ·

0 − 1
2J1,4 J0,5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (46)

The inverse transport time components are given by

1

τ
(1)
x

= 3

2
J0,1 − �3 and

1

τ
(1)
y

= 1

2
J0,1 − �3, (47)

where �3 is isotropic and determined by the continued fraction
relation

�m = (J1,m−1)2

4(J0,m − �m+2)
. (48)
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In practice, we compute �3 by assuming that �m = 0 and
subsequently iterating (48). The choice of m determines the
precision of the calculation: The larger m, the more accurate
is �3.

Assuming that �3 � J0,1 leads to an interesting result, that
is,

1

τ
(1)
y

= 1

3τ
(1)
x

= (eB‖)2|εF |
8π�3

∫ 2π

0
dζ (1 − cos ζ )Ch(q). (49)

In this limit τ (1)
y /τ (1)

x = 3. In other words, for �3 � J0,1 the
corrections to the conductivity due to B‖ lead to �σyy =
3�σxx , regardless of the dependence of the correlation
function Ch(q) on q.

For �3 = 0 and Ch(q) = 2πλ2h2
rmse

−λ2q2/2, we write τ (1)
x,y

in closed analytical form, namely,

1

τ
(1)
y

= 1

3τ
(1)
x

= (eB‖)2|εF |
4�3

(λhrms)
2

× e−λ2k2
F

[
I0

(
λ2k2

F

) − I1
(
λ2k2

F

)]
, (50)

where I0 and I1 are modified Bessel functions of the first kind.
We use kF = √

π |n| [1] to express the conductivity in terms of
the charge carrier density n. We conclude that the correction
to the conductivity due to an in-plane magnetic field depends
quadratically on hrmsB‖ and has a nontrivial dependence on
λ2|n|.

In the high-doping limit of λ|n|1/2 � 1, Eq. (50) gives
the resistivity contribution of an in-plane magnetic field in
a rippled graphene sheet,

�ρyy = 3�ρxx ≈ 1

2
√

2�

h2
rms

λ
B2

‖ |n|−3/2, (51)

in agreement with Ref. [9].
Figure 4 shows the resistivity �ρyy versus the carrier

density n (due to particle-hole symmetry, we only show
n > 0) for m = 3 and m → ∞. The optimal m value to
obtain convergence depends on λ2n. The inset shows �ρyy

for λ2n values outside the validity range of the asymp-
totic expansion. As discussed in the next section, the λ2n

0 1 2 3 4 5

πλ2
n

0.0

0.2

0.4

0.6

0.8

1.0

Δρ
yy

/ρ
0

Γ3=0
Γ∞=0

10πλ2
n

0.00

0.01

0.10

Δρ
yy

/ρ
0

|n|
-3/2

|n|
-2

FIG. 4. (Color online) Resistivity �ρyy , in units of ρ0 =
(πλhrmsB‖)2/2�, due to B‖ as a function of λ2n. Inset: The same
as the main plot, on a log-log scale to illustrate the dependence of
�ρxx on |n|.

-5.0 -2.5 0.0 2.5 5.0

πλ2
n

2.0

3.0

4.0

5.0

6.0

7.0

8.0

τ y(1
) /τ

x(1
)

Γ3=0
Γ∞=0

FIG. 5. (Color online) Ratio τ (1)
y /τ (1)

x as a function of πλ2n. For
πλ2n < 5.0, the limit m → ∞ is attained within an accuracy of 10−4

for m = 13.

range displayed in the inset corresponds to the typical
experimental situation. We find that the |n|−3/2 scaling
predicted by the asymptotic expansion, (51), is only a rough
approximation.

In general, �3 is a nonvanishing correction to the transport
time components, hence τ (1)

y /τ (1)
x �= 3. However, for Gaussian

ripple height correlations, the ratio τ (1)
y /τ (1)

x is a function only
of λkF .

Figure 5 shows τ (1)
y /τ (1)

x versus λ2n. It illustrates the
importance of �3 in the calculation of the conductivity
corrections. We find that with increasing carrier concentration,
anisotropic conductivity is considerably favored.

The transport properties predicted by Eq. (50) are only
slightly modified for the case of exponential ripple height
correlations, 〈h(0)h(r)〉 = h2

rmse
−r/λ: For λ|n|1/2 � 1, the

resistivity tensor given by Eq. (51) is multiplied [44] by a
prefactor of the order of unity times log(λ2|n|).

B. Effect of strain fields

Let us now consider the effect of the pseudomagnetic fields
due to strain, Bint, in the conductivity of monolayer graphene
sheets. In contrast to the mechanism discussed above, Bint(r) is
solely determined by h(r) and the material properties. Hence,
it is intrinsic to any graphene sample with disordered ripples.

We use Eq. (19) to calculate the vector transport time τ for
the intrinsic effective vector potential due to strain. For the K

valley Vint reads

Vint(r) = �vF

βκ

a
{[uxx(r) − uyy(r)]σx − 2uxy(r)σy}. (52)

In contrast with the previous subsection, here it is difficult
to make quantitative progress without assuming a specific
form for the ripple height correlation function. The qualitative
behavior of the conductivity corrections due to strain that has
been reported in the literature [30] is not sufficient for the
analysis we propose.

As in Sec. II B, we calculate 〈uij (r)ui ′j ′(r ′)〉 by assum-
ing Gaussian-correlated ripple height fluctuations, Ch(q) =
2πλ2h2

rmse
−λ2q2/2. After some lengthy but straightforward
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algebra, we obtain

〈|〈k′s|Vint|ks〉|2〉 = v2
F �

2β2κ2

32a2

πh4
rms

λ2A

×
{
16 + λ4q4 cos2

[
3

2
(θ + θ ′)

]}
e−λ2q2/4.

(53)

Using Eq. (31) we arrive at

W(q,ϕ) = Wint

[
16 + λ4q4

2
(1 + cos 6ϕ)

]
e−λ2q2/4, (54)

where

Wint = β2κ2|εF |
64a2�

h4
rms

λ2
. (55)

(The notation is the same as that in the previous section.)
The only nonzero Fourier components of W(q,ϕ) are

W0(q) = Wint

(
16 + λ4q4

2

)
e−λ2q2/4 and

W3(q) = Wint
λ4q4

2
e−λ2q2/4. (56)

In this case, the M± matrix reads [42]

M±=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J0,1 0 ∓ 1
2J3,2 − 1

2J3,4 · · ·
0 J0,3 ∓ 1

2J3,0 0 0 · · ·
∓ 1

2J3,2 0 J0,5 0 · · ·
− 1

2J3,4 0 0 J0,7 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(57)
and the inverse transport time components are given by

1

τ
(1)
x/y

= J0,1 − (J3,2)2

4J0,5
− (J3,4)2

4J0,7
+ · · · . (58)

Since τ (1)
x = τ (1)

y , the conductivity corrections due to the
strain field are isotropic. This result seems to be at odds
with the fact that the pseudomagnetic-field autocorrelation
function 〈Bint(r)Bint(r ′)〉 clearly shows a hexagonal symmetry,
as illustrated in Fig. 3(b). As shown by Tokura [42], using
general arguments, this is a false paradox: The conductivity
tensor becomes anisotropic only for scattering processes
characterized by a single symmetry axis, as in the B‖ case,
analyzed in the previous subsection.

Assuming that J0,1 vastly dominates the sum in Eq. (58),
we obtain

1

τ
(1)
x/y

=Wintπe−λ2k2
F /2

[(
32 + 8λ2k2

F + 16λ4k4
F

)
I0

(
λ2k2

F

/
2
)

− (
64 + 24λ2k2

F + 16λ4k4
F

)
I1

(
λ2k2

F

/
2
)]

, (59)

where I0 and I1 are modified Bessel functions of the first kind.
In the limit of λ|n|−1 � 1, we obtain the correction to the

resistivity

�ρxx = �ρyy ≈ h

e2

23β2κ2

32π

h4
rms

λ2a2
λ−3|n|−3/2. (60)

The above asymptotic leading-order expansion for �ρ helps
us to develop some insight into the relevant parameters.
However, since the situation of kF λ � 1 is hardly met in

the current experimental situations of interest, it is necessary
to numerically calculate the inverse transport times, as we
do in the next subsection. As expected, the strain corrections
to the conductivity depend on material parameters and are a
nontrivial function of λ, hrms, and |n|. Since these corrections
are small compared to other disorder effects, they are difficult
to notice in standard transport experiments. This situation
changes if we consider the combined effect of intrinsic and
extrinsic random magnetic fields, as we discuss below.

C. Combined effect of extrinsic and intrinsic
random magnetic fields

We conclude this section by analyzing the combined effect
of both previously discussed sources of random magnetic
field disorder. As before, we assume that the system transport
properties are dominated by other scattering processes, with a
corresponding (isotropic) transport time τs.

It is customary to use Matthiessen’s rule when dealing with
systems characterized by competing relaxation time mecha-
nisms. In our case, Matthiessen’s rule translates into adding
the inverse transport times given by Eqs. (47) and (58), namely,

1

τ
(1)
x/y

= 2 ± 1

2
J ext

0,1 − �ext
3 + J int

0,1 −
(
J int

3,2

)2

4J int
0,5

−
(
J int

3,4

)2

4J int
0,7

+ · · · .

(61)
This naive approach was shown to be inaccurate when dealing
with anisotropic potentials [42].

We analyze the combined effect of intrinsic and extrinsic
random magnetic fields by considering an effective M matrix
given by

M±
tot = M±

ext + M±
int, (62)

where M±
ext and M±

int are given by Eqs. (46) and (57),
respectively. The τ components are

τ (1)
x = [(M−

tot)
−1]11 and τ (1)

y = [(M+
tot)

−1]11, (63)

which, for m = 5, explicitly read

1

τ
(1)
x/y

=
(

1 ± 1

2

)
J ext

0,1 + J int
0,1

+ 1(
J ext

0,3 + J int
0,3 ∓ J int

3,0big/2
)(

J ext
0,5 + J int

0,5

) − (
J ext

1,4

)2/
4

×
[
−1

4

(
J ext

0,5 + J int
0,5

)(
J ext

1,2

)2 ∓ 1

4
J int

3,2J
ext
1,2J

ext
1,4

− 1

4

(
J int

3,2

)2
(

J ext
0,3 + J int

0,3 ∓ 1

2
J int

3,0

)]
+ · · · . (64)

This result is clearly different from Eq. (61), since it mixes in-
trinsic and extrinsic effects. Let us now discuss the dependence
of τ on B‖, λ, hrms, and n. For this purpose we numerically
invert the matrix M±

tot, at order m ≈ 30 − 50 to guarantee an
accuracy of 10−5 for the analyzed parameter range.

The resistivity corrections obtained from Matthiessen’s
rule, Eq. (61), depend quadratically on B‖, in line with the

115403-8



EFFECTS OF A RANDOM GAUGE FIELD ON THE . . . PHYSICAL REVIEW B 91, 115403 (2015)

0 20 40 60 80 100

B||
2 (T2)

0

1×10-4

2×10-4

3×10-4

4×10-4
Δρ
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0.42
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Δρ
yy

/ρ
0

B||
2

FIG. 6. (Color online) Resistivity correction �ρyy , in units of
ρ0 = (πλhrmsB‖)2/2�, as a function of the in-plane magnetic field
B‖ for hrms = 0.2 nm, λ = 30 nm, and n = 1012 cm−2. Inset: The
same as the main figure, for hrms = 0.4 nm and λ = 10 nm.

experiment [9]. The full M-matrix analysis does not guarantee
this simple dependence. In Fig. 6 we plot the resistivity
correction �ρyy calculated using the full M matrix and
compare it with the one obtained from the Matthiessen rule,
given by Eq. (61), for realistic values of hrms, λ, and n. The full
M-matrix calculation (indicated as “exact”) shows an overall
higher resistivity than that obtained from the Matthiessen rule.
It depends linearly on B2

‖ for large B‖ and deviates from this
dependence only when B‖ becomes small.

In contrast, the dependence of �ρ on hrms, λ, and |n| is not
trivial. For hrms and λ values taken close to those reported in
topography experiments [13–16], a numerical study using the
full M-matrix approach gives �ρyy ∝ λ−α with α ≈ 3 . . . 4,
�ρyy ∝ h

β
rms with β ≈ 3, and �ρyy ∝ |n|−γ with γ ≈ 2. In

summary, �ρ is very sensitive to small variations of hrms and λ.
In Fig. 7 we compare Eqs. (47), (61), and (64) to gain insight

into how the strain mechanism affects the ratio τ (1)
y /τ (1)

x . We
find that the strain fields contribute to a strong suppression

-5.0 -2.5 0.0 2.5 5.0

n (10
12

 cm
-2

)

0

10

20

30

40

50

τ y(1
) /τ

x(1
)

m = 3 (no strain)

m = ∞  (no strain)

Matthiessen
exact

FIG. 7. (Color online) Anisotropy τ (1)
y /τ (1)

x as a function of the
carrier concentration n using different approximation schemes, for
hrms = 0.2 nm, λ = 30 nm, and B‖ = 8 T. The bottom, horizontal
(red) line and the top (green) line stand for the contribution of B‖
without accounting for strain fields. The second-from-the-top (blue)
line represents the contributions of both external and strain fields
using the conventional Matthiessen’s rule. The black line shows the
combined effect of intrinsic and extrinsic fields obtained for the full
M-matrix analysis.

of the anisotropy in the transport time due to a strong
B‖. However, for realistic parameter values the anisotropy
is still very large and of the order of τ (1)

y /τ (1)
x ≈ 10 for

|n| ≈ 1012 cm−2.
In order to further compare our results with the experi-

ment [9], let us introduce the magnetoresistance �ρ = E ·
j/j 2, where jx = j cos ξ , jy = j sin ξ , and ξ is the angle be-
tween B‖ and j . Using the relation Ei = ρijJj one writes [45]

�ρ(ξ ) = �ρxx cos2 ξ + �ρyy sin2 ξ. (65)

Reference [9] reports �ρ(70o)/�ρ(20o) ≈ 0.13 − 0.26.
Using λ and hrms values obtained from atomic force
microscopy (AFM) measurements, we obtain τ (1)

y /τ (1)
x ≈ 10

for n = 1012 cm−2. This ratio leads to �ρ(70o)/�ρ(20o) ≈
0.2, in good agreement with the experiment [9].

IV. CONCLUSIONS AND OUTLOOK

In this paper we have studied the effect of random magnetic
fields on the transport properties of a rippled graphene flake.
We have used the Boltzmann equation, adapted to the case of
anisotropic disorder [42], to address the case of an external
magnetic field applied in-plane, the effect of intrinsic strain
fields caused by graphene corrugation, and the combination
of both.

We find that an external in-plane magnetic field B‖ gives
rise to very anisotropic conductivity corrections. By neglecting
the effect of strain fields and using a parametrization of
the ripple disorder that is consistent with experiments, we
find conductivity corrections that scale with B2

‖ and |n|−2,
consistent with Ref. [9]. In contrast, we obtain τ (1)

y /τ (1)
x ratios

as large as 20 . . . 30.
In the absence of an external magnetic field, random gauge

fields due to ripple disorder make an isotropic contribution to
the electron momentum relaxation in graphene, in line with
the order of magnitude estimate presented in Ref. [30]. We
find, however, that ripple disorder cannot be neglected in the
analysis of the conductivity in the presence of a large B‖. We
also conclude that, due to the anisotropic nature of the problem,
Matthiessen’s rule is not accurate to address both intrinsic and
extrinsic random fields on the same footing. For this purpose
we have to invert the total M matrix.

This approach allows us to successfully describe the
corrections to the Drude conductivity reported in the
experiment [9] using typical λ and hrms parameters taken
from the AFM literature. In addition, we obtain a suppression
of the resistivity anisotropy (with respect to the case where
strain is neglected) that is consistent with Ref. [9]. We believe
that the anisotropic nature of the random magnetic-field
disorder also significantly changes the quantum corrections to
the conductivity with respect to the isotropic result [28] and
deserves further investigation.

In summary, our results suggest that the investigation of
anisotropy corrections to the Drude conductivity could be a
new and insightful path to experimentally quantify the effects
of random pseudomagnetic fields due to strain.
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