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We have calculated the transition energies of neutral and charged excitons in In0.5Ga 0.5As/GaAs quantum dots
(QDs) under a lateral electric field up to 40 kV/cm. First, the single-particle electron and hole states under the
lateral field are calculated using the 8-band k · p theory. The linear and quadratic piezoelectricity is included.
Next, the transition energies are calculated from the electron-hole, electron-electron, and hole-hole Coulomb
energies. For a QD with 15-nm base length under a lateral electric field along the [100] direction, the transition
energy of the positively charged exciton exhibits a blueshift with increasing field up to 28 kV/cm, followed by a
redshift under higher field. In contrast, those of the neutral and negatively charged excitons exhibit only redshifts
accompanied by a crossing of the two exciton levels. The calculated result for the positively charged exciton
reproduces the unconventional “M”-shaped exciton energy shift observed in our experiment by Nakaoka et al.
[Appl. Phys. Lett. 99, 181109 (2011)]. The origin of the blueshift calculated for the positively charged exciton
is the enhanced hole density in the QD base corner due to the modification of the piezoelectric potential by the
lateral electric field, which causes an increase in the hole-hole Coulomb energy. We found that the amount of the
blueshift increases with the QD size. In order to understand the effect of the lateral field direction, we calculate
the transition energies under a lateral electric field of 20 kV/cm along the [11̄0], [100], and [110] directions.
For the positively charged exciton, the transition energy exhibits a redshift for the [11̄0] direction, and blueshifts
of different amounts for the [100] and [110] directions, indicating that the effects of the lateral field are not
equivalent for the [11̄0] and [110] directions. It is demonstrated that the direction dependence of the transition
energy reflects the symmetry of the confinement potential in the QDs due to piezoelectricity.
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I. INTRODUCTION

Electronic and optical properties of semiconductor quantum
dots (QDs) have attracted researchers’ attentions because
of their atomic-like properties of electronic states: zero-
dimensionally confined electron and hole states with discrete
energy levels [1]. Their investigations have concentrated on
the optical transitions from excitons and their complexes which
are formed by the Coulomb interactions between electrons and
holes. Control of these excitonic transitions are important to
realize quantum information devices such as single-photon
emitters and entangled photon pair generators [2]. The
control of the excitonic transitions has been investigated
by applying external fields: electric, magnetic, and strain
fields [3–5].

As a device-compatible method, application of an electric
field through gate electrodes has been investigated for control.
At first, the effects of a vertical electric field along the [001]
direction on photoluminescence (PL) from InAs/GaAs QD
samples were studied [3]. It was found that the PL transition
energies decrease with increasing magnitude of the electric
field for both positive and negative field directions: i.e., the
Stark redshift [3]. The maxima of the transition energies
occur at nonzero electric fields [3]. The transition energies
show asymmetric change with respect to the zero field.
Some theoretical calculations for the transition energies were
performed using an 8-band k · p theory [6,7]. The calculated
transition energies show asymmetric change depending on the
vertical alignment of electron and hole wave functions which
reflect asymmetry of the QD shape, pyramids or truncated
pyramids, along the vertical direction.

The effects of lateral electric fields were studied by
fabricating gate electrodes near the QD structures [8–10]. It is
expected that transition energies will show symmetric change
when the vertical component of the field is zero. However,
the typical PL data show asymmetric change with the lateral
applied bias, implying nonzero vertical component [8].

On the other hand, we recently succeeded in observing
symmetric change in transition energies under a lateral electric
field using a side-gate device [11]. Our PL transition energies
show, for both positive and negative biases along the [100]
direction, (i) a redshift with a lateral bias, or (ii) a blueshift with
a lower bias followed by a redshift with a higher bias (“M”-
shaped shift) [11]. We briefly showed calculated transition
energy shifts of neutral and charged excitons, which were
obtained from the electron and hole Coulomb energies [11].
The 8-band k · p theory [12] was used for calculation of single-
particle electron and hole states. It was found that only the
positively charged exciton shows the M-shaped shift.

In addition to the above calculations, further studies are
required to understand the effect of the lateral field more
completely. First, the effects of the lateral field on the order
of transition energies, ω, should be clarified. The most typical
order is ω(X−) < ω(X0) < ω(X+) under zero field [13]; here
X0 is a neutral exciton and X+ (X−) is a positively (negatively)
charged exciton. However, the order may change under the
lateral field depending on the size and position of electron and
hole wave functions. In some lateral fields, a crossing of the
exciton levels may occur. Second, the changes of electron and
hole wave functions under lateral fields should be understood
more properly considering the piezoelectric potential in the
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QDs. Third, the dependence of the lateral field direction on the
optical transitions should be presented, because only the [100]
direction was examined in our previous study [11]. Can we tune
the optical transitions by varying the lateral field direction, for
example, to [11̄0] and [110]?

So far, some theoretical calculations of excitonic states in
QDs under a lateral field have been reported [14,15]. In these
studies, the lateral confinement of the QDs has been treated
as a two-dimensional harmonic potential [14,15]. No one has
calculated QD excitonic states under a lateral field based on a
realistic QD shape accompanied with strain and piezoelectric
potential.

In the present paper, in order to answer the above
three issues, we perform detailed and extended calculations
for transition energies of neutral and charged excitons in
In0.5Ga 0.5As/GaAs QDs under lateral electric fields. First,
the single-particle electron and hole states under the lateral
field are calculated using the 8-band k · p theory [12]. The
linear and quadratic piezoelectricity is included [16,17]. Next,
the transition energies are calculated from the electron-hole,
electron-electron, and hole-hole Coulomb energies. Methods
of calculation are described in Sec. II. In Sec. III, we show the
transition energies under a lateral electric field along the [100]
direction, E[100], up to 40 kV/cm. The QD base lengths, b,
are 12.5, 15, and 20 nm. In Sec. IV, we show the dependence
of the excitonic states on the lateral electric field directions,
[11̄0], [100], and [110], under the constant magnitude of the
field |E| = 20 kV/cm. The conclusions are summarized in
Sec. V.

II. METHODS OF CALCULATION

We calculate the transition energies (ω) of a neutral exciton
(X0) and positively and negatively charged excitons (X+,X−)
in In0.5Ga 0.5As/GaAs QDs under lateral electric fields using
the methods as described in the steps (i)–(v) below.

(i) We set up a QD model for the calculations. Here we adopt
a pyramidal In0.5Ga 0.5As QD embedded in a GaAs barrier
layer, as shown in Fig. 1(a). The pyramidal QD has a (001)
base plane and {101} facets. The base edges are oriented to
the [100] and [010] directions. The base length b (height h) of
the QD is chosen as 12.5 nm (6.25 nm), 15 nm (7.5 nm), and
20 nm (10 nm).

(ii) For the QD model, we calculate distribution of strain,
εij (here i,j = x,y,z), arising from the difference in the lattice
constants between In0.5Ga 0.5As and GaAs. We use a linear
static analysis based on the elastic continuum theory [18].

(iii) We calculate the piezoelectric potential, Vp(r), from
the strain distribution obtained in (ii). First, the piezoelectric
polarization, P, is calculated as

P = P1 + P2. (1)

Here P1 and P2 are the linear and quadratic piezoelectric
polarizations, respectively, expressed as [16,17]

P1 = 2e14
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FIG. 1. (Color online) Model structure of a pyramidal
In0.5Ga 0.5As/GaAs quantum dot: (a) an oblique view showing
a lateral electric field, E, applied by the two electrodes, and (b) top
views showing directions of the lateral electric fields, [11̄0], [100],
and [110], from left to right. The quantum dot base is at z = 0, and
the top is at z = h.

and
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e14 is a piezoelectric constant for the linear case, and B114,
B124, and B156 are those for the quadratic case [16,17]. Next,
the piezoelectric charge, ρp, is calculated as ρp = − div P.
Lastly, Vp(r) is obtained as [19]

Vp(r) = 1

4πε0εr

∫
ρp(r′)
|r − r′|d

3r′. (4)

Here ε0 is the permittivity of vacuum, and εr is the
dielectric constant. For InAs (GaAs), we used
e14=−0.115 (−0.230) C/m2, B114=−0.531 (−0.439) C/m2,
B124 = −4.076 (−3.765) C/m2, and B156 = −0.120
(−0.492) C/m2, from Ref. [17]; εr = 15.15 (13.18).
For the values of the parameters of In0.5Ga 0.5As QDs, the
arithmetic means of the corresponding InAs and GaAs values
were used.

(iv) We perform single-particle calculations of electron (e)
and hole (h) states using the strain-dependent 8-band k · p
theory formulated by Bahder [12] under an external electric
field, E. In the 8-band k · p theory, electron and hole wave
functions in a QD, �(r), are expressed as [20,21]

�(r) =
8∑

j=1

Fj (r)|uj 〉; (5)

here Fj (r) is the envelope function, and |uj 〉 is the zone-center
Bloch function for electron, heavy-hole, light-hole, and split-
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off hole states. The envelope function, Fj (r), is obtained by
solving the equation

(Hk·p + Vp + VStark)F = εF, (6)

where Hk·p is the strain-dependent 8-band k · p Hamilto-
nian [12], Vp is the piezoelectric potential obtained in the
step (iii), VStark represents the potential induced by the applied
electric field E as VStark = eE · r (e is the electronic charge),
and ε is the eigenvalue. F is expressed as [22]

F = [F1(r),F2(r), . . . ,F8(r)]. (7)

The material parameters for the k · p calculations are adopted
from Ref. [18]. We used a finite-difference method to solve
Eq. (6) numerically.

The directions of the lateral electric field, E, examined in
this study are [11̄0], [100], and [110], as shown in Fig. 1(b).

(v) We calculate transition energies of neutral, positively
charged, and negatively charged excitons [ω(X0), ω(X+), and
ω(X−), respectively] using the equations [13]

ω(X0) = e0 − h0 + J (e0h0), (8)

ω(X+) = (e0 − h0) + 2J (e0h0) + J (h0h0)

= ω(X0) + J (e0h0) + J (h0h0), (9)

ω(X−) = (e0 − h0) + 2J (e0h0) + J (e0e0)

= ω(X0) + J (e0h0) + J (e0e0). (10)

Here e0 and h0 are ground-state energies of the electron and
hole, respectively. J (e0h0), J (h0h0), and J (e0e0) are electron-
hole, hole-hole, and electron-electron Coulomb energies,
respectively, which are calculated as

J (e0h0) = −e2
∫ ∫ ∣∣�e0 (r1)

∣∣2∣∣�h0 (r2)
∣∣2

4πε0εr |r1 − r2| d3r1d
3r2, (11)

J (h0h0) = e2
∫ ∫ ∣∣�h0 (r1)

∣∣2∣∣�h0 (r2)
∣∣2

4πε0εr |r1 − r2| d3r1d
3r2, (12)

J (e0e0) = e2
∫ ∫ ∣∣�e0 (r1)

∣∣2∣∣�e0 (r2)
∣∣2

4πε0εr |r1 − r2| d3r1d
3r2. (13)

Here �e0 and �h0 are ground-state electron and hole wave
functions, respectively. In the above definitions, we have
J (e0h0) < 0, J (h0h0) > 0, and J (e0e0) > 0. Another set of
definitions using opposite signs for the Coulomb energies,
J (e0h0) > 0, J (h0h0) < 0, and J (e0e0) < 0, was adopted in
Ref. [23]; here J (e0h0) becomes identical to the exciton
binding energy. In the present paper, we adopt the definitions
of Eqs. (11)–(13) whose signs indicate that J (e0h0) is an
attractive interaction, and J (h0h0) and J (e0e0) are repulsive
interactions.

The binding energies of positively charged and negatively
charged excitons, �bind(X+) and �bind(X−), are defined
as �bind(X+) = ω(X0) − ω(X+) and �bind(X−) = ω(X0) −
ω(X−), respectively [13]. Each charged exciton is called
binding (antibinding) when �bind > 0 (�bind < 0) [13].

In Eqs. (8)–(10), the transition energies ω are expressed,
in the first order, in terms of the ground-state energies of the
electron and hole, e0 and h0, respectively, and the Coulomb

energies J (e0h0), J (h0h0), and J (e0e0). The higher-order
correction due to correlation effects and that due to exchange
effects (as described in Ref. [13]) are omitted in the present
paper. The magnitude of the correlation correction depends
on the type of multiexcitons. A remarkable consequence is
the change in order of neutral exciton and biexciton transition
energies, ω(X0) and ω(XX0), respectively [13]. Hence we
exclude ω(XX0) in the present calculation. The exchange
correction is very small compared to the Coulomb energies
and correlation correction [13]. To account for the higher-
order corrections, the configuration interaction (CI) method is
required [13]. The absorption spectra of neutral and charged
excitons can be calculated using the CI method combined
with Fermi’s golden rule [17]. The peaks of the spectra are
broadened by typically ≈10 meV width for comparison to
experimental results, while each peak area corresponds to the
oscillator strength [24].

III. TRANSITION ENERGIES UNDER THE LATERAL
ELECTRIC FIELD: E ‖ [100]

A. QD of medium size: b = 15 nm

First we show the results of calculations for the QD with a
base length b of 15 nm under the lateral electric field E along
the [100] direction, denoted by E[100], corresponding to the
[100] case of Fig. 1(b). Figure 2(a) shows the single-particle
energy difference (e0 − h0) and Coulomb energies [J (e0h0),
J (h0h0), J (e0e0)] as a function of E[100] up to 40 kV/cm. The
energy difference (e0 − h0) decreases with increasing E[100].
This redshift is nothing but the quantum-confined Stark effect,
QCSE, due to the lateral electric field. At the same time, the
magnitude of J (e0h0), |J (e0h0)| = −J (e0h0), decreases with
increasing E[100]. This generally indicates that the hole wave
function �h0 moves along the lateral electric field, while the
electron wave function �e0 moves along the opposite direction,
and hence |J (e0h0)| decreases due to the reduction of overlap
between the two wave functions. Figure 2(a) also shows that,
with increasing E[100], J (h0h0) increases remarkably, while
J (e0e0) changes very little, indicating that the extent of the
hole wave function becomes much smaller, but that of the
electron wave function changes very little. The difference in
changes between electron and hole is caused by the difference
in the effective mass of the two.

The difference in changes of the electron and hole wave
functions with E[100] suggested above is confirmed directly
by plotting the electron and hole envelope functions, as shown
later in Sec. IV. The discussion is given considering the effect
of the piezoelectricity in the same section.

Figure 2(b) shows the calculated transition energies [ω(X0),
ω(X+), and ω(X−)] as a function of E[100], which are
obtained from Eqs. (8)–(10). For E[100] = 0 kV/cm, ordering
of the transition energies is ω(X−) < ω(X0) < ω(X+). This
ordering is considered as the prototype one in InAs/GaAs
QDs, resulting from the ordering of the Coulomb energies
J (e0e0) < |J (e0h0)| < J (h0h0), as described in Ref. [13]. Our
calculated Coulomb energies in Fig. 2(a) show this ordering
for E[100] = 0 kV/cm. The above ordering of the Coulomb
energies indicates that the extent of the electron wave function
�e0 is larger than that of the hole wave function �h0 , and �h0 is
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FIG. 2. (Color online) Effects of the lateral electric field E along the [100] direction, E[100], on (a) the single-particle energy difference
(e0 − h0) and electron-hole, hole-hole, and electron-electron Coulomb energies [J (e0h0), J (h0h0), and J (e0e0), respectively], and (b) the
transition energies, ω, for the neutral exciton (X0) and positively and negatively charged excitons (X+ and X−, respectively), in the pyramidal
In0.5Ga 0.5As/GaAs quantum dot. The base length b is 15 nm. In (a), the left vertical axis is for e0 − h0, and the right one is for J ’s. Note that
the sign is reversed for J (e0h0).

mostly enclosed in �e0 [13]. This is confirmed later in Fig. 6.
We believe that the conclusions of the present study are of
interest for other groups in the field, since our QD structure is
not an extremely specific one but a prototype.

With increasing E[100], the transition energies of neutral
and negatively charged excitons, ω(X0) and ω(X−), respec-
tively, exhibit only redshifts; i.e., the usual QCSE. At the same
time, we find that the lines of ω(X0) and ω(X−) cross each
other at E[100] = 13 kV/cm. At this field magnitude, the
ordering changes from ω(X−) < ω(X0) to ω(X0) < ω(X−),
and the negatively charged exciton changes from binding
[�bind(X−) > 0] to antibinding [�bind(X−) < 0], as defined
in Sec. II. This is a consequence of the change in ordering
from J (e0e0) < |J (e0h0)| to |J (e0h0)| < J (e0e0) at E[100] =
13 kV/cm [see Fig. 2(a)], because the binding energy is
expressed from Eq. (10) as, �bind(X−) = ω(X0) − ω(X−) =
−J (e0h0) − J (e0e0) = |J (e0h0)| − J (e0e0). Here the de-
crease of |J (e0h0)| with E[100] plays a major role in the
binding-antibindig change of X−, because the change of
J (e0e0) is very small as described before.

On the other hand, the transition energy of positively
charged exciton, ω(X+), exhibits a blueshift with increasing
E[100] up to 28 kV/cm, i.e., �ω(X+) ≡ ω(X+) − ω0(X+) >

0; here the superscrpit “0” refers to the corresponding value at
E[100] = 0. The maximum blueshift, �(blue), is 0.38 meV at
E[100] = 20 kV/cm. Furthermore this blueshift is followed
by a redshift, �ω(X+) < 0, under the higher E[100]. The
origin of the blueshift is understood by the expression of
�ω(X+) deduced from Eq. (9) as

�ω(X+) = ω(X+) − ω0(X+)

= �(e0 − h0) + 2�J (e0h0) + �J (h0h0); (14)

here �(e0 − h0) = (e0 − h0) − (e0
0 − h0

0), �J (e0h0) =
J (e0h0) − J 0(e0h0), and �J (h0h0) = J (h0h0) − J 0(h0h0).
The superscript “0” refers to the corresponding value at
E[100] = 0 kV/cm again. As shown in Fig. 2(a), we find
�(e0 − h0) < 0 (redshift contribution), but �J (e0h0) > 0 and
�J (h0h0) > 0 (blueshift contribution). The sign of �ω(X+)

is determined by the competition between the redshift and
blueshift contributions. Up to E[100] = 28 kV/cm, the
latter contribution overcomes the former one resulting in
�ω(X+) > 0. However, at E[100] > 28 kV/cm, the former
overcomes the latter resulting in �ω(X+) < 0 because of the
faster decrease of (e0 − h0). Since Eq. (14) is valid not only
for our samples but also for any samples of other groups, one
might expect a blueshift for the quantum confined Stark effect
under the condition that the blueshift contribution overcomes
the redshift one.

For the negatively charged exciton, the similar relation
holds as

�ω(X−) = ω(X−) − ω0(X−)

= �(e0 − h0) + 2�J (e0h0) + �J (e0e0); (15)

here �J (e0e0) = J (e0e0) − J 0(e0e0). Since �J (e0e0) ≈ 0
[see Fig. 2(a)], the redshift contribution, �(eo − h0), al-
ways overcomes the blueshift one, �J (e0h0), resulting in
�ω(X−) < 0. Considering that the �J (h0h0) term in Eq. (14)
is replaced by �J (e0e0) in Eq. (15), the large value of
�J (h0h0), or the remarkable increase in J (h0h0) with E[100],
causes the blueshift of ω(X+) at E[100] < 28 kV/cm. The
remarkable increase in J (h0h0) is a result of the smaller extent
of the hole wave function, �h0 , as stated before.

For a QD of medium size (b = 15 nm), we predict that (i)
the transition energy of the negatively charged exciton ω(X−)
shows the binding-antibinding change at E[100] = 13 kV/cm,
and (ii) that of the positively charged exciton ω(X+) shows a
blueshift at E[100] < 28 kV/cm, followed by a redshift at
E[100] > 28 kV/cm.

B. QDs of smaller and larger sizes: b = 12.5 nm and 20 nm

Figure 3 shows the calculated transition energies [ω(X0),
ω(X+), and ω(X−)] as a function of E[100] for the QDs
with (a) b = 12.5 nm and (b) b = 20 nm. For b = 12.5 nm,
the ordering of the transition energies at E[100] = 0 kV/cm
is ω(X−) < ω(X0) < ω(X+), which is the same prototype
ordering as that for b = 15 nm. With increasing E[100],
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FIG. 3. (Color online) Effects of the lateral electric field E along the [100] direction, E[100], on the transition energies ω for the neutral
exciton (X0) and positively and negatively charged excitons (X+ and X−, respectively) in pyramidal In0.5Ga 0.5As/GaAs quantum dots; here
the base length b is (a) 12.5 nm and (b) 20 nm.

ω(X0) and ω(X−) exhibit redshifts with no line crossing up to
E[100] = 35 kV/cm. ω(X+) also exhibits a redshift in contrast
with the blueshift followed by the redshift for b = 15 nm. For
b = 12.5 nm, the effect of E[100] is weaker, and no unsual
change in ω, such as a blueshift, occurs.

For b = 20 nm, the ordering of the transition energies
at E[100] = 0 kV/cm is ω(X0) < ω(X+) < ω(X−) showing
that X+ and X− are antibinding. This ordering results from that
of our calculated Coulomb energies |J (e0h0)| < J (h0h0) <

J (e0e0). This is the case for large pyramidal QDs with a
large internal piezoelectric field [13]. With increasing E[100],
ω(X0) and ω(X−) exhibit redshifts. In contrast, ω(X+) exhibits
a blueshift up to 26 kV/cm, followed by a redshift under
the higher E[100]. The maximum blueshift, �(blue), is
3.04 meV which is about one order of magnitude larger than
the corresponding value for b = 15 nm. As for b = 15 nm,
the remarkable increase in J (h0h0) causes the blueshift. The
increase in J (h0h0) is larger for larger QDs, resulting in the
larger maximum blueshift, as seen in Fig. 3(b).

As shown in Figs. 2(b) and 3(b), we find that the ordering
of the exciton transition energies for E[100] = 0 kV/cm is
ω(X−) < ω(X0) < ω(X+) for the pyramidal QD of medium
size (b = 15 nm), and ω(X0) < ω(X+) < ω(X−) for that
of a larger size (b = 20 nm). With increasing E[100], the
ordering eventually changes to ω(X0) < ω(X−) < ω(X+) for
both sizes. For the pyramidal QDs, we do not find the ordering,
ω(X+) < ω(X0) < ω(X−), since this ordering is expected for
QDs with a large vertical aspect ratio as mentioned in Ref. [13].
(The possible ordering is limited to the above four types also as
mentioned in Ref. [13].) In summary, it is possible to achieve
control of the ordering not only by sample preparation but also
by application of an electric field.

C. Comparison with our experiments

In this subsection, we compare the calculated transition
energy for the positively charged exciton, ω(X+), with our
experimental PL peak energy [11] in order to find an
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FIG. 4. (Color online) Calculated transition energy ω for the positively charged exciton X+ in pyramidal In0.5Ga 0.5As/GaAs quantum dots
as a function of positive and negative lateral electric fields E along the [100] direction, E[100]; here the base length b is (a) 15 nm and
(b) 13.75 nm. Panel (c) shows the photoluminescence (PL) peak energy as a function of E[100] in the In0.5Ga 0.5As quantum dot sample
measured by Nakaoka et al. in Ref. [11]. The corresponding gate bias voltage is indicated by the upper horizontal axis in (c). The calculated ω

in (a) and (b) and the PL peak energy in (c) show the M-shaped shift in energy.
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appropriate QD size which can reproduce the observed PL
blueshift.

In Figs. 4(a) and 4(b), we show the calculated ω(X+) as a
function of positive and negative E[100]; here the base length b

is (a) 15 nm (the medium size QD) and (b) 13.75 nm. The latter
b is the middle value between 15 nm (the medium size) and
12.5 nm (the smaller size). In (a), ω(X+) for positive E[100]
was already shown in Fig. 2(b). As seen in these figures, ω(X+)
exhibits symmetrical M-shaped shifts showing the blueshift
followed by the redshift with increasing magnitude of E[100].
The maximum blueshift, �(blue), is 0.380 meV for b = 15 nm
and 0.032 meV for b = 13.75 nm.

Figure 4(c) shows the PL peak energy as a function
of E[100] in the self-assembled In0.5Ga 0.5As QD sample
measured by us (Nakaoka et al. [11]). In the sample, the two
gate electrodes are fabricated near the QDs so that the lateral
electric field E[100] is applied to the QDs. The gate bias
voltage of 1.0 V (−1.0 V), for example, induces E[100] =
20 kV/cm (−20 kV/cm) as clarified by the simulation of
the field distribution [11] [(see Fig. 1(e) in Ref.[11]). The
gate bias voltage corresponding to E[100] is indicated by the
upper horizontal axis. The PL peak energy also exhibits an
M-shaped shift with �(blue) = 0.042 meV, which suggests
that the observed PL peak can be assigned to the unusual
X+ transition. The QD size of b = 13.75 nm [�(blue) =
0.032 meV] is appropriate to reproduce the observed PL
blueshift [�(blue) = 0.042 meV].

The M-shaped curves in Fig. 4 are symmetric for positive
and negative E[100]. This is a fundamental property arising
from the condition that a lateral electric field with no vertical
component is applied to a laterally symmetric QD because the
transition energies show asymmetric change under a vertical
electric field, as stated in Sec. I.

The calculated transition energy for b = 13.75 nm is
smaller by ≈72 meV than the PL peak energy. To obtain more
complete agreement between the calculated and PL energies,
slight modification of other QD parameters, such as the In
composition or the QD shape, is required.

IV. DEPENDENCE OF THE TRANSITION ENERGIES ON
THE LATERAL ELECTRIC FIELD DIRECTION: E ‖ [11̄0],

[100], and [110]

In this section, we show the calculated electron and hole
envelope functions, Coulomb energies [J (e0h0), J (e0e0), and
J (h0h0),], and transition energies [ω(X0), ω(X+), and ω(X−)]
under lateral electric fields E of three different directions:
E ‖ [11̄0], [100], and [110]. The calculations are performed for
the QD of medium size (b = 15 nm) keeping |E| = 20 kV/cm,
at which the blueshift of ω(X+) has a maximum under E[100].

A. Piezoelectric potential and its modification by the lateral
electric field

Figure 5 shows the piezoelectric potential, Vp, on a (001)
plane at z = 1.5 nm; here the QD base is at z = 0 nm. Under
|E| = 0 kV/cm, Vp calculated with the linear piezoelectricity
only [see Fig. 5(a)] has two maxima near the QD corners on
the [110] diagonal and two minima near those on the [11̄0]
diagonal, producing C2v symmetry. For Vp calculated with the

quadratic piezoelectricity only [see Fig. 5(b)], the sign of Vp

is opposite and the absolute values of the two maxima and two
minima are significantly smaller compared to Vp calculated
with the linear piezoelectricity only. (Note that the potentials
are displayed in different ranges as indicated in the caption.)
As a result, the total Vp calculated with the linear and quadratic
piezoelectricity [see Fig. 5(c)] is similar to that with the linear
piezoelectricity only, where the linear contribution is canceled
slightly (≈ 6 meV) by the quadratic one which has an opposite
sign. Finally, the total Vp is largely dominated by the linear
piezoelectric contribution.

The above result of the relative contribution of the
linear and quadratic piezoelectricity in the pyramidal
In0.5Ga 0.5As/GaAs QD (b = 15 nm) is consistent with
the previous calculations by Schliwa and coworkers [17].
They showed that, in the pyramidal InAs/GaAs QD with
{101} facets (b = 17.2 nm), Vp is largely dominated by the
quadratic piezoelectric contribution [17]. With increasing
Ga content in the QD, the quadratic contribution rapidly
decreases [17]. For the Ga content of 0.15, Vp inside the
QD shows virtually no piezoelectric field since the linear
and quadratic contributions cancel out [13]. As a result,
for the pyramidal In0.7Ga 0.3As/GaAs QD, Vp is dominated
by the linear piezoelectric contribution [17]. In the present
study for the pyramidal In0.5Ga 0.5As/GaAs QD, the linear
piezoelectric contribution becomes even more dominant by a
further increase in the Ga content, as shown in Figs. 5(a)–5(c).

Figure 5(d) shows the sum, Vp + VStark, on the same (001)
plane for E ‖ [100] and |E| = 20 kV/cm; here Vp + VStark

expresses the total piezoelectric potential modified by the
lateral electric field. In contrast with Vp in Fig. 5(c), inside the
QD we find only one maximum near the [110] corner and only
one minimum near the [1̄10] corner in Fig. 5(d). This is because
the energy at the maximum near the [110] corner increases,
while that at the maximum near the [1̄1̄0] corner decreases
due to the potential gradient caused by E ‖ [100]. The similar
reason holds for the presence of only one Vp minimum.

B. Envelope functions calculated with the piezoelectricity

We calculate the squared envelope functions, |F|2, for the
electron and hole in the QDs as |F|2 = ∑8

j=1 |Fj (r)|2 using
the solution F of Eq. (6). Figure 6 shows |F|2 on a (001) plane
at z = 1.5 nm for the ground-state electron (e0) and hole (h0);
here the QD base is at z = 0 nm. |F|2, or the electron and hole
charge densities, under |E| = 0 kV/cm and |E| = 20 kV/cm
with E ‖ [11̄0], [100], and [110] are compared.

Under |E| = 0 kV/cm, |F|2 for h0 shows an apparent
elongation along [110], while that for e0 shows a nearly circular
distribution with an inappreciable elongation along [11̄0], as
already reported in various literature; for example, Ref. [13].
|F|2 for h0 has C2v symmetry because the QD confining
potential has C2v symmetry due to the piezoelectric potential,
Vp, as already shown in Fig. 5(c).

With E ‖ [11̄0], |F|2 for h0 is deviated toward the QD corner
in the [11̄0] direction by the [11̄0] field, but its extent does not
change much. |F|2 has C1v symmetry with the (110) symmetry
plane.

With E ‖ [100], |F|2 for h0 moves significantly toward the
QD corner in the [110] direction, not moving in the [100]
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FIG. 5. (Color online) Piezoelectric potential, Vp , in the pyramidal In0.5Ga 0.5As/GaAs quantum dot (the base length b = 15 nm). Vp under
|E| = 0 kV/cm is calculated with (a) the linear piezoelectricity only, (b) the quadratic piezoelectricity only, and (c) the linear and quadratic
piezoelectricity. Panel (d) shows the the sum of Vp in (c) and VStark; here VStark is the potential induced by the lateral electric field under
|E| = 20 kV/cm with E ‖ [100]. In (a)–(d), the potentials on the (001) plane at z = 1.5 nm are displayed, here the quantum dot base is at
z = 0 nm. Note that the potentials are displayed in the ranges of (a) −20 to 20 meV, (b) −6 to 6 meV, (c) −15 to 15 meV, and (d) −30 to
30 meV.

field direction, and its extent decreases remarkably. We also
find that the |F|2 for h0 is slightly asymmetric, having no
symmetry plane. The origin of the seemingly unusual change
in the |F|2 for h0 is explained by considering Vp + VStark

which has one maximum and one minimum [see Fig. 5(d)].
With E ‖ [100], |F|2 of h0 moves toward the maximum near

the [110] corner, not moving in the [100] field direction, as
shown in Fig. 6.

With E ‖ [110], |F|2 for h0 moves more significantly toward
the QD corner in the [110] direction, consistent with the field
direction, and its extent decreases more remarkably. The |F|2
has C1v symmetry with the (11̄0) symmetry plane.
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FIG. 6. (Color online) Squared envelope functions, |F|2, for ground-state electron e0 and hole h0 in the pyramidal In0.5Ga 0.5As/GaAs
quantum dot (the base length b = 15 nm) under the lateral electric fields E: |E| = 0 kV/cm and |E| = 20 kV/cm with E ‖ [11̄0], E ‖ [100],
and E ‖ [110] (from left to right). In each panel, the upper plot is for e0 and the lower one is for h0. |F|2 on a (001) plane at z = 1.5 nm is
displayed; here the quantum dot base is at z = 0 nm. The linear and quadratic piezoelectricity is included in the calculation.

For e0, changes of |F|2 are inappreciable for the three
field directions examined, [11̄0], [100], and [110], because
of the lighter effective mass of the electron. The dependence
of |F|2 for h0 on the lateral field direction eventually causes
the dependence of the excitonic transition energies on the field
direction as described later in Fig. 10.

Figure 7 shows |F|2 for h0 on the same (001) plane
under |E| = 0 kV/cm and |E| = 20 kV/cm with the three
field directions examined above, where |F|2 is calculated
with the linear piezoelectricity only (the upper plots) or the
quadratic one only (the lower plots). Under |E| = 0 kV/cm,
the elongation direction of |F|2 for the linear-only case differs
by 90 degrees from that for the quadratic-only case, since
the sign of Vp for the former case is opposite to that for
the latter case as already shown in Fig. 5. The symmetries
of |F|2 for the linear-only case with E ‖ [11̄0], E ‖ [100],
and E ‖ [110] are equivalent to those for the quadratic-only
case with E ‖ [110], E ‖ [100], and E ‖ [11̄0], respectively,
after a rotation of 90 degrees. This equivalence comes from
the fact that the angle between the |F|2 elongation direction

under |E| = 0 kV/cm and the field direction is 90 degrees, 45
degrees, and 0 degrees, respectively, in the above sequence of
the field for both linear- and quadratic-only cases. On the other
hand, |F|2 is much more localized for the linear-only case than
for the quadratic-only case.

|F|2 for h0 calculated with both linear and quadratic
piezoelectricity (the lower plots in Fig. 6) and that calculated
with the linear piezoelectricity only (the upper plots in
Fig. 7) are almost similar in symmetry. The only quantitative
difference is that |F|2 is somewhat more localized for the latter
than for the former. (For example, under |E| = 0 kV/cm, the
latter is more localized near the QD corners on the [110]
diagonal.) This is because the total Vp is largely dominated by
the linear piezoelectric contribution as already shown in Fig. 5.

C. Envelope functions calculated with no piezoelectricity

In order to clarify an effect of the piezoelectricity on the
excitonic transition energies ω, we perform the calcultions
with no piezoelectricity.
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FIG. 7. (Color online) Squared envelope functions, |F|2, for the ground-state hole h0 in the pyramidal In0.5Ga 0.5As/GaAs quantum dot (the
base length b = 15 nm) under lateral electric fields E: |E| = 0 kV/cm and |E| = 20 kV/cm with E ‖ [11̄0], E ‖ [100], and E ‖ [110] (from
left to right). In each panel, the upper plot is calculated with the linear piezoelectricity only, and the lower one is calculated with the quadratic
piezoelectricity only. |F|2 on a (001) plane at z = 1.5 nm is displayed; here the quantum dot base is at z = 0 nm.

Figure 8 shows |F|2 on the same (001) plane as in Fig. 6 for
e0 and h0 under |E| = 0 kV/cm and |E| = 20 kV/cm with E ‖
[11̄0], [100], and [110], where no piezoelectricity is included in
the calculation, putting Vp = 0. Under |E| = 0 kV/cm, |F|2 for
h0 shows C4v symmetry due to the absence of the piezoelectric
potential Vp having C2v symmetry [Fig. 5(c)].

With E ‖ [11̄0] and E ‖ [110], |F|2’s for h0 are deviated
toward the QD corners in the [11̄0] and [110] directions, re-
spectively, following the field directions. Both |F|2’s have C1v

symmetry. |F|2 for h0 with E ‖ [11̄0] is identical to that with
E ‖ [110] by a rotation of 90 degrees around the z axis. This
is a result different from that in the calculation including the
piezoelectricity where both |F|2’s are considerably different as
shown in Fig. 6.

With E ‖ [100], |F|2 for h0 moves toward the QD
edge in the [100] direction showing the C1v symmetry,
while the corresponding |F|2 calculated with the piezo-
electricity moves toward the QD corner in the [110]
direction.

For the three field directions, the change in extent of |F|2 for
h0 is not remarkable in the calculation with no piezoelectricity,
while the change is remarkable in that with the piezoelectricity.

This demonstrates that the piezoelectricity causes the strong
dependence of |F|2 for h0 on the field direction.

For e0, changes of |F|2 are inappreciable for the three field
directions as in the calculation with the piezoelectricity.

D. Coulomb energies and transition energies

Figure 9 shows the single-particle energy difference (e0 −
h0) and Coulomb energies [J (e0h0), J (h0h0), and J (e0e0)]
under |E| = 0 kV/cm and |E| = 20 kV/cm with E ‖ [11̄0],
[100], and [110], which are calculated including (a) the linear
and quadratic piezoelectricity and (b) no piezoelectricity.
The energy difference (e0 − h0) under |E| = 20 kV/cm
shows redshifts of the QCSE. (e0 − h0) calculated with the
piezoelectricity decreases with variation of the field direction
as [11̄0] → [100] → [110], while that calculated with no
piezoelectricity shows an inappreciable direction dependence.
At the same time, |J (e0h0)| and J (h0h0) calculated with the
piezoelectricity decreases and increases, respectively, with
variation of the field direction as above, while those calculated
with no piezoelectricity again show an inappreciable direction
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FIG. 8. (Color online) Identical to Fig. 6, but no piezoelectricity is included in the calculation.
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FIG. 9. (Color online) Single-particle energy difference (e0 − h0) and electron-hole, hole-hole, and electron-electron Coulomb energies
[J (e0h0), J (h0h0), and J (e0e0), respectively] in the pyramidal In0.5Ga 0.5As/GaAs quantum dot (the base length b = 15 nm) under lateral
electric fields E: |E| = 0 kV/cm and |E| = 20 kV/cm with E ‖ [11̄0], E ‖ [100], and E ‖ [110]. In the calculation, we include (a) the linear
and quadratic piezoelectricity and (b) no piezoelectricity. In both figures, the left vertical axis is for e0 − h0 and the right one is for J ’s. Note
that the sign is reversed for J (e0h0).
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FIG. 10. (Color online) Transition energies ω for neutral excitons (X0) and positively and negatively charged excitons (X+ and X−,
respectively) in the pyramidal In0.5Ga 0.5As/GaAs quantum dot (the base length b = 15 nm) under lateral electric fields E: |E| = (a) 0 kV/cm,
(b) 10 kV/cm, (c) 20 kV/cm, and (d) 30 kV/cm. The field directions are E ‖ [11̄0], E ‖ [100], and E ‖ [110]. The horizontal dashed line
indicates ω(X+) at |E| = 0 kV/cm. The linear and quadratic piezoelectricity is included in the calculation.

dependence. J (e0e0) shows little direction dependence with
and without the piezoelectricity.

In the presence of the piezoelectricity, the direction de-
pendence of |J (e0h0)| and J (h0h0) originates from that of
|F|2 for h0 as already shown in Fig. 6. With variation of the
field direction as [11̄0] → [100] → [110], the extent of |F|2
for h0 decreases. As a result, |J (e0h0)| decreases due to
the reduction of overlap between e0 and h0 wave functions,
and J (h0h0) increases due to the enhancement of the hole
density.

Using the values (e0 − h0) and Coulomb energies in Fig. 9,
we calculate the excitonic transition energies ω, including
linear and quadratic piezoelectricity (Fig. 10) and not including

piezoelectricity (Fig. 11). Here the field strengths |E| of
10 and 30 kV/cm are examined in addition to 20 kV/cm.
With the piezoelectricity (Fig. 10), ω(X0) and ω(X−) show
direction-dependent redshifts under the field strength exam-
ined: both ω’s decrease with variation of the field direction
as [11̄0] → [100] → [110]. We also find that X− is binding
under |E| = 10 kV/cm, while it is antibinding under |E| = 20
and 30 kV/cm. ω(X+) shows a more remarkable direction-
dependence: a redshift with E ‖ [11̄0] and unusual blueshifts
with E ‖ [100] and [110] under |E| = 10 and 20 kV/cm.
(Under |E| = 30 kV/cm, a blueshift occurs only with E ‖
[110].) As a whole, the direction dependence of ω(X0), ω(X−),
and ω(X+) is larger for higher field strength.
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FIG. 11. (Color online) Identical to Fig. 10, but no piezoelectricity is included.
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In contrast, the transition energies calculated with no
piezoelectricity (Fig. 11) show only redshifts with inappre-
ciable direction dependence, except that ω(X+) under |E| =
30 kV/cm shows some direction dependence.

By comparing Figs. 9, 10, and 11, it is clearly understood
that the direction-dependent ω’s calculated with the piezoelec-
tricity are a result of the direction dependence of the Coulomb
energies, J (e0h0) and J (h0h0).

V. CONCLUSIONS

We have calculated the excitonic transition energies [ω(X0),
ω(X+), ω(X−)] in pyramidal In0.5Ga 0.5As/GaAs QDs under a
lateral electric field E up to 40 kV/cm. First, the single-particle
electron and hole states under the lateral field are calculated
using the 8-band k · p theory. The linear and quadratic
piezoelectricity is included. Next, the transition energies ω are
calculated from the Coulomb energies [J (e0h0), J (e0e0), and
J (h0h0)]. For a QD with 15-nm base length under E ‖ [100],
ω(X+) exhibits a blueshift with increasing |E| up to 28 kV/cm,
followed by a redshift under higher |E|. In contrast, ω(X0) and
ω(X−) exhibit only redshifts accompanied by a crossing of the
two exciton levels. The calculated result for X+ reproduces the
unconventional “M”-shaped exciton energy shift observed in
the experiment by Nakaoka et al. [11]. We find that a QD

size with 13.75-nm base length is appropriate to reproduce the
observed PL blueshift. The origin of the blueshift calculated
for X+ is the enhanced hole density in the QD base corner
due to the modification of the piezoelectric potential Vp by the
lateral electric field, which causes an increase in the Coulomb
energy J (h0h0). We find that the amount of the blueshift
increases with the QD size. In order to understand the effect
of the lateral field direction, we calculate the transition
energies with E ‖ [11̄0], [100], and [110]. Under |E| = 10 and
20 kV/cm, ω(X+) exhibits a redshift for the [11̄0] direction
and the blueshifts of different amounts for the [100] and [110]
directions, indicating that the effects of the lateral field are not
equivalent for the [11̄0] and [110] directions. It is demonstrated
that the direction dependence of the transition energy reflects
the symmetry of the confinement potential in the QDs due
to the piezoelectricity.
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