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Nonlinear pulse propagation in InAs/InP quantum dot optical amplifiers: Rabi oscillations in the
presence of nonresonant nonlinearities
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We study the interplay between coherent light-matter interactions and nonresonant pulse propagation effects
when ultrashort pulses propagate in room-temperature quantum dot (QD) semiconductor optical amplifiers
(SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent
Rabi oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying
Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile.
These effects are incorporated into our previously developed finite-difference time-domain comprehensive model
that describes the interaction between the pulses and the QD SOA. The present generalized model is used to
investigate the combined effect of coherent and nonresonant phenomena in the gain and absorption regimes of
the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like
effect causes pulse compression, which counteracts the pulse peak suppression due to TPA, and also modifies
the patterns which the coherent Rabi oscillations imprint on the pulse envelope under both gain and absorption
conditions. The inclusion of these effects leads to a better fit with experiments and to a better understanding of
the interplay among the various mechanisms so as to be able to better analyze more complex future experiments
of coherent light-matter interaction induced by short pulses propagating along an SOA.
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I. INTRODUCTION

Active optical semiconductor waveguides, based on nano-
metric gain media including quantum dashes (QDashs) and
quantum dots (QDs) have been extensively studied over the
last decade to have a better understanding of their dynamical
properties, and to explore possible applications in fast and
efficient communication and processing systems. QDs have
also been the focus of fundamental research, where quantum-
mechanical phenomena are routinely exploited in these so-
called “artificial atoms,” usually at cryogenic temperatures.
Recently, the two research domains were bridged, as co-
herent light-matter interactions have been demonstrated in
electrically driven, room-temperature semiconductor optical
amplifiers (SOAs) based on QDashs operating at 1.55 μm
wavelength [1] and later also in QD SOAs operating at 1.55
μm [2] and at 1.3 μm [3].

These coherent observations were made possible using
ultrafast techniques that can measure the complex envelope
of an ultrashort light pulse after it had propagated through the
waveguide of the SOA. The temporal width of the short pulses
defined an interaction time shorter than the decoherence time
of the medium, while the observation techniques provided the
temporal resolution to observe details on time scales shorter
than the pulses themselves. The experimental findings were
also supported by numerical calculations accounting for the in-
teraction of an electromagnetic pulse with an active waveguide,
approximated as a cascade of semiclassical two-level systems
in a similar manner as in Ref. [4], with the addition of slower,
incoherent, charge carriers dynamics governed by a set of rate
equations. A cascade of homogeneously broadened two-level
systems [5] was first modeled, followed by an expansion to

*oulrik@tx.technion.ac.il

inhomogeneous ensembles of such two-level systems [2] in a
later version. These comprehensive models were crucial for
understanding how the coherent Rabi oscillations, which the
medium undergoes during its interaction with the light pulses,
imprint their signatures on the envelopes of the propagating
pulses, resulting in the temporal amplitude and phase profiles
evident at the output of the device. These models enabled one
to identify qualitatively that coherent light-matter interactions
were indeed responsible for the observed pulse shapes.
However, they did not account for any other propagation
phenomena, i.e., dispersion, two-photon absorption (TPA),
and the Kerr effect, and hence were somewhat inaccurate with
respect to a few of the details of the observed signatures.

Nonresonant propagation effects were frequently observed
in dynamical experiments when pulses propagated through
semiconductor optical waveguides. Pump-probe experiments
with QDash SOAs at 1.5 μm [6,7] and at 1 μm [8] as well
as 1.5 μm [9] QD SOAs revealed that an intense pump pulse
injects charge carriers into the active region of the amplifier by
TPA, and induces an increase in the gain which is experienced
by a probe signal at the wavelength of the pump or any other
wavelength within the gain spectrum. Since TPA absorbs the
pulse peak more than its wings, it was also considered to be
responsible for suppressing the pulse narrowing expected in
self-induced transparency (SIT) [1].

Zilkie et al. showed that the TPA process is accompanied by
a Kerr-like effect and produces an instantaneously appearing
negative line-enhancement factor in QD SOAs when biased
to absorption [10]. A similar Kerr-like effect in a bulk
semiconductor was reported by Siederdissen et al. to cause
self-phase modulation, and to create “soliton-like” pulse
shapes, in combination with the linear dispersion [11]. Linear
dispersion alone was measured, for example, in a QD SOA at
1.3 μm [12]. Romstad et al. have also demonstrated a com-
plicated scenario for pulse propagation in bulk SOAs under
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different operating regimes involving nonresonant effects and
nonadiabatic following [13], which called for further study to
discriminate between their contributions. This was followed by
a microscopic model for pulse-envelope propagation in bulk
semiconductor [14,15], and a similar model was also reported
for quantum well SOAs [16]. However, none of these studies
treated theoretically the nonresonant propagation mechanisms.
Thus, the ability to discriminate these effects from the coherent
Rabi oscillations, by utilizing a wave-propagation numerical
model, remained of great importance.

This paper reports such an investigation for QD SOAs
operating at 1.55 μm, which was conducted in two steps.
First, we experimentally characterized, by cross frequency
resolved optical gating (XFROG) [17], the pulse envelope
at the output of a QD SOA when biased to its resonant
transparency. In this regime, the coherent interactions were
diminished, and any signature imprinted on the pulse was
solely due to the nonresonant mechanisms, allowing their
separate study. In the second step, we enhanced our numerical
model, to evaluate the effects of TPA, its accompanying
Kerr-like effect, and linear dispersion in addition to the
coherent light-matter interactions. This model is based on a
finite-difference time-domain (FDTD) algorithm avoiding any
slowly varying envelope approximations, and therefore allows
one to investigate extremely fast dynamics, shorter than an
optical cycle. It enables one to analyze the comprehensive
response of the SOA alongside the pulse propagation in both
the gain and absorption regimes of operation, allowing a
separate investigation of the action of each of the mechanisms
involved in shaping the pulse.

We found that in the transparency regime, the pulse expe-
riences nonresonant absorption, as expected, and exhibits an
instantaneous frequency profile which has the characteristics
of a Kerr-like effect. For low intensities, the pulse showed a
different, almost linear, chirp, which is dominated by linear
dispersion. At sufficiently high energies, pulse narrowing
was observed, indicating a soliton-like behavior. Using the
enhanced numerical model, we also showed that the Kerr-
like effect is crucial for the modeling of the experimentally
observed signatures in both the gain and absorption regimes.

This paper is organized as follows. First, the experimental
study of pulse propagation in a transparent QD SOA is
presented in Sec. II. The numerical model is introduced in
Sec. III, and Sec. IV presents the predictions of the model
in the different operational regimes, and compares them with
experimental results. Finally, Sec. V is devoted to conclusions.

II. PULSE PROPAGATION AT TRANSPARENCY

In order to discriminate experimentally between the signa-
ture of Rabi oscillations and nonresonant propagation phenom-
ena, we characterized the envelope of a 185 fs wide pulse after
propagation through the QD SOA waveguide, when biased to
transparency. In transparency, the probabilities for resonant
absorption and for stimulated emission are almost equal, and
hence the pulse does not induce any modification to the charge
carriers populations in the QDs, and no Rabi flopping takes
place. Only nonresonant effects, such as dispersion, TPA, and
its accompanying Kerr-like effect, can have a pronounced

FIG. 1. (Color online) Bias-dependent emission spectra of the
SOA, together with the spectrum of the excitation pulse used in the
experiments.

signature. Thus, it is possible to identify their imprints on
the pulse envelope separately from the coherent phenomena.

The device we examined was a 1.5 mm long edge emitting
SOA comprising four layers of self-assembled InAs QDs
placed between InGaAlAs barriers, grown on an InP substrate
[18]. The bias-dependent amplified spontaneous emission
spectra are shown in Fig. 1, exhibiting a 70 nm wide inho-
mogeneously broadened gain spectrum. The excitation pulses
were filtered from the output of a Toptica FemtoFiber Pro fiber
laser, with a maximum pulse energy of about 250 pJ (coupled
to the SOA). The spectral shape of the excitation pulse is also
shown in Fig. 1, exhibiting a bandwidth of about 20 nm [full
width at half maximum (FWHM)] centered at 1540 nm. Thus,
and because of the inhomogeneous gain broadening, the true
transparency was only approximately achieved, as some parts
of the pulse spectrum always experienced some absorption
or amplification. Nonetheless, transparency was defined at
the bias level where the effects of stimulated emission and
absorption were minimal, by a simple single-wavelength
pulsed pump-probe experiment. A bias of approximately
95 mA was found to be the transparency point since at this
level the transmission of the probe pulse was not affected by
the presence of the pump pulse, preceding it by a few hundreds
of femtoseconds.

Next, we used the XFROG system to analyze the mod-
ifications induced on the pulse complex envelope in the
above transparency point, for various input pulse energies.
The results are summarized in Figs. 2(a) and 2(b), showing
the temporal intensity and instantaneous frequency (chirp)
profiles, respectively.

The measured intensity profiles show that as the input
energy increases, the output pulses peaks become asymmetric
and delayed. The peak intensities fail to follow the increase in
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FIG. 2. (Color online) Transparency regime. (a) Measured time-
dependent intensity profiles of the output pulses for various input
energies. (b) Instantaneous frequency profile of the output pulses.
The dashed curve presents the input pulse profiles. Its intensity is not
plotted on the same scale as the output pulses.

the input energy, as also clearly presented in Fig. 3(a) (blue
dots). Since the pulses are not broadened at the same time, this
trend of the peak intensity indicates that the pulses experience
an intensity-dependent absorption upon propagation along the
waveguide.

FIG. 3. (Color online) Transparency regime. (a) Normalized
peak intensity at the output of the waveguide (blue dots), and chirp
slope (green triangles) as a function of the pulse energy at the input.
(b) Chirp slope as a function of the normalized output peak intensity.

The measured chirp profiles reveal a transition between two
regimes. For a powerful, 250 pJ, input pulse, where the output
intensity profile is the most augmented one in Fig. 2(a), the
chirp profile shows a steep instantaneous frequency decrease.
As the input energy is lowered, this chirp slope decreases (in
its absolute value), down to a point where for the weak, 3.5 pJ,
pulse, it exhibits a positive slope. The trend of the negative
chirp slope with the input energy resembled that of the output
peak intensity with the input energy as shown in Fig. 3(a)
(green triangles). However, when plotted against the output
peak intensity, the chirp slope changes almost linearly, as seen
in Fig. 3(b). This trend implies an instantaneous, intensity-
dependent phase modulation, namely, a Kerr-like effect. The
presence of such a phenomenon has been reported in several
past cases [10,11] in the context of TPA. Hence, we conclude
that the observed effects are due to TPA (responsible for the
intensity-dependent absorption) with an accompanying Kerr-
like effect.

As the pulse intensity is reduced, these effects decay, and
modifications to the pulse are dominated by linear dispersion,
which creates the positive chirp slope. Opposite signs of the
chirp, caused by dispersion and the Kerr-like effect, imply that
the pulse narrowing at high energies is in fact a manifestation
of “soliton-like” propagation, similar to the one reported in
Ref. [11].

Thus, the experiments in the transparency regime highlight
the significance of TPA, its accompanying Kerr-like effect,
and of the linear dispersion, in shaping the pulses which
propagate in the SOA. Deciphering the combined effect of the
various propagation effects and the coherent Rabi oscillations
evident in higher or lower bias levels requires a proper
model. Accordingly, such a comprehensive FDTD model that
considers all these phenomena, and allows a thorough study
of their collective signature, is introduced in the next section.

III. NUMERICAL MODEL

The proposed model solves Maxwell’s equations governing
the electromagnetic pulse propagation, where the response
of the medium is expressed through the induced polarization
term. Each phenomenon is therefore considered by its par-
ticular contribution to the induced polarization. We invoke a
full-wave FDTD numerical algorithm that allows examination
of the coevolution of the electromagnetic wave and any other
fast dynamical mechanism, such as the evolution of a two-level
system, without using any rotating-wave or slowly varying
envelope approximations.

The present model extends our previous models of coherent
light-matter interactions [2,5]. The electromagnetic field is
assumed to propagate as a TEM mode along the Z axis of the
amplifier, which in turn is modeled as a cascade of ensembles
of quantum-mechanical two-level systems, expressing the
inhomogeneous spectral broadening of the self-assembled QD
medium. The dynamics of these two-level systems are treated
by solving the Schrödinger equation in the density-matrix
formalism. Each two-level system describes a ground state
in a QD which is fed, incoherently, with charge carriers from
an excited state belonging to the same QD. Charge carriers
are captured in, or escape out of these QDs to a carrier
reservoir residing at higher energy levels, which is fed by
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the external current supply. All these incoherent dynamics are
evaluated using a set of rate equations. Technically speaking,
Maxwell’s and Schrödinger’s equations are treated with a
central difference discretization, and the slower rate equations
are propagated with a forward difference discretization.

The calculation of pulse propagation is established, as al-
ready mentioned, on the solution of Maxwell’s curl equations,
for an electric field polarized along the X axis, and a magnetic
field pointing in the Y direction,

∂Ex

∂z
= −μ0

∂Hy

∂t
, − ∂Hy

∂z
= ∂Dx

∂t
, (1)

where Ex , Dx , and Hy are the electric field, electric displace-
ment, and magnetic field components, respectively, and μ0 is
the permeability of the vacuum. The displacement is related to
the electric field and to the induced polarization Px ,

Dx = ε0ε∞Ex + Px, (2)

with ε0 being the permittivity of the vacuum, and ε∞ is the
dielectric constant for an infinite frequency. In every time step
of the FDTD algorithm, Eq. (1) is evaluated to provide the
values for Hy and Dx along the amplifier. These are used
to calculate the various polarization elements, which in turn
enable one to calculate Ex based on Eq. (2), and proceed to
the next time step.

The polarization Px comprises several contributions:

Px = Pdispersion + PKerr + PTPA + PQD + Pplasma. (3)

Pdispersion accounts for the linear (with the field) contribution.
PTPA and PKerr represent the contributions of the TPA of the
wave and of the accompanying Kerr-like effect, respectively.
The interaction with the QDs and their charge carriers is folded
in PQD and Pplasma, determining the radiation of the two-level
systems, and the changes in refractive index due to the carrier
population at the various energy levels.

The linear dispersion is introduced phenomenologically
by driving a lossless Lorentz oscillator [19,20], avoiding
frequency-dependent absorption arising from this contribu-
tion:

∂2Pdispersion

∂t2
+ ω2

LPdispersion = ε0χLω2
LEx. (4)

Here, ωL is the resonant frequency of the Lorentz oscillator,
and χL is the oscillator strength. Both serve to determine
the desired refractive index and the desired degree of group
velocity dispersion (GVD). This is performed by transforming
(4) to the frequency domain, obtaining

Pdispersion (ω) = ε0χLω2
LEx(

ω2
L − ω2

) . (5)

Hence, the nominal dielectric constant at the central excitation
frequency ω is given by (including the response of the medium
at infinite frequency ε∞)

ε (ω) = ε∞ + χLω2
L

ω2
L − ω2

. (6)

The GVD is then expressed by the second derivative, with
respect to ω, of the propagation coefficient β(ω) = ω

c

√
ε(ω)

(c is the speed of light in vacuum). Choosing a nominal

dielectric constant of 12.25, representing this property of
semiconductors at optical frequencies [21], and fixing the
GVD to a desired positive value, one is able to solve for
the parameters (χL,ωL) of the Lorentz oscillator. Then, the
dynamics of this oscillator are evaluated in each time step
of the calculation process, using the known values of the
field variables Pdispersion and Dx , according to the following
discretization scheme [19]:

P n+1
dispersion − 2P n

dispersion + P n−1
dispersion

�t2

+ω2
L

(
P n+1

dispersion + P n−1
dispersion

)
2

= ω2
LχL

(
Dn+1 + Dn−1 − P n+1

dispersion − P n−1
dispersion

)
2ε∞

. (7)

�t is the time increment used in the simulation, and the
superscripts n − 1, n, and n + 1 denote the previous time
step, the current time, and the next time step, respectively. If
negative GVD values are needed, a Drude model can similarly
be applied instead of the Lorentz oscillator.

The treatment of the nonlinear terms starts by formulating
the relation between the TPA susceptibility and the strength
of the Kerr effect, in an α-factor relation, which is described
in the frequency domain by

PTPA+Kerr (ω) = ε0 (1 + jαTPA) χTPAEx (ω) , (8)

where j = √−1, and αTPA is the factor relating the effect of
TPA on the refractive index to its effect on the amplitude of
the wave [10]. χTPA is the TPA susceptibility. In the frequency
domain, it is related to the TPA efficiency βTPA (defined by
Beer’s law for the light intensity, ∂I

∂z
= −βTPAI 2) by [20]

χTPA = c2ε0n
2
0βTPA

2jω
|Ex |2, (9)

with n0 being the nominal refractive index. The TPA polariza-
tion is thus imaginary, while the Kerr effect polarization is real,
therefore different treatments are required to fit them into the
FDTD simulator that deals with real polarizations only. The
Kerr effect simply modifies the refractive index of the medium,
and its induced polarization is real, formulated as [20]

PKerr = ε0
αTPAε0c

2n2
0βTPA|Ex |2

2ω
Ex. (10)

This is calculated at the central frequency of the wave. In
principle, more complicated effects such as self-steepening
may be considered. In that case, the Kerr polarization must
include an independent dynamics driven by the wave [20],
in a similar fashion to what has been used for the case of
linear dispersion. These complications have been avoided in
the present model.

Owing to its specific imaginary character in the frequency
domain, the contribution of the TPA in the time domain is
considered after performing a time derivative of Eq. (2) [20],

∂Dx

∂t
= ε0ε∞

∂Ex

∂t
+ ∂Pdispersion

∂t
+ ∂PKerr

∂t

+∂PQD

∂t
+ ∂Pplasma

∂t
+ P̃TPA, (11)
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where

P̃TPA = c2ε2
0n

2
0βTPA|Ex |2

2
Ex. (12)

The polarization contributed by the two-level systems is
calculated from the coherence terms in their density matrices
[5]. The dynamic behavior is obtained from the dynamics
of Schrödinger’s equation. Although it affects the wave
amplitude, it is a real polarization term, and therefore it too
was derived with respect to time in (11).

Finally, the contribution of the plasma effect is dealt with by
introducing the proper polarization contribution, considering
the modifications made to the dielectric constant in the
medium:

Pplasma = ε0�εplasmaE. (13)

This change is defined phenomenologically by the population
of charge carriers in all the energy levels,

�ε = 2C11

∑
ensemble

Ni
dρ

i
11 + 2 C22

∑
ensemble

Ni
dρ

i
22

+Cex

∑
ensemble

Ni
ex + CresNres + Chreshres, (14)

where Cres, Cex, C11, C22, and Chres are phenomenological
coefficients describing the change in the dielectric constant
due to carrier populations in the electron reservoir, excited
states of the QDs, upper states (of the two-level systems),
lower states, and the hole reservoir, respectively. In (14)
these are multiplied respectively by the populations Nres,∑

ensemble Ni
ex, 2

∑
ensemble Ni

dρ
i
11, 2

∑
ensemble Ni

dρ
i
22, and hres,

where summations are performed in order to account for the
entire QD inhomogeneously broadened spectrum. Ni

d is the
QD volume density for the ith subgroup of QDs, and ρi

11 (ρi
22)

is the population probability of the upper (lower) state in the
corresponding two-level system. Adding this polarization to
(11) yields

∂Dx

∂t
= ε0ε∞

∂Ex

∂t
+ ∂Pdispersion

∂t
+ ∂PKerr

∂t

+ ∂PQD

∂t
+ ε0

∂(�εplasmaEx)

∂t
+ P̃TPA. (15)

This relation is evaluated in each time step in order to calculate
the electric field for the next step. The difference equation
obtained by discretizing (15) is advanced iteratively [20].

Unlike the wave-propagation procedure, which was signif-
icantly altered from the previous models [2,5], the charge-
carrier dynamics are only slightly modified so as to accom-
modate the additional charge carriers injected by TPA. It has
been assumed that they are injected into a very high energy
level with an infinite density of states, so that population
inversion cannot occur there. From this level, the carriers relax
to the electron or hole reservoirs, or recombine, obeying the
following rate equations:

∂NTPA

∂t
= ITPA −

(
1 − Nres

Dres

)
NTPA

τTPArelax

− NTPA

τTPArec

,

(16)
∂hTPA

∂t
= ITPA −

(
1 − hres

Dres

)
1

τhTPArelax

hTPA − NTPA

τTPArec

.

NTPA and hTPA are the electron and hole population in the TPA
injection levels. Dres is the density of states in the carrier
reservoirs which the injected carriers relax into, with the
time constants τTPArelax and τhTPArelax

, for the injected electrons
and holes, respectively. τTPArec is the time scale of direct
recombination of the charge carriers in those levels. ITPA is
the generation rate of carriers by TPA. It is related to the light
intensity I and to the electric field by [20]

ITPA = βTPA

2�ω
I 2 = βTPAc2ε2

0n
2

8�ω
|Ex |4. (17)

This concludes the introduction of our comprehensive numer-
ical model.

IV. SIMULATION RESULTS AND DISCUSSION

The model described in Sec. III was used to examine
the imprints of the combined effects of coherent light-
matter interactions and nonresonant propagation phenomena
on the envelope of a 185 fs wide, transform-limited pulse,
launched at the input of the calculation space. Since many
phenomenological parameters were involved, and due to the
large computational complexities of the calculation process,
the simulations served only to follow qualitatively the trends
observed in the experiments. To that end, we modeled a shorter
propagation length, with relatively strong parameters for the
various mechanisms. The parameters which had to be tuned
for the task were the bias level of the device, the pulse input
energy, the GVD, TPA efficiency βTPA, the Kerr-like parameter
αTPA, the dipole moments for the two-level systems, the overall
density of QDs, and the various α parameters of the charge
carriers populations. All these have a direct impact on the time
scale of the pulse itself, and affect its reshaping. The dipole
moment was tuned to obtain pulse areas of roughly 4π for the
maximum considered pulse energy (800 pJ before coupling
losses), which were implied by our previous experiments in
the gain regime [2]. The QDs’ density was fixed to a value
that enabled one to observe their signature on the pulse shape,
accumulated along the short waveguide we modeled. Other
parameters which had a lesser effect on the pulse shape
were kept constant throughout the investigation. Their values,
following our previous experiences with similar models [1],
are listed in Table I.

Reconstructing the different signatures on the pulse
envelope required one to identify the simulation bias levels
which corresponded to the bias points in the experiments, and
then tuning the parameters governing the propagation and the
carrier effects. This tuning followed a few guidelines in order
to keep the model physically reasonable: TPA efficiency and
its accompanying Kerr effect were fixed for all the bias points
[10], the GVD value was allowed to change monotonically
with the bias level [12,22], and the effect of carrier population
on the refractive index of the medium was assumed to be
stronger in the gain regime compared to the absorption
regime [10].

The results of the calculations are described in the following
sections, concentrating on operating at the transparency point,
in the gain regime, and finally in absorption. In each section,
the results are compared to experimental observations, and the
origins of the various signatures are discussed.
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TABLE I. List of the constant parameters used in the simulations.

Parameter Value

1. Active region geometry
a. Length (μm) 300
b. Width (μm) 4
c. Number of QD layers 5
d. Layer thickness (nm) 10
e. Confinement factor (%) 0.25
f. Nominal refractive index 3.5

2. Electromagnetic stimulus
a. Central wavelength (nm) 1540
b. FWHM (fs) 185

3. Resonant gain medium
a. Dipole moment (Cm) 0.8 × 10−28

b. Peak wavelength (nm) 1580
c. Inhomogeneous broadening (nm) 70
d. Homogeneous broadening (nm) 25
e. Number of sublevels 44

4. Rate equations parameters
a. Total QD density (m−3) 4 × 1023

b. Carrier reservoirs’ density of states (m−3) 2 × 1025

c. Carrier reservoir wavelength (nm) 1450
d. Excited-ground state energy separation (nm) 50
e. Recombination times (ns) 0.4
f. Electron capture time into the QDs (ps) 1
g. Excited-ground state relaxation time (fs) 100
h. Hole capture time into the QDs (fs) 100
i. Hole escape time from the QDs (fs) 100
j. Relaxation time of the TPA electrons (ps) 3
k. Relaxation time of the TPA holes (ps) 3

A. Transparency

Transparency point was identified in the model as the bias
level in which the two-level systems in resonance with the
pulse central wavelength had equal occupation probabilities in
both their eigenstates, in the absence of any electromagnetic
excitation. For the active region geometry, gain spectrum
properties, and QD density listed in Table I, this was achieved
at 42 mA. To provide a positive chirp slope for weak pulses,
similar to what was observed for 3.5 pJ pulses (see Fig. 2),
a positive GVD was assumed in the simulation. For more
intense pulses, TPA truncated the pulses’ peaks, effectively
broadening them in time. However, the accompanying Kerr
effect, which introduced a negative αTPA value, created a
positive chirp on the leading edge of the pulses, and a negative
chirp on their trailing edges. Together with the dispersion, it
acted to compress the pulses into a “soliton-like” structure.
A proper balance between these effects was required for the
reconstruction of the observed pulse narrowing. Furthermore,
the coefficients of the carriers’ plasma effect were introduced,
keeping their values in the carrier reservoirs to be higher
than those of the QD ground states. As a consequence, the
carriers which were generated by TPA also contributed a chirp
via the plasma effect. For positive α parameters, this effect
resulted in a slight increase of the instantaneous frequency of
the pulse along its trailing slope, effectively assisting the linear
dispersion. The results, obtained with the parameters listed in

TABLE II. Simulation parameters for balancing GVD, TPA, the
Kerr effect, and the plasma effect at the transparency bias of 42 mA.

Parameter Value

1. Propagation effects
a. βTPA (GW/cm2) 10
b. αTPA −2.5
c. GVD (fs2/mm) 25 000

2. Plasma effect coefficients
a. Cres (m3) 0.1 × 10−26

b. Cex (m3) 0.05 × 10−26

c. C11 (m3) 0.01 × 10−26

d. C22 (m3) 0.02 × 10−26

e. Chres (m3) 0.1 × 10−26

Table II, for input pulse energies between 10 and 800 pJ, are
plotted in Figs. 4(a) and 4(b), showing the time-dependent
intensity and chirp profiles, respectively, of the output pulses.
The inset of Fig. 4(a) presents the pulse widths (FWHM) as a
function of their input energies (note the logarithmic scale of
the energy axis). It shows that the weak pulses are broadened
by dispersion, while the powerful pulses are compressed, as
demonstrated experimentally. The intensity profiles in Fig. 4(a)
demonstrate the effect of TPA in diminishing the pulse peak
with respect to its initial energy, as it does not increase at
the same rate as the input pulse intensity does. Figure 4(b)
presents the evolution of the instantaneous frequency traces
around the center of the pulse from the rising, dispersion
dominated, profiles of the weak pulses, to the decreasing,
Kerr effect dominated, profiles for the intense pulses. As

FIG. 4. (Color online) Pulse propagation at transparency.
(a) Calculated output pulse time-dependent intensity for various
input energies. Inset: Corresponding pulse widths vs input energy.
(b) Corresponding calculated instantaneous frequency profiles.
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the model assumes an ideal, transform limited, Gaussian
pulse shape at the input, deviations from the exact measured
profiles are evident. Nevertheless, it demonstrates the same
qualitative trends observed in experiments, concluding that
within the present computational limitations, this numerical
apparatus mimics the physical mechanisms taking place.

B. Gain regime

In the next stage of the investigation, the effects of GVD,
TPA, and its accompanying Kerr effect were studied in the gain
regime (using a simulated bias of 100 mA), where coherent
light-matter interactions are pronounced. At this bias level,
the same pulses which were tested at transparency triggered
up to two cycles of Rabi oscillations in the resonant two-level
systems, in a similar fashion to our previous experimental
observations. In order to clarify the role of these Rabi
oscillations in shaping the pulse envelopes, as compared to the
nonresonant effects, we considered two cases, one with and
the second without the TPA and the accompanying Kerr effect
contributions. The predicted output pulse shapes for various
input energies, obtained using the parameters summarized in
Table III, and compared with an experimental measurement
of similar pulses which had propagated through the SOA
under gain conditions, are plotted in Fig. 5. It presents
the time-dependent intensity profiles of the predicted pulses
without accounting for the TPA and Kerr effects [Fig. 5(a)],
of the predicted pulses with these effects included [Fig. 5(c)],
and of the experimental measurement [Fig. 5(e)]. Figures 5(b),
5(d), and 5(f) show the corresponding instantaneous frequency
profiles, which are shifted vertically for clarity.

TABLE III. Simulation parameters for balancing GVD, TPA, the
Kerr effect, and the plasma effect at 100 mA bias, availing the gain
regime.

Parameter Value

1. Propagation effects
a. βTPA (GW/cm2) 10
b. αTPA −2.5
c. GVD (fs2/mm) 2000

2. Plasma effect coefficients
a. Cres (m3) 0.15 × 10−26

b. Cex (m3) 0.1 × 10−26

c. C11 (m3) 0.02 × 10−26

d. C22 (m3) 0.05 × 10−26

e. Chres (m3) 0.2 × 10−26

In Figs. 5(a) and 5(b), the intensity and chirp profiles reveal
the evolution of the oscillations imprinted by the coherent
interaction with the two-level systems: Each Rabi cycle is
accompanied by a temporary redshift, caused by the plasma
effect of the charge carriers on the refractive index of the
medium [1]. Thus, the chirp profiles reveal that the 100 pJ
pulse has triggered a complete Rabi cycle, and a second one is
starting. When the pulse intensity increases further, this second
cycle advances, and the imprinted oscillations in the chirp
become clear, and are also followed by a matching oscillation
in the amplitude profiles, with multiple peaks corresponding
to each of the redshifts. Moreover, as the pulse intensity rises,
the first peak and the first redshift advance gradually to earlier
times, consistent with the rise in the Rabi frequency. However,

FIG. 5. (Color online) Pulse propagation in gain regime. (a) Calculated time-dependent intensity of the output pulses, not accounting for
TPA and the Kerr effect. (b) The corresponding instantaneous frequency patterns. (c) Calculated time-dependent intensity of the output pulses,
including TPA and the Kerr effect. (d) The corresponding instantaneous frequency patterns. (e) Measured time-dependent intensity of the
output pulses from the real SOA. (f) The corresponding instantaneous frequency patterns.
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the pattern visible in the instantaneous frequency plots is
significant only along the first Rabi cycle, which is explained
as follows. The fast carrier replenishment into the QDs from
the carrier reservoir causes depletion of the reservoir. Since the
plasma effect of the reservoir is strong, it creates a pronounced
redshift on the leading edge of the pulse. On the other hand, this
relaxation quickly averages out the population oscillations in
the carrier reservoir, and so the second Rabi cycle is manifested
by a minor redshift in the chirp profile, as the population of
the QDs affects the chirp much less than that the reservoir.

Introducing the TPA and its accompanying Kerr effect,
while keeping the other parameters fixed, resulted in the
evolution presented in Figs. 5(c) and 5(d). Similar to the case
of transparency, the TPA itself suppresses and clamps the peak
intensities of the high energy pulses. The pulse areas are
effectively reduced, and their coherent interactions with the
two-level systems are weakened, preventing the appearance
of the second Rabi-cycle signature at the moderate energies,
whose absence is sensed when comparing Figs. 5(d) and 5(b)
for the 100 and 200 pJ cases, for example. Nevertheless,
Fig. 5(c) still shows clearly the intensity oscillations due to the
coherent interaction, when the pulse intensity is sufficiently
high. The Kerr effect acts to raise the instantaneous frequency
whenever the pulse intensity rises, and to lower it when the
pulse intensity reduces. Together with the linear dispersion,
this effect balances the chirp induced by the charge carriers,
and also slightly compresses the pulse lobes, bringing them
closer together. Thus, the overall evolution of the pulse
envelope is milder compared with the case without TPA. When
the pulse area is sufficiently high, it splits into two lobes,
which drift apart considerably and produce two corresponding
redshifts which are of similar depths, as demonstrated in
Fig. 5(d). The pulse envelopes, measured at the output of the
QD SOA under a bias of 250 mA, are shown in Figs. 5(e)
and 5(f). The figures exhibit a qualitatively similar evolution.
The oscillations in the intensity profile [Fig. 5(e)] do not grow
gradually but rather appear as the input pulse energy crosses a
certain value. The peak intensity is clamped, especially when
the input intensity produces the coherent oscillations. This
severe clamping is consistent with our predictions, shown in
Fig. 5(c), where the coherent transition along the pulse from
stimulated emission to absorption adds to the truncation of
the pulse peak by TPA. In contrast, this feature is not sensed
at all in the reduced model without TPA. The corresponding
chirp profile, in Fig. 5(f), also presents mild features, with
a single redshift feature, turning, upon crossing the coherent
breakup “threshold,” into two similar valued redshifts, which
are torn apart from each other. We therefore conclude that
in gain regime, the model that combines the coherent Rabi
oscillations and the nonresonant effects improves the pre-
dictions of the pulse shapes at the SOA output, and enables
one to discriminate among the contributions from each of the
mechanisms.

C. Absorption regime

Finally, absorption conditions were modeled by applying a
10 mA bias, and the nonresonant parameters listed in Table IV.
Here again, the results of the full model were compared to a
calculation ignoring the TPA and the Kerr effect, and to an

TABLE IV. Simulation parameters for balancing GVD, TPA,
the Kerr effect, and the plasma effect at 10 mA bias, availing the
absorption regime.

Parameter Value

1. Propagation effects
a. βTPA (GW/cm2) 10
b. αTPA −2.5
c. GVD (fs2/mm) 25 000

2. Plasma effect coefficients
a. Cres (m3) 0.1 × 10−26

b. Cex (m3) 0.05 × 10−26

c. C11 (m3) 0.01 × 10−26

d. C22 (m3) 0.02 × 10−26

e. Chres (m3) 0.1 × 10−26

experimental measurement. The comparisons are depicted in
Fig. 6, which present the time-dependent intensity profiles of
the predicted pulses without accounting for the TPA and Kerr
effects [Fig. 6(a)], of the predicted pulses with these effects
included [Fig. 6(c)], and of the experimental measurement
[Fig. 6(e)]. Figures 6(b), 6(d), and 6(f) show the corresponding
instantaneous frequency profiles, which are shifted vertically
for clarity. The insets in the intensity profiles present the pulse
widths (FWHM) as function of the input pulse energy.

Since the pulses are absorbed, their areas are in general
diminished so that the common shape of their intensity
profiles has a single peak, without any oscillations. Some
pulse compression is measured as the input energy is raised
[Fig. 6(e)]. This trend is reconstructed in our models, as
emphasized by the insets of Figs. 6(a) and 6(c), but as the
energy is further raised in the model without TPA, the FWHM
of the output pulse starts to increase. This effect was not
observed in the measurements, thus highlighting the need to
account for TPA when modeling the experiments. Another
difference between the predictions of the two models is in the
peak intensity of the pulses, which are quenched by TPA.

The instantaneous frequency profiles, however, provide
a more powerful evidence for the role of the nonresonant
effects. The calculations which disregard TPA predict that
the absorption of the pulse, generating charge carriers in the
SOA, induces a positive chirp along the leading edge of the
pulse, seen in Fig. 6(b). Even for intense pulses, which trigger
coherent self-induced transparency (SIT), the chirp is mainly
positive, again due to the fast escape of charge carriers from
the two-level systems. The introduction of the TPA with its
accompanying Kerr effect creates a mechanism that induces a
negative effect on the chirp profile [10]. It induces the temporal
decrease in the instantaneous frequency shown in Fig. 6(d).
Since this chirp is opposite to that induced by the linear dis-
persion of the medium, it also leads to some pulse compression.

This redshift is clearly evident in the experimental findings
in Fig. 6(f), and therefore further confirms the need to
include TPA and the Kerr effect in the model. The observed
compression of the intensity profile for 250 pJ input energy
[Fig. 6(e)] is explained by the SIT mechanism assisted by the
focusing action of the Kerr-like effect and the dispersion.
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FIG. 6. (Color online) Pulse propagation in absorption regime. (a) Calculated time-dependent intensity of the output pulses, not accounting
for TPA and the Kerr effect. (b) The corresponding instantaneous frequency patterns. (c) Calculated time-dependent intensity of the output
pulses, including TPA and the Kerr effect. (d) The corresponding instantaneous frequency patterns. (e) Measured time-dependent intensity of
the output pulses from the real SOA. (f) The corresponding instantaneous frequency patterns. The insets show the FWHM values vs input
energy regarding each of the three cases.

V. CONCLUSION

In conclusion, we studied the impact of nonresonant
propagation effects on the envelope of an ultrashort pulse as
it propagates through a QD SOA and experiences coherent
light-matter interactions such as Rabi oscillations.

XFROG characterization of the pulse complex envelope
at the output of the SOA under transparency conditions
(where the coherent interactions are diminished) revealed
that linear dispersion, TPA, and a Kerr-like effect contribute
significantly in shaping the pulse envelope. In order to
discriminate these effects in the gain and absorption regimes
as well, a comprehensive numerical model describing the
pulse propagation was developed. This model integrates
our previously developed FDTD numerical simulation tools
describing the propagation of a pulse through a chain of
quantum-mechanical two-level systems with additional FDTD
schemes that model the nonresonant propagation effects of
TPA, Kerr, and GVD. The model reconstructed qualitatively
the pulse shapes and their evolution with the pulse input
intensity at transparency, gain, and absorption. While the
coherent Rabi oscillations were undoubtedly found respon-
sible for the observed pulse breakup at high input energies in

the gain regime, the focusing action of the linear dispersion
combined with the Kerr effect was essential for producing key
features such as: (i) at transparency, “soliton-like” propagation
and pulse narrowing at high intensities as observed in the
experiments, (ii) in the gain regime, constraining the pulse
breakup and clamping of the peak intensity, as well as the
reproduction of two equally deep redshifts which cannot
be reconstructed otherwise, and (iii) in the absorption regime,
the redshifts observed in the experiments were predicted only
by the action of the Kerr effect.

Conclusively, this investigation provides a better under-
standing of the mechanisms that shape the pulse while
propagating in the SOA, and will serve to predict and delineate
more accurately the result of future experiments.
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