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We study potential and electron density depth profiles in accumulation, inversion, and depletion layers in
crystals with a large and nonlinear dielectric response such as SrTiO3. We describe the lattice dielectric response
using the Landau-Ginzburg free energy expansion. In accumulation and inversion layers we arrive at new nonlinear
dependencies of the width d of the electron gas on an applied electric field D0. Particularly important is the
predicted electron density profile of accumulation layers (including the LaAlO3/SrTiO3 interface) n(x) ∝ (x +
d)−12/7, where d ∝ D

−7/5
0 . We compare this profile with available data and find satisfactory agreement. For a de-

pletion layer we find an unconventional nonlinear dependence of the capacitance on voltage. We also evaluate the
role of spatial dispersion in the dielectric response by adding a gradient term to the Landau-Ginzburg free energy.
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I. INTRODUCTION

In recent years there has been growing interest in the
investigation of ABO3 perovskite crystals, which are important
for numerous technological applications and show intriguing
magnetic, superconducting, and multiferroic properties [1].
Special attention [2,3] is paid to heterostructures involving
SrTiO3 which is a semiconductor with a band gap of �3.2 eV
[4] and a large dielectric constant κ ranging from 2 × 104 at
liquid helium temperatures to 350 at room temperature. As
with conventional semiconductors, SrTiO3 can be used as a
building block for different types of devices, with reasonably
large mobility [5,6].

Many devices are based on the accumulation layer of
electrons near a heterojunction interface involving SrTiO3.
For example, one can use modulation doping in the structure
SrTiO3/SrZrO3 to introduce electrons in the conduction band
of SrTiO3 from La donors within the wider-band-gap material
SrZrO3 [7]. Inside bulk SrTiO3 δ doping can be used to
introduce two accumulation layers of electrons [8–10]. One
can accumulate an electron gas using a field effect [11–13]
instead of dopants. In Refs. [14,15] the authors accumulated
up to 1014 cm−2 electrons on the surface of SrTiO3 using
ionic liquid gating. Finally, there is enormous interest [2,5,6]
in LaAlO3/SrTiO3 heterojunctions where electrons are ac-
cumulated by the electric field resulting from the “polar
catastrophe” [16]. It is natural to think that the depth profiles
of the potential and electron density inside SrTiO3 have a
universal origin in all these devices.

Another type of device based on n-doped SrTiO3 is
the Schottky diode. Due to the built-in Schottky barrier
the region near the metal-semiconductor interface in doped
SrTiO3 is depleted. The large and nonlinear dielectric con-
stant results in unconventional capacitance-voltage charac-
teristics. Schottky diodes with different metals and bulk
SrTiO3 dopants have been studied: Au/Nb : SrTiO3 [17],
Ba1−xKxBiO3/Nb : SrTiO3 [18], SrRuO3/Nb : SrTiO3 [19],
and Au/SrTiO3−x [20].
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All of the devices cited above are based on accumulation
and depletion layers. We do not know of any attempts to create
a hole inversion layer in n-type SrTiO3 or an electron inversion
layer in p-type SrTiO3 but they are likely to be of interest as
well.

Interface properties determine characteristics of all these
devices. Not surprisingly, the potential and electron density
depth profiles in such devices have attracted attention from
the experimental [21–24] and theoretical points of view
[14,25–29]. For example, experimental data show that elec-
trons are distributed in a layer of width �5–10 nm near the
LaAlO3/SrTiO3 interface. Theoretical works that attempt to
explain such behavior are based on microscopic numerical
calculations.

The goal of this paper is to create a simple, mostly
phenomenological and analytical approach for describing the
potential and the electron density depth profiles in SrTiO3.
To account for the nonlinear dielectric response in SrTiO3

we use the Landau-Ginzburg free energy expansion [30,31].
Electrons are almost everywhere described in the Thomas-
Fermi approximation [32]. Although we mostly concentrate on
SrTiO3, the developed approach is applicable to KTaO3 [33]
and CaTiO3 [34] as well.

Our main result is a new form for the potential and
electron density depth profiles in accumulation, inversion,
and depletion layers due to the nonlinear dielectric response.
In particular, for an accumulation layer in SrTiO3, we find
an electron concentration n(x) that depends on the distance
from the surface x as n(x) ∝ (x + d)−12/7, where the width
d decreases with the external electric field D0 as d ∝ D

−7/5
0 .

These relations seem to agree with experimental data [22,23].
The remainder of this paper is organized as follows. In

Sec. II we define the model based on the Landau-Ginzburg the-
ory for calculating the lattice dielectric response and describe
the parameters of SrTiO3. In Sec. III we use the Thomas-Fermi
approach for calculating the self-consistent electric field to
describe properties of electron accumulation layers. In the
Sec. IV we apply our theory to the consideration of interfaces
between SrTiO3 and polar dielectrics. In particular, we pay
attention to the case of an accumulation layer on the interface
of LaAlO3/SrTiO3 and compare our theory with experimental
data. In Sec. V we calculate the quantum capacitance of
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the accumulation layer in SrTiO3. In Sec. VI we use a one
subband approximation, in which electrons do not affect the
electric field, to calculate properties of inversion layers. In
Sec. VII we consider a depletion layer in SrTiO3, calculate
the capacitance-voltage characteristics of a Schottky barrier
for such systems, and compare our results with experimental
data. In Sec. VIII we show that our results are not modified
by the presence of spatial dispersion in the dielectric response.
Section IX provides a summary and conclusion.

II. THE MODEL

Bulk SrTiO3 typically is an n-type semiconductor with
a concentration of donors N > 1017 cm−3. Let us discuss
the position of Fermi energy εF in such crystals. The
electron spectrum near the bottom of the conduction band
is complicated [35], and in order to make the problem of
an accumulation layer tractable analytically we assume that
it is isotropic and nondegenerate with the effective mass
m∗ � 1.5m, [36] where m is free electron mass. Within the
hydrogenic theory of shallow donors, the donor Bohr radius is
equal to κb, where b = �

2/m∗e2 � 0.35 Å, e is the electron
charge, and κ is dielectric constant of the material. At room
temperature when κ = 350, the Bohr radius κb = 123 Å is so
large that the Mott criterion for the metal-insulator transition
in doped semiconductors Ncb

3 = 0.02/κ3 leads to a very
small critical concentration Nc = 1 × 1016 cm−3. At helium
temperatures κ = 2 × 104 and Nc = 6 × 1010 cm−3. Thus,
at the experimentally relevant concentration of donors N >

1017 cm−3, we are dealing with a heavily doped semiconductor
in which the Fermi energy lies in the conduction band of
SrTiO3. On the other hand, due to the relatively high effective
mass, the bulk Fermi energy εF is smaller than the bending
energy of the conduction band bottom near the interface (see
Figs. 1 and 6). For example, for N = 1018 cm−3, the Fermi
energy calculated from the bottom of the conduction band
is εF � 4 meV, which can be up to 100 times smaller than
the bending energy of the conduction band bottom in an
accumulation layer for GdTiO3/SrTiO3. Therefore, we assume
below that the Fermi energy coincides with the bottom of the
conduction band.

FIG. 1. (Color online) Schematic energy diagram of an accumu-
lation layer in an n-doped semiconductor with band gap Eg . Electrons
(blue region) are attracted by an external electric field D0. The
characteristic width of the electron gas is d . In the bulk of SrTiO3 the
Fermi level εF is near the bottom of the conduction band (plotted by
the dashed line)

We are interested in accumulation, inversion, and depletion
layers near an interface of SrTiO3. We consider the case when
the axis x is directed perpendicular to the interface (plane x =
0) and lies along the [100] axis of a cubic crystal of SrTiO3.
(In fact, SrTiO3 changes symmetry from cubic to tetragonal
at T � 110 K, but the distortion is small [37] and can be
neglected.) An external electric field D0 applied from the left
(see Figs. 1, 4, and 6) is directed along the x axis. In that
case the problem is effectively one dimensional. If the charge
density is denoted by ρ(x), then the potential depth profile
ϕ(x) in the system is determined by the equations

dD

dx
= 4πρ, D = E + 4πP,

dϕ

dx
= −E, (1)

where D(x),E(x),P (x) are electric induction, electric field,
and polarization in SrTiO3. Equations (1) should be solved
with proper boundary conditions. For example, for an accu-
mulation layer the boundary conditions are D(0) = D0 and
ϕ(∞) = 0.

To solve the system (1) one needs to know two material
relationships E(P ) and ρ(ϕ). Let us start from the lattice
dielectric response E(P ). SrTiO3 is well known as a quantum
paraelectric, where the onset of ferroelectric order is sup-
pressed by quantum fluctuations [38].

A powerful approach to describe the properties of fer-
roelectriclike materials is based on the Landau-Ginzburg
theory. For a continuous second-order phase transition the
Landau-Ginzburg expression of the free energy density F is
represented as a power series expansion with respect to the
polarization P :

F = F0 + τ

2
P 2 + 1

4
A

1

P 2
0

P 4 − EP, (2)

where F0 stands for the free energy density at P = 0 and τ

is the inverse susceptibility τ = 4π/(κ − 1) � 4π/κ . In this
work 0 < τ � 1, P0 = e/a2 is the characteristic polarization
and a � 3.9 Å [37] is the lattice constant. The coefficient
A describes the nonlinear dielectric response. Analyzing the
available data [18,39–41] in Sec. VII we find values of A

between 0.5 and 1.5. For all estimates below we use A = 0.8
following from Ref. [41]. The last term of Eq. (2) is responsible
for the interaction between the polarization and the electric
field E. In general F depends on the components of the vector
P , but in the chosen geometry the problem is one dimensional,
and all vectors are directed along the x axis. The crystal
polarization P is determined by minimizing the free energy
density F in the presence of the electric field E, δF/δP = 0.
This condition relates E and P ,

E = 4π

κ
P + A

P 2
0

P 3. (3)

We note that E � 4πP and thus D = E + 4πP � 4πP . The
electric field Dc at which the transition from linear to nonlinear
dielectric response occurs can be found by equating the first
and second terms in expression (3):

Dc = P0

√
(4π )3

κA
. (4)
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If D � Dc the dielectric response of SrTiO3 is linear and
one can use the simplified expression for the electric field:

E = D

κ
. (5)

For D � Dc the dielectric response of SrTiO3 is nonlinear
and one must instead use the expression

E = A

(4π )3P 2
0

D3. (6)

Next one should specify ρ(ϕ), which depends on the specific
device of interest.

III. ACCUMULATION LAYER: THEORY

In an accumulation layer the external electric field D0

attracts electrons with a three-dimensional concentration n(x)
(see Fig. 1). Our goal is to find the electron depth profile n(x)
and its characteristic width d.

Due to electric neutrality the number of accumulated
electrons has to compensate the external field D0, i.e.,

4πe

∫ ∞

0
n(x)dx = D0. (7)

To take into account the electron screening of the external field
we use the Thomas-Fermi approach [32] in which the electron
concentration n(x) and self-consistent potential profile ϕ(x)
are related as eϕ(x) + μ(x) = εF = 0, where

μ(x) = (3π2)2/3 �
2

2m
[n(x)]2/3 (8)

is the chemical potential of the electron gas. Thus, one can
obtain the solution of Eqs. (1) by replacing ρ(x) with en(x)
and using relations (5) and (6). For a linear dielectric response
we obtain the equation for the potential:

d2

dx2

(
ϕ

e/b

)
= 23/2

3π2

1

b2

1

κ

(
ϕ

e/b

)3/2

(9)

We use the boundary condition ϕ = 0 at x → ∞ and get the
solution

ϕ(x) = C1
e

b
κ2

(
b

x + d

)4

, (10)

n(x) = C2
1

b3
κ3

(
b

x + d

)6

, (11)

where C1 = (225/8)π2 � 278 and C2 = 1125π/8 � 442.
{ϕ(0) was derived equivalently in Ref. [42] as a work function
reduction for GaAs.} For a nonlinear dielectric response we
obtain the equation for the potential:

d

dx

[(
d

dx

ϕ

e/b

)1/3
]

= 23/2

3π2

1

b4/3
A1/3

(
e/b2

P0

)2/3 (
ϕ

e/b

)3/2

.(12)

With the same boundary condition we get the solution

ϕ(x) = C3
e

b

(
b

a

)8/7 1

A2/7

(
b

x + d

)8/7

, (13)

n(x) = C4
1

b3

(
b

a

)12/7 1

A3/7

(
b

x + d

)12/7

, (14)

TABLE I. Percentage of electrons in the TiO2 layer M of SrTiO3

for D0 = 2πe/a2, corresponding to a total surface density of 0.5e/a2.

M 1 2 3 4 5 6 7 8 9 10

Percent 27.9 14.4 9.0 6.2 4.6 3.5 2.8 2.3 1.9 1.6

where C3 = [5636π12/(7823)]1/7 � 5.8 and C4 =
[5932π426/712]1/7 � 1.3.

The characteristic length d can be obtained using the
neutrality condition [see Eq. (7)]. For a linear dielectric
response this gives

d = C5b

(
a

b

)2/5

κ3/5

(
e/a2

D0

)1/5

, (15)

where C5 = [π2225/2]1/5 � 4. For a nonlinear dielectric
response:

d = C6b

(
a

b

)2/5(
e/a2

D0

)7/5 1

A3/5
, (16)

where C6 = (16/7)(5232π11)1/5 � 84. The electric field Dc

at which the transition from linear to nonlinear dielectric
response occurs can be found from equating Eqs. (15) and (16).
This gives

Dc = C7√
A

e

a2

√
1

κ
, (17)

where C7 = (221π9/75)1/6 � 12, consistent with Eq. (4). For
SrTiO3, the critical field Dc depends on temperature Dc �
0.1e/a2 for helium temperature and Dc � 0.7e/a2 for room
temperature.

The three-dimensional concentration profile n(x) for the
nonlinear dielectric response Eq. (14) is the main result of our
paper. Note that n(x) has a very long tail with a weak 12/7
power law dependence, which may lead to some arbitrariness
in measurements of the width of the electron gas. Indeed,
only 39% of electrons are located within the distance 0 <

x < d near the interface and 68% of electrons are located
within 0 < x < 4d. In the calculation above we used a space-
continuous model. Actually, along the [100] axis SrTiO3 is
composed of alternating TiO2 and SrO layers. The conduction
band of SrTiO3 corresponds to the bands composed of mainly
3d orbitals of Ti. Integrating n(x) over each lattice cell in
Table I we get a percentage of electrons in each of the 10 first
TiO2 layers of SrTiO3 for the case D = 2πe/a2.

One can see from Eqs. (11) and (14) that the tails of the
electron depth profiles n(x) at x � d do not depend on D0 and
behave like

C2
1

b3
κ3

(
b

x

)6

and

C4
1

b3

(
b

a

)12/7 1

A3/7

(
b

x

)12/7

for linear and nonlinear dielectric responses, respectively.
Even for D0 � Dc, when the electron distribution n(x) at
moderately large x is described by dependence (14), at very
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large distances the polarization becomes smaller and the linear
dielectric response takes over so that the n(x) dependence
switches from Eq. (14) to Eq. (11). This happens at the distance

x0 = b

(
C2

C4

)7/30

A1/10

(
a

b

)2/5

κ7/10

(x0 = 360 and 20 nm for helium and room temperature,
respectively). Thus, the tail of n(x) is universal. For small
D0 < Dc the tail has the form n(x) ∝ x−6. For D0 > Dc it has
the form n(x) ∝ x−12/7 for x < x0 and n(x) ∝ x−6 for x > x0.

On the other hand, one has to remember that our theory
is correct only when n(x) is larger than the concentration of
donors in the bulk of the material.

Let us verify whether the Thomas-Fermi approximation is
applicable, i.e., kF d � 1. Here kF = (3π2)1/3n(0)1/3 is the
wave vector of an electron at the Fermi level. For D0 � Dc

kF d = C8κ
2/5

(
b

a

)2/5 (
D0

e/a2

)1/5

, (18)

while for D0 � Dc

kF d = C9
1

A2/5

(
b

a

)2/5 (
e/a2

D0

)3/5

, (19)

where C8 = (5333π3/24)1/5 � 6, C9 = 4/7(15π3)3/5 � 23.

One can see that kF d > 1 in the range of 2 × 10−7e/a2 <

D0 < 40e/a2 for room temperature. For lower temperatures
this interval is even larger. Thus, the Thomas-Fermi approxi-
mation is applicable for practically all reasonable electric fields
D0 [43].

IV. ACCUMULATION LAYER: COMPARISON WITH
EXPERIMENTAL DATA

It is widely believed that an electron gas emerges
near polar/nonpolar interfaces such as LaAlO3/SrTiO3,

GdTiO3/SrTiO3 [13,24], LaVO3/SrTiO3 [44],
NdAlO3/SrTiO3, PrAlO3/SrTiO3, NdGaO3/SrTiO3 [45],
LaGaO3/SrTiO3 [46], and LaTiO3/SrTiO3 [47] due to the
polar catastrophe [16]. For a large enough thickness of the
polar crystal [27] the interface electron surface charge density

σ = e

∫ ∞

0
n(x)dx (20)

is equal to 0.5e/a2, which corresponds to D0 = 2πe/a2 [see
Eq. (7)]. For any temperature this field is much larger then the
critical field Dc and Eq. (19) gives kF d = 3. Thus, we arrive
at Eq. (14) for the electron concentration n(x) and Eq. (16)
shows that d � 6.7 Å. In this case 68% of electrons are located
within 2.7 nm. This result agrees with experimental estimates
of the width of an electron gas near the GdTiO3/SrTiO3

interface [24]. It also agrees with experimental data [48] for
the γ -Al2O3/SrTiO3 interface, where a 2DEG is formed due
to the formation of oxygen vacancies on SrTiO3. In the case
of δ-doped SrTiO3 with one layer of La [49] one has two
accumulation layers each with σ = 0.5e/a2 and a similar
width d.

To see how important the nonlinear dielectric response is,
one can compare its prediction to the one obtained by assuming

0 80 160 240 320
x/b

0

2

4

6

10
6 n

(x
)b

3

FIG. 2. The experimental distribution of electrons n(x) from
Ref. [23] is shown by circles in convenient dimensionless units.
Fitting by Eq. (14) is shown by the solid line. The fitting parameter
is σ = 0.13e/a2, which gives d � 142b � 5 nm.

the response to be linear, given by Eq. (15). For D = 2πe/a2

and helium temperature the linear dielectric response gives
d = 167 nm. A similar result was obtained in Ref. [50], where
the nonlinear dielectric response was not taken into account.

For the LaAlO3/SrTiO3 interface the number of electrons
accumulated is apparently smaller than what the “polar
catastrophe” scenario predicts. For example, only �10% of the
electrons are seen in Hall measurements [11,51,52]. In order
to describe the electron concentration n(x) for such a surface
charge density, σ = 0.05e/a2, one can still use Eqs. (14)
and (16). As a result, we arrive at a much larger value of
d � 17 nm.

We test our theory for the functional shape of n(x) by
comparing to experimental data for the electron distribution
n(x) near the interface of LaAlO3/SrTiO3 at temperature
�10 K [23] (see Fig. 2). For such small temperatures the
critical field Dc is small and we fit the experimental data
by Eq. (14) with σ = D0/4π as a fitting parameter and
get σ = 0.12e/a2 with d � 142b � 5 nm. Figure 2 shows
satisfactory agreement between the data and the shape of n(x)
described by Eq. (14).

Let us now dwell upon the experimental data for n(x)
from Ref. [22]. The data are obtained via time-resolved
photoluminescence spectroscopy of the LaAlO3/SrTiO3 inter-
face, where interface-induced electrons radiatively recombine
with photoexcited holes in SrTiO3. Following the assumption
from Ref. [22] that the photoexcited holes are immobile, the
concentration of holes p decays with time t according to the
equation

dp

dt
= −r1p − r2 [n(x)]2 p, (21)

where r1 is the hole trapping rate and r2 is the three carrier
nonradiative Auger recombination coefficient. The authors of
Ref. [22] used the decay of the photoluminescence intensity to
obtain n(x) in LaAlO3/SrTiO3 with the help of the coefficients
r1,r2 from Ref. [53]. The resulting n(x) is shown in Fig. 3 by
filled circles. We fit this data by the equation

n(x) = G

(x + d)12/7
, (22)

which is similar to Eq. (14), but G is a fitting parameter
independent of d. We see from Fig. 3 that this fit is good,
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0 150 300 450 600 750
x/b

0

4

8

12
10

6 n
(x

)b
3

n(x) = G(x + d)−12/7

FIG. 3. The experimental distribution of electrons n(x) (circles)
from Ref. [22] obtained by time-resolved photoluminescence in
convenient dimensionless units. Fitting with Eq. (22) is shown by
the solid line. The fitting parameters are G = 0.16 and d = 250b �
9 nm.

however, the parameter G is seven times larger than the
parameter C4(b/a)12/7/A3/7 entering Eq. (14). This can be
explained by a 50-fold increase of the Auger coefficient r2

of Eq. (21) near the interface. A similar surface effect was
observed in Ref. [54] for SrTiO3 nanocrystals, where r2 is
almost 150 times larger than for bulk SrTiO3.

From the fit we get d = 250b � 9 nm, which corresponds to
an electron surface charge density σ = D0/4π = 0.08e/a2 in
agreement with other data [11,23,51]. One can check that this
result is self-consistent, i.e., for such σ one can use Eq. (14) for
the fitting of experimental data, because kF d > 1 [see Eq. (19)]
and D0 > Dc [see Eq. (17)].

V. QUANTUM CAPACITANCE OF AN ACCUMULATION
LAYER

In this section we address the capacitance of an ac-
cumulation layer, for example in the double junction
metal/GdTiO3/SrTiO3. If the width of insulating GdTiO3

layer is L � d we may view an accumulation layer as a
conducting two-dimensional gas (2DEG). One can apply
a positive voltage V between the metal and the 2DEG
and measure the additional charge per unit area σ ′ and
−σ ′, which are induced on the metal and in the 2DEG,
respectively. The capacitance per unit area of junction is
C = dσ ′/dV . If we imagine that the 2DEG is a perfect metal,
the additional charge −σ ′ resides exactly in the plane of the
GdTiO3/SrTiO3 junction and the capacitance is equal to the
geometric capacitance C = CG = κG/4πL, where κG = 30
is the dielectric constant of the GdTiO3 layer. Actually, the
accumulation layer is not a perfect metal so that an additional
negative charge −σ ′ is distributed in a layer of finite width
d. As a result C−1 = C−1

G + C−1
q , where Cq is called the

quantum capacitance [55]. Quantum capacitance is broadly
studied for many 2DEGs such as silicon MOSFETs [56],
GaAs/Gax Al1−xAs heterostructures [57], and graphene [58].

Concentrating on the case of D0 � Dc and using Eqs. (12)
and (16) for the potential difference between x = 0 and x = ∞
we have at σ ′ = 0:

ϕ(0) = C3

C
8/7
6

e

b
A2/5

(
b

a

)8/5 (
D0

e/a2

)8/5

. (23)

After the transfer of charge −σ ′ from the metal to the electron
gas the potential changes as

�ϕ= C3

C
8/7
6

e

b
A2/5

(
b

a

)8/5
[(

D0+4πσ ′

e/a2

)8/5

−
(

D0

e/a2

)8/5
]

.

(24)

Assuming that D0 � 4πσ ′, linearizing �ϕ with respect of
σ ′ and adding the voltage drop across the GdTiO3 layer we get

V = e

b

8

5

C3

C
8/7
6

A2/5

(
b

a

)8/5 4πσ ′

e/a2

(
D0

e/a2

)3/5

+ 4πLσ ′

κG

.

Using Eq. (16) for d we can write for the total capacitance:

C−1 = 7

5

4πd

κeff
+ 4πL

κG

, (25)

where

κeff = (4π )3

A[D0/(e/a2)]2

is the effective nonlinear dielectric constant D/E at x = 0
[see Eq. (6)]. The first term of Eq. (25) is the inverse quantum
capacitance C−1

q , and the last term is the inverse geometric

capacitance C−1
G .

Due to the polar catastrophe in GdTiO3 we get D0 =
2πe/a2 and κeff = 63. The ratio of inverse capacitances is

C−1
q

C−1
G

= 7

5

κG

κeff

d

L
.

For L = 40 Å we get C−1
q /C−1

G = 0.1. One can extend our
calculation to the double junction SrTiO3/GdTiO3/SrTiO3. In
that case the inverse quantum capacitance is the sum of inverse
quantum capacitances of both junctions.

VI. FROM ACCUMULATION TO INVERSION LAYER

In the previous section we considered an accumulation layer
and showed that it can be described by the Thomas-Fermi
approximation, when the Fermi level is near the bottom of the
conduction band. But the Fermi level can be moved into the
gap, for example, by a back gate. In a p-type inversion layer
in SrTiO3 (see Fig. 4) the Fermi level can be even deeper, at
the top of the bulk valence band. In both cases, the charge of
electrons compensates only a fraction of the external electric
field D0, i.e., Eq. (7) is violated. For example, the rest of the
negative charge in the inversion layer is provided by negative
acceptors (see Fig. 4) and the electron surface charge density
σ < D0/(4π ). To calculate the width of the electron density
profile d(σ,D0) below we use a scaling approach, i.e., we
neglect all numerical coefficients.

If the surface electron density is high enough σ � e/d2,
the electron gas is three dimensional (3DEG), and one can use
the Thomas-Fermi approach and the kinetic energy is

K = �
2

2m

(
σ

de

)2/3

[see Fig. 5(a)]. On the other hand, at σ � e/d2 the electrons
are confined to the first subband of the triangular potential
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FIG. 4. (Color online) Inversion layer of a p-type semiconductor.
Holes have been forced away by an external electric field D0. The
field is so strong that it attracts mobile electrons (blue region) in
the inversion layer with width d and total surface charge density σ .
Negatively charged acceptors are shown by blue minuses. The Fermi
level εF is plotted by a dashed line.

well, so that the electron gas is two dimensional (2DEG) [59].
The electron kinetic energy is then

K = �
2

2md2
.

In both cases, the characteristic potential energy of electrons
is U = eEd [see Fig. 5(b)].

The dielectric response can be linear E = D0/κ or nonlin-
ear E = AD3

0/P
2
0 depending on whether the external electric

field D0 is smaller or larger than Dc, respectively. This
gives us four cases which correspond to high σ � e/d2 and
low σ � e/d2 electron charge density, small field D0 � Dc,
and large field D0 � Dc. The diagram in Fig. 5(c) shows
the combined scaling results for d(σ,D) for all these four
domains. We use σ as an independent coordinate because
the three-dimensional concentration σ/d can be obtained by
Hall effect measurements, while d can also be measured
independently [22].

First, let us consider the domain of high electron charge
density σ � e/d2 and small field D0 � Dc. The kinetic
energy is K = �

2/2m(σ/ed)2/3 and the potential energy is
U = edD0/κ . From the condition K = U one obtains

d = bκ3/5 σ 2/5

D
3/5
0

(
e

b2

)1/5

(26)

[see Fig. 5(c)]. When the neutrality relation (7) is satisfied:

σ = D0

4π
, (27)

we recover the previous accumulation layer result, Eq. (15).
For low electron charge density σ � e/d2 and small field
D0 � Dc we get

d = b

(
κe/b2

D0

)1/3

. (28)

This is the classical result for the width of the inversion
layer [60]. The critical electron density at which the transition
from low to high electron charge density occurs can be
obtained from the condition σc = e/d2 or from equating

(a) (b)

(c)

(27)

(29)

(32)

FIG. 5. (Color online) Schematic energy diagram for conduction
band electrons in the triangular potential well created by an external
electric field D0 for two different cases: (a) 3DEG, when many
subbands are filled by electrons and (b) 2DEG, when only the lowest
subband is partially filled. This filling is shown by light yellow
and dark green, respectively. (c) Schematic phase diagram for the
dependence of the width of electron gas d in units of b on electron
surface charge density σ and external electric field D0 both in the
units e/b2 for SrTiO3 with dielectric constant κ . The four domains of
this diagram correspond to four different formulas for d . If the electric
field is small, D0 < 1/

√
κ , the linear relation between electric field

and electric induction Eq. (5) is applicable. For D0 > 1/
√

κ Eq. (5)
is replaced by the nonlinear relation Eq. (6). The light and dark gray
(yellow and green in color) regions distinguish 3DEG and 2DEG
cases. The border lines between domains are marked by numbers of
corresponding equations (27), (29), and (32).

expressions (26) and (28) for d, giving

σc = e

b2

1

κ2/3

(
D0

e/b2

)2/3

. (29)

We emphasize the difference between the two regimes of
low [Eq. (28)] and high [Eq. (26)] electron charge densities.
Sometimes [14,25] Eq. (28) for d of an inversion layer is used
for an accumulation layer.

So far we described the two left, low D0 [D0 < Dc =
e/(a2√κ)] domains of Fig. 5(c). For a large field D0 � Dc

and a high electron charge density σ � e/d2 we get

d = b

(
b

a

)4
σ 2/5

D
9/5
0

(
e

b2

)7/5

. (30)

At σ = D/4π , i.e., when the neutrality relation is satisfied,
we get the previous result Eq. (16). At last, for a low electron
charge density σ � e/d2 and large field D0 � Dc we get

d = b

(
b

a

)4/3
e/b2

D0
. (31)
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FIG. 6. (Color online) Schematic energy diagram of a depletion
layer of an n-doped semiconductor. Electrons have been forced away
by an external electric field, which is created by negative charges on
the surface of the semiconductor. As a result, the depletion layer with
width W is filled by positively charged donors (red pluses).

The transition from low to high electron charge density at
D0 � Dc occurs at the critical electron density:

σc = e

b2

(
D0

e/b2

)2

. (32)

All four results Eqs. (26), (28), (30), and (31) and all the border
lines between different domains, Eqs. (27), (29), and (32), are
shown in Fig. 5(c).

VII. DEPLETION LAYER

Schottky diodes are metal-n-type-SrTiO3 junctions where
the electron gas is depleted near the interface. Below we
calculate the capacitance of this junction as a function of
concentration of donors N and applied voltage V , which has
been experimentally studied [17–20].

In order to calculate the capacitance of the Schottky
diode let us consider Eqs. (1). We use the full depletion
approximation, in which we assume that SrTiO3 is fully
depleted from electrons over a distance W from the surface
(Fig. 6). The charge density in that region is due to the ionized
donors with 3D concentration N :

ρ = e

a3
(Na3), x < W,

ρ = 0, x > W. (33)

From Eqs. (33) and (1) one can determine the dependence
of the width W on the potential drop across the depletion
layer �ϕ = ϕ(∞) − ϕ(0) = V0 − V > 0, where the negative
voltage V is applied to the metal and V0 is the potential
difference between the work functions of SrTiO3 and the metal.
If D0 < Dc one can use the linear relation (5) to get

�ϕ = 2π

κ

e

a
(Na3)

(
W

a

)2

. (34)

If D0 > Dc, we use the nonlinear expression (6):

�ϕ = A
1

4

e

a
(Na3)3

(
W

a

)4

. (35)

−1.2 −0.8 −0.4 0.0

V/(e/a)

0

200

400

600

800

1/
(C

a
)2

×0.15

Na3 = 9.5 × 10−3

Na3 = 1.4 × 10−2

Na3 = 2.9 × 10−5

FIG. 7. (Color online) Experimental capacitance-voltage (C-V )
characteristics at room temperature for Nb-doped SrTiO3 for three
values of the donor concentration N . The data for doping concentra-
tions Na3 = 9.5 × 10−3 and Na3 = 2.9 × 10−5 are from Ref. [18],
the one for concentration Na3 = 1.4 × 10−2 are from Ref. [41]. The
capacitance and the voltage are measured in dimensionless units 1/a

and e/a, where a is the lattice constant. Experimental results are
shown by points. Solid lines correspond to fitting by Eq. (36) and by
Eq. (37) for the smaller (upper line) and larger concentration (two
lower lines), respectively.

Now one can calculate the capacitance per unit area of the
Schottky diode

C = dQ

d�ϕ
= eN

∣∣∣∣ dW

d�ϕ

∣∣∣∣ .
This gives

1

(Ca)2
= 8π

κ

(
V0 − V

e/a

)
1

Na3
(36)

for D0 < Dc, and

1

(Ca)2
= 8

(
V0 − V

e/a

)3/2 (
A

Na3

)1/2

(37)

for D0 > Dc. With growing V the crossover between Eqs. (36)
and (37) happens at V = Vc where

Vc = V0 − e

a

(
π

κ

)2 1

ANa3
. (38)

To test our theoretical predictions we consider the exper-
imental data obtained at room temperature for lightly and
heavier Nb-doped SrTiO3 of Ref. [18], Na3 = 2.9 × 10−5 and
Na3 = 9.5 × 10−3 as well as the more heavily doped sample
Na3 = 1.4 × 10−2 of Ref. [41] (see Fig. 7). In the first case,
one can expect D0 to be small and we use Eq. (36) to fit the
experimental data. Using κ and V0 as fitting parameters we get
V0 = 0.5e/a, κ � 320, which is close to the room temperature
value κ � 350 for SrTiO3. For the heavier doped samples, one
can expect that D0 is large and use Eq. (37) to find A and V0

from the experimental data. As a result, we get V0 = 0.8e/a,
A � 1.5 and V0 = 0.26e/a, A � 0.8 for the data of Refs. [18]
and [41], respectively [61].

In Refs. [18,39–41,62] C(V ) data are used to derive κ(E) ≡
dD/dE, which agrees with the Landau description [40].
Extracting the parameter A from κ(E) of Ref. [39] gives
A = 0.5, while κ(E) in Refs. [18,41] lead to the above
mentioned values of A. The scatter of values of A probably can
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be explained by the effect of a noncontrollable “dead layer” of
low dielectric constant between SrTiO3 and the metal [18,41].

It is believed [41] the best interface was made in Ref. [41],
whose data lead to A � 0.8. Above we used this value for all
numerical estimates [63].

VIII. DOES SPATIAL DISPERSION OF DIELECTRIC
RESPONSE AFFECT THE ACCUMULATION LAYER?

So far we assumed that the external field D0 and polarization
P change abruptly at the interface, i.e., we have ignored the
dispersion of the dielectric response. In this section we show
that even without this assumption, the results of previous
sections remain intact for SrTiO3. We concentrate on an
accumulation layer which can be so narrow that the question of
spatial dispersion arises. To take into account that the electric
field and polarization cannot change abruptly, in the geometry
chosen above we add the gradient term (1/2)a2

0 (dP/dx)2 to the
Landau-Ginzburg free energy density Eq. (2). Here a2

0 = gxxxx

in the general expression for the gradient term

1

2
giklm

∂Pi

∂xk

∂Pl

∂xm

,

and i,k,l,m enumerate the three coordinates x,y,z. Adding
such a term necessitates an additional boundary condition for
P (x) at x = 0. The general form of this condition [64] is P +
λdP/dx = 0. It does not bring new physics into the problem
if λ is large. Therefore, we explore the opposite case where λ

can be ignored, P (0) = 0. From the condition ∂F/∂P = 0 we
get

E = 4π

κ
P + A

P 2
0

P 3 − a2
0
d2P

dx2
. (39)

Let us first find a solution to Eqs. (1) together with Eq. (39)
for a system without electrons [ρ(x) = 0]. The electrical
induction D0 = E + 4πP is constant everywhere and we get
an approximate solution for E = D0 − 4πP :

E � (D0 − E∞) exp

(
−

√
4π

x

a0

)
+ E∞, (40)

where E∞ = D0/κ + (D0/4π )3/P 2
0 is the electric field in the

bulk.
Now, we take electrons into account and start from the

case where in Eq. (39) κ = ∞ and P0 = ∞, so that the
role of the gradient term is emphasized. From the resulting
equation E = −a2

0d
2P/dx2 we get ϕ = a2

0dP/dx. (We take
into account that at x → ∞, ϕ = dP/dx = 0.) From the
condition dE/dx + 4πdP/dx = 4πeρ we get an equation
for the potential:

d2ϕ

dx2
= 4π

a2
0

ϕ + e

b3

27/2

3π

(
ϕ

e/b

)3/2

(41)

[compare with Eq. (9)]. The solution to this equation, with
boundary condition ϕ(∞) = 0, is

ϕ(x) = 152π4

27

eb3

a4
0

1

sinh4 X
, (42)

where X = √
π (x + d)/2a0 and d is still an unknown length,

which can be found from the boundary condition. Let us

describe this solution. First, we see that the solution critically
depends on the parameter X. If X > 1 or x > a0 − d then
one arrives at Eq. (40): the electric field and potential decay
exponentially to zero as ∝ exp(−√

4πx/a0).
Let us consider the case when X < 1 or x < a0 − d. In that

case we get a result similar to Eq. (10), but with κ = 1,

ϕ = 225π2

8

eb3

(x + d)4
. (43)

Thus, at x < a0 − d the electrons screen the external field
much faster than the lattice, and hence the latter does not
participate appreciably in the screening response.

One can try to estimate d assuming that the majority of
electrons are in the region 0 < x < a0 − d. In that case the
potential is given by Eq. (43) and d can be found from the
condition of neutrality (7):

d1 = C5b

(
e/b2

D0

)1/5

. (44)

The condition d1 < a0, required for applicability of
Eq. (43), is valid only when D0 � Dd , where

Dd = C5
5b

3 e

a5
0

� 1000

(
a

a0

)5(
b

a

)3
e

a2
. (45)

Let us now consider the opposite case D0 � Dd , where
most of the electrons are not located in the region x < a0 − d.
In fact, to find where they are located one has to introduce
finite κ and P0. The exponential decay of the electric field
with x saturates at the level of E∞. At larger x we reach the
electron gas with a larger width given by Eqs. (15) or (16)
for linear and nonlinear dielectric responses, respectively. In
this case, the electron gas resides at large distances and our
considerations of the previous section are valid.

If we return to finite κ and P0 in Eq. (39) in the first
case D0 � Dd , we arrive to the following hybrid picture. An
electron gas screens most of the external field at small x � d1.
At larger distances we again get exponential decay described
by Eq. (40), which results from the lattice response. After
this exponential decay the electron concentration n(x) again
follows Eqs. (11) or (14), with the bulk value of the dielectric
constant κ . In other words, the electron density has a two
component distribution. The electrons nearest to the interface
are likely localized due to disorder. This could, in principle,
create hope to explain why at the LaAlO3/SrTiO3 interface
only 10% of the electrons predicted by the polar catastrophe
σ = 0.5.e/a2 are observed in transport measurements.

However, this hope does not survive for actual parameters
of SrTiO3, b = 0.35 Å, a0 = 1 Å [65]. Although for such
parameters the Thomas-Fermi approximation is still valid,
the electric field at which all electrons are located within the
distance a0 from the interface, Dd = 650e/a2 is so large that
D0 � Dd always. One may also worry that for such values
of b and a0, which are smaller than the lattice constant a of
SrTiO3, the continuous theory that we use is not applicable.

However, the applicability of the continuous theory can
be much better due to the so called background dielectric
constant [65]. Indeed, until now we have described the entire
dielectric response by the Landau-Ginzburg theory for a single
order parameter, which can be identified with the displacement
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of the transversal optical soft mode of SrTiO3. This is a good
approach when the dielectric response is very strong. However,
near the interface the response of the soft mode is weakened
due to the dispersion and the response of other optical modes
as well as the polarization of ions must be included. This
is done [65] by the addition of the linear nondispersive
background dielectric constant 10 < κb < 30 [65,66]. To
model this situation one can replace P by the soft mode
contribution Ps in the free energy density (2) and add to it
(2π/κb)P 2

b − EPb while keeping P = Ps + Pb in Eqs. (1).
Here Pb is the background polarization.

As a result, the small distance dielectric constant becomes
κb instead of 1 and the lengths b, a0, and the characteristic
field of Eq. (45) Dd are replaced by bκb, a0

√
κb, and Ddκ

1/2
b ,

respectively. For 10 < κb < 30 the characteristic lengths bκb

and a0
√

κb may reach the lattice constant a, thereby improving
the applicability of our theory. At the same time the critical
field Dd becomes even larger so that in all realistic situations,
D0 � Dd , all electrons are located at distances larger than the
lattice constant a. This means that the dispersion does not play
a substantial role and the dispersionless approach used in the
previous sections is applicable for describing accumulation,
inversion, and depletion layers in SrTiO3.

IX. CONCLUSION

In this paper we studied the potential and electron density
depth profiles in accumulation, inversion, and depletion layers
for materials with a very large dielectric constant and nonlinear
dielectric response such as SrTiO3. In particular, we showed
that in a depletion layer at a given donor concentration and
for high enough voltage, the dependence of the capacitance

on voltage decreases as C ∝ V −3/4, which is substantially
different from the conventional result C ∝ V −1/2 with linear
dielectric response. For an inversion layer we found that the
layer width depends on the external electric field D0 as d ∝
(κ/D0)1/3 and d ∝ 1/D0 for linear and nonlinear dielectric
responses, respectively. In accumulation layers near interfaces
like GdTiO3/SrTiO3, LaTiO3/SrTiO3, and LaAlO3/SrTiO3

we obtained n(x) ∝ (x + d)−12/7 with d ∝ D
−7/5
0 , due to the

nonlinearity of the dielectric response. We found that 70%
of electrons are located within 2.6 nm of the interfaces
GdTiO3/SrTiO3 and LaTiO3/SrTiO3 (where the electron
surface charge density is σ = 0.5e/a2) in agreement with
experimental data. The predicted functional shape of the
electron depth profile n(x) also shows satisfactory agreement
with the experimental data. Spatial dispersion in the dielectric
response was shown to be negligible for the description of
potential and electron density depth profiles in SrTiO3 devices.
This paper uses a simplified isotropic electron spectrum, while
the electronic structure of SrTiO3 is multiorbital in nature. In
future work we plan to go beyond our simplified description.
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