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Identifying quantum phases from the injectivity of symmetric matrix product states
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Given a local gapped Hamiltonian with a global symmetry on a one-dimensional lattice we describe a method
to identify whether the Hamiltonian belongs to a quantum phase in which the symmetry is spontaneously broken
in the ground states or to a specific symmetry-protected phase, without using local or string order parameters.
We obtain different matrix product state (MPS) descriptions of the symmetric ground state(s) of the Hamiltonian
by restricting the MPS matrices to transform under different equivalence classes of projective representations
of the symmetry. The phase of the Hamiltonian is identified by examining which MPS descriptions, if any,
are injective, namely, whether the largest eigenvalue of the transfer matrix obtained from the MPS is unique.
We demonstrate the method for translationally invariant Hamiltonians with a global SO(3), Z2, and Z2 × Z2

symmetry on an infinite chain.
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Quantum many-body systems exhibit a variety of phases
at zero temperature, and identifying the quantum phases that
appear in a given system—to determine the phase diagram
of the system—is a pivotal task, e.g., in condensed matter
physics. In the absence of symmetries, all local gapped [1]
Hamiltonians on a one-dimensional (1D) lattice belong to the
same phase, and can be smoothly connected [2] to a “trivial”
Hamiltonian whose ground state is a product state. In two
or higher dimensions topological phases, characterized by
ground states with nonzero topological entanglement entropy
[3], can also appear even in the absence of symmetries. But
such phases do not exist in 1D systems [4,5]. A 1D local gapped
Hamiltonian with a global symmetry can belong either to a
symmetry-broken phase, characterized by degenerate ground
states that are not all symmetric, or to one of possibly several
distinct symmetry-protected phases, in which the ground state
is unique and symmetric [4–6].

Symmetry breaking can be identified using a local order pa-
rameter [7] while string (nonlocal) order parameters have been
proposed [8–10] to distinguish certain symmetry-protected
phases. A classical simulation of the system can select the
symmetric ground state in a symmetry-broken phase, or
artificially break the symmetry in a symmetry-protected phase
due to numerical errors; in these cases the phase can no
longer be identified by the corresponding local or string order
parameter, respectively. In this paper we introduce a method
to identify quantum phases in classical simulations of 1D
quantum many-body systems, without using local or string
order parameters.

Ground states of 1D local gapped Hamiltonians can be
efficiently described as matrix product states [11–14] (MPSs).
Quantum phases in 1D have also been classified [4,5] using
MPS description of ground states, which has led to practi-
cal procedures for identifying [9,15,16] phases in classical
simulations. Here we describe how to identify both symmetry-
broken and symmetry-protected phases by examining the
degeneracy of the largest eigenvalue of the transfer matrix
obtained from MPS descriptions of symmetric ground states.
The latter are obtained by explicitly restricting the simulation
to the symmetric subspace of the lattice [17–20] (even
when the symmetry is spontaneously broken in the ground
states).

Consider a 1D lattice L made of L sites each described
by a d-dimensional vector space V. A translationally invariant
matrix product state |�〉 of L can be expanded as [Fig. 1(a)]

|�〉 =
d∑

i1...iL=1

Tr
(
Âi1Âi2 . . . ÂiL

)|i1,i2, . . . ,iL〉, (1)

where Tr denotes matrix trace, |i1,i2, . . . ,iL〉 = ⊗
k∈L |ik〉, |ik〉

is a local basis on site k, and Âik are site-independent, χ × χ

matrices acting on vector space W, Âik : W → W. Here χ

is called the bond dimension of the MPS. We will assume
that the MPS is in the canonical form in which matrices
Âi satisfy

∑
i ÂiÂ

†
i = Î [14,21]. In this paper we consider

the thermodynamic limit, L → ∞, in order to accommodate
symmetry breaking.

In a translationally invariant MPS Â, two-point correlations,
C(l) ≡ 〈ômôn〉 − 〈ôm〉〈ôn〉, can be obtained as

C(l) = Tr(Ŷ T̂ l Ŷ T̂ L−l−2) − Tr(Ŷ T̂ L−1)Tr(Ŷ T̂ L−1), (2)

where Ŷ ≡ ∑
ij ôijAi ⊗ A∗

j , |m − n| = l + 1, and

T̂ ≡
d∑

i=1

Ai ⊗ A∗
i (3)

is the transfer matrix; see Fig. 1.
If the largest modulus eigenvalue λmax of T̂ is unique then

the MPS is said to be injective [22]. For an injective MPS
λmax = 1 [14] and liml→∞ T̂ l = |R〉〈L|, where |R〉,〈L| are
the right and left eigenvectors of T̂ corresponding to λmax, re-
spectively [Fig. 1(c)]. For sufficiently large but finite l we have
T̂ l ≈ |R〉〈L| up to O(|λ2|l) corrections where λ2 is the second
largest eigenvalue of T̂ . This implies that an injective MPS
has a finite correlation length ξ = − 1

ln|λ2| since C(l) ≈ e−l/ξ

[Fig. 1(d)]. On the other hand, a noninjective MPS (where λmax

is degenerate) can have long-range correlations. For example,
the MPS composed of matrices {ÂGHZ

i ,i = 1,2, . . . ,d}, where
ÂGHZ

i is a d × d matrix with 1 at position (i,i) and 0 elsewhere,
is noninjective and has long-range correlations. Specifically, it
describes the GHZ state: 1√

d

∑d
i=1 |i,i, . . . ,i〉, 〈i|i ′〉 = δii ′ .

A state |�〉 described by an injective MPS Â can always
be described by a noninjective MPS composed of matrices
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FIG. 1. (Color online) (a) Translationally invariant MPS {Âi} on
an infinite lattice, Eq. (1). (b) Transfer matrix T̂ , Eq. (3). (c) Condition
satisfied by an injective MPS, liml→∞ T̂ l = |R〉〈L|, where |R〉,〈L|
are the dominant right and left eigenvectors of T̂ . (d) For an injective
MPS we have 〈ômôn〉 ≈ 〈ôm〉〈ôn〉 for sufficiently large |m − n| = l

[Eq. (2)].

Â′
i = Îf ⊗ Âi , where Îf is an f × f identity matrix. It is

readily checked that correlations, Eq. (2), of local observables
obtained from the MPS Â and Â′ are equal, up to a
normalization factor f . The transfer matrix of MPS Â′ has
f 2 eigenvalues with modulus 1, but describes a state with a
finite correlation length. We will say that Â′ is an inflated MPS
description of state |�〉.

Let us introduce the action of a symmetry group G on the
lattice L by means of a unitary linear representation Ûg : V →
V on each site V, ÛgÛh = Ûg.h (∀g,h ∈ G). MPS |�〉, Eq. (1),
has a global symmetry G, or equivalently |�〉 is G symmetric,
if

|�〉 =
(⊗

s∈L
Ûg

)
|�〉, ∀g ∈ G. (4)

The global symmetry implies a constraint on matrices Âi ;
namely, |�〉 is G symmetric iff matrices Âi satisfy [23,24]∑

i ′
(Ûg)ii ′Âi ′ = eiθg V̂ †

g Âi V̂g, ∀g ∈ G, (5)

where the phases [25] eiθg form a one-dimensional representa-
tion of G and V̂g : W → W are unitary matrices (for an MPS
in the canonical form) that form a χ -dimensional projective
representation of G—a representation that fulfills the group
product only up to a phase V̂gV̂h = eiω(g,h)V̂g.h ∀g,h ∈ G; see
Appendix A. We refer to V̂g as the bond representation of the
G-symmetric MPS Â.

We now turn to addressing the goal of this paper. We have a
local, gapped, translationally invariant [26], and G-symmetric
Hamiltonian Ĥ on the lattice L; i.e.,[

Ĥ ,
⊗
s∈L

Ûg

]
= 0, ∀g ∈ G. (6)

Our goal is to identify whether Ĥ belongs to one of possibly
several phases protected by symmetry G or to a phase in which
symmetry G is broken in the ground states.

Identification of symmetry-protected phases. If the ground
state of Ĥ is unique and G symmetric then Ĥ belongs to
a quantum phase protected by the symmetry G. Distinct

(a) (b)

FIG. 2. (Color online) Illustration of an inflated MPS description
in the (a) nontrivial and the (b) trivial SO(3)-protected phase realized
on a spin-1 chain. MPS Âproj and B̂ triv are SO(3) symmetric and
injective. Each index carries an irreducible spin representation as
indicated. Identity Î is depicted by a horizontal line (tensor product
with the MPS). Change of basis Ŵ (see text) is eliminated for
simplicity.

symmetry-protected phases are in one-to-one correspondence
with the elements of the second cohomology group of G,
H 2(G,U (1)), which also label different equivalence classes
of projective representations of G. Linear representations of
G [the identity element of H 2(G,U (1))] correspond to the
trivial symmetry-protected phase. For example, the second
cohomology group of G = SO(3) is Z2. Thus, there are
2 distinct phases protected by SO(3) symmetry: the trivial
phase corresponding to integer-spin representations (linear),
and a phase corresponding to half-integer-spin (projective)
representations of SO(3). A ground state belonging to a
symmetry-protected phase has a finite correlation length
[13,14] and admits an injective MPS description [27]. If Ĥ

belongs to a symmetry-protected phase ω ∈ H 2(G,U (1)) then
an injective MPS description of its ground state has a bond
representation in the equivalence class ω [4,5].

Consider a spin-1 Hamiltonian in the nontrivial SO(3)-
protected phase whose ground state |�proj〉 is described by
an injective MPS Âproj with spin- 1

2 bond representation; i.e.,
V̂g in Eq. (5) is generated by the Pauli matrices [Fig. 2(a)].
A simple example of such a ground state is the AKLT state
[28] in the Haldane phase [29]. State |�proj〉 can also be
described by an inflated MPS, for instance, composed of
matrices Âtriv

i ≡ Ŵ †(Î2 ⊗ Â
proj
i )Ŵ , where Î2 is the identity in

the spin- 1
2 representation and Ŵ is the change of basis [21]

from the tensor product of two spin- 1
2 representations, span

{|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}, to the direct sum of spin-0 and spin-1
representation, i.e., 1√

2
(|↑↓〉 − |↓↑〉)⊕ span {|↑↑〉, 1√

2
(|↑↓〉 +

|↓↑〉),|↓↓〉}.
Thus, |�proj〉, which belongs to the nontrivial SO(3)-

protected phase, is also described by MPS Âtriv, which has
integer-spin bond representations (direct sum of spin 0 and
spin 1). Note that this does not contradict the MPS-based
classification of symmetry-protected phases because MPS
Âtriv is noninjective (inflated). Analogously, an injective MPS
description of a ground state in the trivial SO(3)-protected
phase [e.g., MPS B̂ triv depicted in Fig. 2(b)] has integer-spin
bond representation while MPS descriptions of the state with
half-integer-spin bond representation are inflated.

More generally, if Ĥ belongs to a symmetry-protected
phase ω ∈ H 2(G,U (1)) then its ground state |�〉 can be
described by an MPS with a bond representation in any ω′
different from ω, but such an MPS description must be inflated
(see Appendix B). More technically, an MPS description
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of |�〉 with bond representation V̂ ω′
g in ω′ is composed of

matrices Âω′
i ≡ Ŵ †(Îf ⊗ Âω

i )Ŵ , where (i) Âω is an injective
MPS description of |�〉 with bond representation V̂ ω

g , (ii)

Îf is the identity in a representation V̂ ω̃
g , and (iii) Ŵ is the

change of basis from the tensor product of representations
V̂ ω

g and V̂ ω̃
g to the representation V̂ ω′

g . (ω̃ is chosen such that
ω and ω′ are related in this way.) Thus, if we could obtain
an MPS description of |�〉 that satisfies Eq. (5) for a given
equivalence class of bond representation then we could iterate
through the different equivalence classes ω ∈ H 2(G,U (1)) and
identify the phase of Ĥ from the ω that results in an injective
MPS description of |�〉. In MPS simulations, this can be
achieved by choosing an initial G-symmetric state with a bond
representation in the given ω and ensuring that the symmetry,
Eq. (5), is protected in the simulation at all times.

In practice, an MPS description of the ground state(s) of
a given Hamiltonian can be obtained, e.g., by means of the
density matrix renormalization group [30] (DMRG) and the
time-evolving block decimation [31] (TEBD) algorithms. One
way to ensure that the DMRG and TEBD simulations produce
a symmetric ground state is to incorporate the (necessary and
sufficient) symmetry constraint Eq. (5) in the MPS ansatz.
It is well understood [17–20] how to do this when the bond
representation V̂g is a linear representation. When Eq. (5)
involves linear representations, the matrices Âi decompose in
terms of the Clebsch-Gordan (CG) coefficients of the group
G, which depend on the choice of the bond representation,
and coefficients �x that are not fixed by the symmetry (Wigner-
Eckart theorem). An initial G-symmetric MPS with a specific
bond representation is constructed from the corresponding CG
coefficients and randomly chosen �x. The symmetry is protected
in each iteration of the DMRG and TEBD algorithms by only
updating the �x part of the MPS. We refer to Refs. [17–20] for
details.

When the bond representation is projective, Eq. (5) can
be incorporated in the MPS in the same way by exploiting
the fact that projective representations of G can be lifted
to linear representations of another group R(G), called the
representation group [32] of G. For example, R(SO(3)) =
SU(2); i.e., integer (linear) and half-integer (projective) spin
representations of SO(3) are linear representations of SU(2).
The group R(G) is a central extension of G and in many cases
of interest is also a covering group of G. When Eq. (5) involves
projective representations, the Wigner-Eckart decomposition
of Âi is composed of Clebsch-Gordan coefficients of the group
R(G).

To demonstrate the method consider the spin-1 bilinear
biquadratic Heisenberg model on an infinite chain L

Ĥ BLBQ =
∑
k∈L

cos θ (�Sk
�Sk+1) + sin θ (�Sk

�Sk+1)2, (7)

where �S ≡ (Ŝx,Ŝy,Ŝz) are spin-1 matrices. This model has a
global SO(3) symmetry and exhibits [9,16,33] the two distinct
SO(3)-symmetry-protected phases: There is a phase transition
at θ = −π/4 from the trivial phase, θ < −π/4, to the Haldane
phase [29] corresponding to half-integer-spin representations
of SO(3).
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FIG. 3. (Color online) Degeneracy of λmax for two MPS descrip-
tions of the SO(3)-symmetric ground states of Ĥ BLBQ, Eq. (7),
obtained by restricting the bond representation to integer (◦) and
half-integer (×) spin representations, respectively. Ground states were
obtained using the SU(2)-symmetric TEBD algorithm with χ � 100.

For given θ , we used the SU(2)-symmetric TEBD algorithm
[18] to obtain two MPS descriptions of the SO(3)-symmetric
ground state by restricting the bond representation to integer-
and half-integer-spin representations, respectively. In the two
cases we chose an initial SO(3)-symmetric MPS with integer-
and half-integer-spin bond representations, respectively, which
resulted in restricting the bond representation to these equiva-
lence classes at all times in the SO(3)-symmetric simulation.
This is because each site V of the lattice transforms as an
integer-spin representation, and both integer and half-integer
bond representations (on space W) correspond to a nonvan-
ishing intertwiner (Clebsch-Gordan coefficients) between the
spaces V ⊗ W and W.

From the plot in Fig. 3 we find that for θ < −π/4 the MPS
description of the ground state is injective for integer-spin
bond representation but inflated (with degeneracy of λmax

equal to 4) for half-integer-spin bond representation, and vice
versa for θ > −π/4. Thus, we conclude that Ĥ BLBQ belongs
to the trivial phase for θ < −π/4 and to the Haldane phase
for θ > −π/4. When the bond representation was restricted
to integer-spin representations in the Haldane phase (Fig. 3)
the simulation produced a minimally inflated MPS, with a
bond dimension that was f = 2 times the injective MPS
bond dimension, which corresponds to inflating the injective
MPS by taking tensor product with identity in the spin- 1

2
representation. As a result, we find that the degeneracy of the
largest eigenvalue of the transfer matrix of the inflated MPS is
equal to f 2 = 4.

At the critical point θ = −π/4 we find that the MPS
description of the approximated ground state is injective
when the bond representation is restricted to either integer-
or half-integer-spin representations. At a critical point the
ground state has a divergent correlation length which cannot
be captured by an MPS with a finite bond dimension, and
an MPS simulation only produces an approximation to the
ground state—a “nearby” state lying in either gapped phase
around the critical point. Here, in addition to a finite bond
dimension, restricting the bond representation to integer- or
half-integer-spin representations constrains the simulation to
produce a nearby (injective) MPS lying in the Haldane or the
trivial phase, respectively.
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Identification of symmetry-broken phases. If Ĥ , Eq. (6),
belongs to a phase in which the global symmetry G is broken
then it has a degenerate ground subspace and there exist
ground states that are not G symmetric. More relevant to our
purpose is that in a large class of symmetry-broken phases there
exist G-symmetric ground states all of which are GHZ-type
states dressed with local entanglement (see Appendix C),
and consequently their MPS descriptions are noninjective (for
bond representations in any equivalence class).

For example, consider the spin-1/2 transverse field quan-
tum Ising model on an infinite chain L,

Ĥ ISING =
∑
k∈L

σ̂ z
k σ̂ z

k+1 + hσ̂ x
k , (8)

where σ̂ z,x are Pauli matrices and h is the magnetic field in the
transverse direction. This model has a Z2 symmetry generated
by a global spin flip,

⊗
k∈L σ̂ x . It exhibits a second-order

phase transition at h = 1 from the disordered phase—a trivial
phase where the ground state is unique and Z2 symmetric—to
the symmetry-broken phase (ordered phase), h < 1, where the
ground state is 2-fold degenerate [7]. For instance, at h = 0
the ground subspace is spanned by states | · · · ↑↑↑ · · · 〉 and
| · · · ↓↓↓ · · · 〉; there exist two Z2-symmetric ground states—

1√
2
(| · · · ↑↑↑ · · · 〉 ± | · · · ↓↓↓ · · · 〉)—which are GHZ states.

In fact, Z2-symmetric ground states throughout the symmetry-
broken phase contain GHZ-type correlations (Appendix C),
and consequently their MPS descriptions are noninjective.
This is illustrated by the plot in Fig. 4. We find that the MPS
description of Z2-symmetric ground states of the Ising model
is noninjective (and noninflated) for h < 1 and injective for
h > 1, from which we infer that the symmetry is broken for
h < 1.

Example with D2
∼= Z2 × Z2 symmetry. Finally, consider

a lattice model that exhibits both a nontrivial symmetry-
protected phase and a symmetry-broken phase. The spin-1
Heisenberg model on an infinite chain L,

Ĥ HEIS =
∑
k∈L

�Sk
�Sk+1 + D

(
Sz

k

)2
, (9)

has a global D2 symmetry generated by rotations R̂x =
exp(iπŜx) and R̂z = exp(iπŜz). Since H 2(D2,U (1)) = Z2

there are 2 distinct D2-symmetry-protected phases, both
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FIG. 4. (Color online) Degeneracy of λmax for the MPS descrip-
tion of Z2-symmetric ground states of the Ising model, Eq. (8).
Ground states were obtained using the Z2-symmetric TEBD algo-
rithm with χ � 100.
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FIG. 5. (Color online) Degeneracy of λmax for two MPS descrip-
tions of D2-symmetric ground states of Ĥ HEIS, Eq. (9), obtained
by restricting the bond representation to linear (◦) and projective
(×) representations of D2, respectively. Ground states were obtained
using the R(D2)-symmetric TEBD algorithm (see Appendix D) with
χ � 100. (The depicted phase boundaries are approximate.)

exhibited by this model [15,34]. There is a phase transition at
D ≈ 0.97 [35] from the trivial (“large D”) phase to the Haldane
phase, D > 0.97, and another phase transition at D ≈ −0.3 to
an antiferromagnetic phase where the D2 symmetry is broken
to a Z2 symmetry corresponding to the nonzero expectation
value of Ŝz.

From the plot in Fig. 5 we find that in the large-D
phase the MPS description of the ground state is injective if
the bond representation is linear but noninjective (inflated)
if it is projective, and vice versa in the Haldane phase.
In the symmetry-broken phase, MPS descriptions of the
D2-symmetric ground states are noninjective for linear or
projective bond representation since both cases correspond
to a GHZ-type state.

Outlook. The method presented here can be repeated in
a symmetry-broken phase to identify gapped phases that are
protected by or break the residual symmetry by incorporating
the residual symmetry in the MPS. Symmetries are commonly
incorporated in MPS algorithms to obtain computational
speedup in simulations (see, e.g., Refs. [17–20]). The results
presented here demonstrate that incorporating symmetries in
MPS algorithms can also be useful to determine the gapped
phase diagram of a 1D quantum many-body system.

S.S. thanks Guifre Vidal, Frank Pollmann, and Gavin
Brennen for inspiring and clarifying discussions, and also
Mauro Cirio for useful conversations. S.S. acknowledges the
hospitality of the Max Planck Institute for Complex Systems
and the Perimeter Institute for Theoretical Physics, where this
work was initiated.

APPENDIX A: PROJECTIVE REPRESENTATIONS

A (unitary) projective representation V̂g of a group G
fulfills the group product only up to a phase factor, V̂gV̂h =
eiω(g,h)V̂g.h,∀g,h ∈ G.

Example 1. Consider the group D2
∼= Z2 × Z2 generated

by rotations R̂x = exp(iπŜx) and R̂z = exp(iπŜz). The group
product is

gij .gmn = gmod(i+m,2),mod(j+n,2), i,j,m,n ∈ {0,1}.

115145-4



IDENTIFYING QUANTUM PHASES FROM THE . . . PHYSICAL REVIEW B 91, 115145 (2015)

The representation V̂ij of D2 given by the Pauli matrices,

V̂00 =
(

1 0
0 1

)
, V̂01 =

(
0 1
1 0

)
,

V̂10 =
(

1 0
0 −1

)
, V̂11 =

(
0 −i

i 0

)
,

is a projective representation since it fulfills the group product
only up to a phase factor,

V̂00V̂mn = V̂mn, V̂01V̂10 = V̂10V̂01 = iV̂11,

V̂01V̂11 = iV̂10, V̂11V̂01 = −iV̂10,

which cannot be removed by scaling the representation
matrices.

Example 2. Half-integer-spin representations are projective
representations of SO(3). For example, in the spin- 1

2 repre-
sentation, generated by Ŝi = σ̂i/2 (σi are the Pauli matrices),
the composition of two π rotations, say, around the z axis, is
e−i2πŜz = −Î . Thus, the spin- 1

2 representation is a projective
representation of SO(3) owing to the appearance of the
factor −1.

Example 3. The group Zn has no nontrivial projective
representations.

A projective representation V̂g of a group G is defined
only up to a phase V̂g ↔ eiφg V̂g , which results in equiva-
lence classes of projective representations under the relation
ω(g,h) ∼ ω(g,h) + φg + φh − φg.h mod 2π . The equivalence
classes form a group that is isomorphic to the second co-
homology group H 2(G,U (1)). A linear representation simply
corresponds to ω(g,h) = 0 for all g,h in G and to the identity
element of H 2(G,U (1)).

APPENDIX B: SYMMETRIC MATRIX PRODUCT STATES
IN A SYMMETRY-PROTECTED PHASE

Consider a local, gapped, and G-symmetric Hamiltonian Ĥ

on a one-dimensional lattice that belongs to the symmetry-
protected phase corresponding to ω ∈ H 2(G,U (1)). Any MPS
description of the (unique) ground state |�〉 of Ĥ is possibly
(i) injective, (ii) GHZ-type noninjective, or (iii) inflated-type
noninjective. In this section we argue that an MPS description
of |�〉 that has a bond representation in an equivalence class
ω′ ∈ H 2(G,U (1)),ω′ �= ω, must be inflated [i.e., we will argue
to rule out options (i) and (ii)]. This result was used in the
paper to identify symmetry-protected phases.

First, clearly |�〉 cannot be described by a GHZ-type
noninjective MPS with a bond representation in ω′ since a
GHZ-type noninjective MPS has long-range correlations while
|�〉 has short-range correlations.

Next, since |�〉 is the unique ground state of a 1D local
gapped Hamiltonian it can be described by an injective
MPS [13,14]. According to the MPS-based characterization
of symmetry-protected phases, an injective MPS description
of |�〉 has a bond representation in the equivalence class
ω ∈ H 2(G,U (1)) [4,5].

Let |�〉 be described by an injective MPS Â. One may
hope that the equivalence class (ω) of the bond representation
of MPS Â may be changed by applying a unitary transfor-
mation Ŵ to the MPS matrices, Ŵ †ÂiŴ , thus defeating the

MPS-based characterization of symmetry-protected phases.
However, a simple argument shows that if MPS Â and MPS
Â′

i = Ŵ †ÂiŴ describe the same G-symmetric state then Ŵ

must commute with G,

V̂gŴ = Ŵ V̂g, ∀g ∈ G. (B1)

[Consequently, Ŵ acts as a scalar matrix in the bond repre-
sentation (Schur’s lemma), and cannot, e.g., map a projective
representation in one equivalence class to a projective repre-
sentation in another equivalence class.] This can be derived as
follows. Matrices Â′

i must also satisfy Eq. (5) (main text),∑
i ′

(Ûg)ii ′Â
′
i = V̂ †

g Â′
i V̂g, ∀g ∈ G. (B2)

Substituting Â′
i = Ŵ †ÂiŴ in Eq. (B2),

Ŵ †

[∑
i ′

(Ûg)ii ′Âi

]
Ŵ = V̂ †

g Ŵ †ÂiŴ V̂g, ∀g ∈ G. (B3)

By multiplying Ŵ †[.]Ŵ on both sides of Eq. (5) (main text)
we obtain

Ŵ †

[∑
i ′

(Ûg)ii ′Âi

]
Ŵ = Ŵ †V̂ †

g Âi V̂gŴ , ∀g ∈ G. (B4)

From Eq. (B3) and Eq. (B4) we obtain Eq. (B1).
Thus, an MPS description of |�〉 with a bond representation

in ω′ �= ω cannot be injective or GHZ-type noninjective. The
only option left to obtain an MPS description with a bond
representation in ω′ is to inflate an injective MPS description
of |�〉 as described in the paper.

APPENDIX C: SYMMETRIC MATRIX PRODUCT STATES
IN A SYMMETRY-BROKEN PHASE

Consider an infinite lattice L where each site transforms as
a d-dimensional unitary representation Ûg of a discrete group
G. Also consider a local, gapped, translationally invariant and
G-symmetric Hamiltonian Ĥ on the lattice that belongs to a
quantum phase in which the symmetry G is spontaneously
broken in the ground states. That is, Ĥ has a degenerate
ground subspace and there exist ground states that are not
G symmetric. In this section we argue that if G is Abelian, or
if G is a non-Abelian symmetry that is broken in a given way
(specified later) then the MPS descriptions of the G-symmetric
ground states are noninjective. This result was used in the paper
to identify symmetry-breaking phases. In one dimension,
continuous global symmetries cannot be spontaneously broken
in local gapped Hamiltonians in accordance with the Mermin-
Wagner theorem, so we do not consider this case here. Also
see, e.g., Refs. [5,11] for a related discussion.

Lemma 1. Consider a translationally invariant state |�〉 of
the lattice L that is described by an injective (canonical) MPS
Â. Let λ denote the largest modulus eigenvalue of the matrix

Ŷg ≡
d∑

ij=1

(Ûg)ij Âi ⊗ Â∗
j . (C1)

Then |λ| � 1 for any g ∈ G with equality iff |�〉 is G
symmetric. This result is proved in Ref. [23] as Lemma 1. �
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(a)

(b)

(c)

FIG. 6. (Color online) (a) State |�g〉, Eq. (C2), as obtained by
acting the symmetry on state |�e〉 described by an injective MPS
Â. (b) Reduced density matrix ρ̂g for r sites in state |�g〉; |R〉,〈L|
are the dominant right and left eigenvectors of the transfer matrix
T̂ = ∑d

i,j=1 Ai ⊗ A∗
j , respectively. Shown is the simplification of the

expression for ρ̂g by using Û †
g Ûg = Î and liml→∞ T̂ l = |R〉〈L|. (c)

Tr(ρ̂gρ̂h), Eq. (C3).

Lemma 2. Assume that there exists a ground state |�e〉 of Ĥ

that is invariant only under the action of the identity element
e of G and that is described by an injective MPS Â. The state
[Fig. 6(a)]

|�g〉 ≡
(⊗

k∈L
Ûg

)
|�e〉, g �= e, (C2)

is also a ground state of Ĥ (since Ĥ isG symmetric). Denote by
ρ̂g and ρ̂h the reduced density matrices for r sites in the states
|�g〉 and |�h〉, respectively (g,h ∈ G,g �= h) [Fig. 6(b)]. Then
for sufficiently large r , the overlap of ρ̂g and ρ̂h, Tr(ρ̂gρ̂h), is
exponentially small (i.e., loosely speaking, ground states |�g〉
and |�h〉 become “locally” orthogonal after blocking r sites
of L).

Proof. The overlap of ρ̂g and ρ̂h is [Fig. 6(c)]

Tr(ρ̂gρ̂h) = 〈L|⊗2
(
X̂r

hg−1 ⊗ Ŷ r
gh−1

)|R〉⊗2, (C3)

where |L〉,〈R| are the dominant left and right eigenvectors of
the transfer matrix T̂ = ∑d

i,j=1 Ai ⊗ A∗
j , respectively, X̂g ≡∑d

i,j=1(Û †
g )ijAi ⊗ A∗

j , and Ŷg is defined according to Eq. (C1).
Denote by λx and λy the largest modulus eigenvalue of
matrices X̂hg−1 and Ŷgh−1 , respectively. From Lemma 1 it
follows that λx < 1,λy < 1. This implies that for sufficiently
large r we have

Tr(ρ̂gρ̂h) ≈ O

(
exp

(
− r

ξx

)
exp

(
− r

ξy

))
, (C4)

where ξx = − 1
lnλx

and ξy = − 1
lnλy

. �
Lemma 3 (existence of G-symmetric ground states). (a) If

the group G is Abelian then Ĥ always has ground states that

are G symmetric. (b) If G is non-Abelian Ĥ may not have any
G-symmetric ground states.

Proof (a). Let lattice L be described by a (infinite dimen-
sional) vector space V(L). Under the action of the global
symmetry G, V(L) decomposes as V(L) ∼= ⊕

α Vα where α

labels irreducible representations of G. According to Schur’s
lemma the G-symmetric Hamiltonian Ĥ : V(L) → V(L) is
block diagonal as

Ĥ =
⊕

α

Ĥα, Ĥα : Vα → Vα. (C5)

We can obtain eigenvectors of Ĥ in each symmetry sector α by
diagonalizing each block Ĥα separately. If G is Abelian then
all irreps α are one dimensional. Clearly, all eigenvectors of Ĥ

transform as a one-dimensional irrep of G; i.e., all eigenvectors
are symmetric up to an overall phase. In particular, if the
ground state is n-fold degenerate then there exist exactly n

G-symmetric ground states {|�sym
α 〉},

Ûg

∣∣�sym
α

〉 = fα

∣∣�sym
α

〉
, ∀g ∈ G,fα ∈ C, |fα| = 1. (C6)

If the symmetry is broken then there must exist at least
two ground states that transform as different one-dimensional
irreps of G. This ensures that there exist superpositions of the
two ground states, a|�sym

α 〉 + b|�sym
α′ 〉, that are nonsymmetric

since the two terms in the superposition pick up different phase
factors fα and fα′ under the action of the symmetry. �

Proof (b). If G is non-Abelian then the ground subspace can
transform as an irrep α with dimension larger than 1. In this
case, and if no other ground states are present, clearly none of
the ground states are G symmetric. �

Finally, we argue that if the ground subspace of Ĥ is
spanned by states that are mapped to one another by the action
of the symmetry, i.e., states {|�g〉,g ∈ G} of Lemma 2, then
the G-symmetric ground states {|�sym〉} of Ĥ (Lemma 3) are
GHZ-type states, namely, equal probability superpositions of
locally orthogonal states, generally after blocking the lattice.
The latter implies that MPS descriptions of the G-symmetric
ground states of Ĥ are noninjective.

Let us block the lattice L such that states {|�g〉}, Eq. (C2),
become locally orthogonal (Lemma 2). Since states {|�g〉}
span the ground subspace, a generic ground state |�〉 of Ĥ

can be expanded as

|�〉 =
∑
h∈G

ch|�h〉, ch ∈ C. (C7)

If state |�〉 is G symmetric then |�〉 = Ûg|�〉∀g ∈ G; that is,∑
m∈G

cm|�m〉 =
∑
h∈G

chÛg|�h〉. (C8)

Changing the dummy summation variable m = g.h and using
|�g.h〉 = Ûg|�h〉 we obtain∑

g.h∈G
cg.h|�g.h〉 =

∑
h∈G

ch|�g.h〉. (C9)

It follows that cg.h = ch,∀g,h ∈ G which implies cg =
ce,∀g ∈ G. Thus, any G-symmetric ground state |�sym〉 of Ĥ
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can be written as

|�sym〉 =
∑
g∈G

ce|�g〉, (C10)

where ce = ± 1√|G| (normalization). Thus, a G-symmetric

ground state |�sym〉 of Ĥ is a GHZ-type state (after blocking
the lattice). �

We interpret the plots in Fig. 4 and Fig. 5 (main text)
to indeed indicate symmetry breaking resulting from the
mechanism discussed above; namely, the symmetric ground
states belonging to the symmetry-broken phase exhibited
in those models contain GHZ-type correlations and can be
expanded according to Eq. (C10).

APPENDIX D: R(D2)-SYMMETRIC TEBD ALGORITHM

The D2-symmetric ground states used for the plot in Fig. 5
(main text) were obtained by means of the R(D2)-symmetric
version of the TEBD algorithm; R(D2) denotes the represen-
tation group [32] of D2 = Z2 × Z2. The R(D2)-symmetric
TEBD algorithm was implemented by following Ref. [18] but
replacing the irreps and Clebsch-Gordan coefficients of SU(2)
with those of R(D2), which are summarized below.

TABLE I. Clebsch-Gordan coefficients for the group R(D2).
{σ̂x ,σ̂y,σ̂z,Î }: Pauli matrices; Îq : identity in irrep q; γ = 1√

2
.

p ⊗ q
⊕

r CG coefficients

0 ⊗ q q Îq

q ⊗ q,q �= 4 0 1
4 ⊗ 1 4 σ̂z

4 ⊗ 2 4 σ̂y

4 ⊗ 3 4 σ̂x

0 → γ σ̂y

4 ⊗ 4 (0 ⊕ 1 ⊕ 2 ⊕ 3) 1 → γ σ̂x

2 → iγ Î

3 → −γ σ̂z

R(D2) is a finite non-Abelian group. It has four one-
dimensional irreps and one two-dimensional irrep, which we
simply label as {0,1,2,3} and 4, respectively. The 1-d irreps
correspond to linear irreps of D2 and the 2-d irrep correponds
to a projective representation of D2 (see Appendix A). The
Clebsch-Gordan (CG) rules for the direct sum decomposition
of the tensor product of the various pairs of irreps of R(D2),
symbolically

p ⊗ q ∼=
⊕

r, p,q,r ∈ {0,1,2,3,4},
and the CG coefficients that describe the corresponding change
of basis are summarized in Table I.
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