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Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones
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We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic
Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete symmetries,
such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g, but
leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F . Since
F is a universal number in many other situations, this finding is remarkable. We apply our general considerations
to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.

DOI: 10.1103/PhysRevB.91.115135 PACS number(s): 72.10.Bg, 03.65.Vf, 05.60.Gg

I. INTRODUCTION

Driven by a combination of key advances in materials
fabrication and profound conceptual progress, the past decade
has witnessed an explosive increase in the study of electronic
systems dispersing linearly around isolated band touching
points [1]. Notably, this includes graphene [2,3], various
two-dimensional organic compounds [4], and the surface
states of three-dimensional topological insulators [5–8]. In
three dimensions, a Dirac semimetal [9,10], which has two
coinciding linear band touching points with opposite chirality,
was observed experimentally [11,12], and the first Weyl
semimetal [13,14], which has nondegenerate band-touching
points, was observed very recently [15–17]. Subsequently
the first transport measurements on Weyl semimetals were
performed [18,19]. A Weyl semimetal phase is also predicted
to occur, e.g., in multilayer structures [20] and pyrochlore
iridates [13].

By virtue of stochiometry, the Fermi level lies exactly
at the nodal point of the low-energy “cones” in many of
these materials, and their electronic behavior is neither that
of insulators—there is no gap—nor that of conventional
metals—there is a vanishing density of states at the nodal
point. Indeed it has been shown experimentally [3,21] and
theoretically [22–24] that the conductivity σ reaches a minimal
but finite value at a nodal point in two dimensions, whereas
a nodal point in three dimensions is characterized by a finite
conductance G, its conductivity σ being zero [24,25]. The
Fano factor F , defined as the ratio of shot noise power and
current, was found to be an excellent indicator of the quantum
nature of electronic transport at the nodal point, taking the
universal sub-Poissonian value F = 1/3 in graphene [22].
In Weyl semimetals F was found to discriminate between
a pseudoballistic regime [24] at weak disorder and a diffusive
regime at strong disorder [25]. Unlike the conductance G,
which retains a dependence on the ratio W/L of sample width
W and sample length L, the Fano factor F is independent of
both W and L.

Anisotropy and tilt of the cones are often neglected,
essentially for two distinct reasons: (i) they are forbidden
by symmetry in important special cases, such as graphene,
and (ii) they do not alter the topology of the low-energy
theory. Here, however, we demonstrate that tilts and, to a
lesser extent, anisotropies lead to clear signatures in quantum

transport, affecting both the conductance and the Fano factor
in absence of disorder. We find the tilt dependence of the Fano
factor F remarkable, because in many cases of interest F was
found to be a number with a considerable degree of universal-
ity [22,24,26–28]. Our results apply—with various degrees of
numerical relevance—to a number of experimentally relevant
systems for which tilted and anisotropic conical dispersion
either occur generically, as in the case of Weyl semimetals, or
for which the forbidding symmetries are easily broken, such
as strained graphene.

II. TILTED AND ANISOTROPIC CONES

In the vicinity of a nodal point, a generic Dirac or Weyl
Hamiltonian can be written as

H =
∑
i,j

vij kiσj + (aiki − u)σ0, (1)

where the sum is over i,j = x,y or i,j = x,y,z for dimen-
sionalities d = 2 and d = 3, respectively. Further σx,y,z are the
Pauli matrices and σ0 is the 2 × 2 unit matrix. The dispersion is
shown schematically in Fig. 1. The “tilt” term proportional to
ai is typically discarded, as it does not affect the eigenspinors
and, hence, the topology of the band structure. As we show
below, inclusion of this term does affect transport at the
nodal point, however. Tilts can occur only if particle-hole
symmetry is absent, and tilt is additionally constrained by point
group symmetries. With a suitable choice of the pseudospin
quantization axis, the anisotropy matrix vij can be brought to
upper diagonal form, vyx = vzx = vzy = 0. Anisotropies are
generic if the cone is not located at a high symmetry point in
the Brillouin zone.

Considering graphene as an important example, we note
that the trigonal “warping” of Dirac cones respects the
crystalline symmetries and leads to anisotropies, but only at
quadratic order in the momentum k. The anisotropies to linear
order (1), which amount to a “squeezing” of the cone along
some direction, are, just as any tilt of the cone, forbidden
by the threefold point group symmetry of the honeycomb
lattice, combined with the location of the Dirac cones at
high-symmetry points in the Brillouin zone. However, as soon
as the threefold rotation symmetry is relaxed anisotropies
occur. If, in addition, second-nearest-neighbor hopping is also
taken into account the particle-hole symmetry is lost, and the
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FIG. 1. (Color online) A tilted Dirac cone in two dimensions. The
momentum coordinates are labeled kx and ky ; the third dimension
represents energy. Transparent planes indicate zero-energy plane
(violet) and tilt a = (−0.5,0) (green plane), respectively.

cones acquire finite tilts. This scenario applies to strained
graphene and will be discussed in more detail below. For
three-dimensional Weyl semimetals, the band touching occur
at lower symmetry points; hence anisotropies and tilts are
ubiquitous.

III. TRANSPORT: LOW-ENERGY THEORY

We calculate the conductance G and the Fano factor F for
a region of length L and width W , taking the limit W � L

in order to eliminate a spurious dependence on the transverse
boundary conditions [22]. We choose the x axis in the transport
direction, so that the nodal semimetal corresponds to the region
0 < x < L, whereas the source and drain leads have x < 0
and x > L, respectively. The potential u is set to zero for
0 < x < L, to model transport at the nodal point. We take the
limit u → ∞ for x < 0 and x > L to model strongly doped
leads.

The transverse momentum k⊥ = ky (d = 2) or k⊥ =
(ky,kz) (d = 3) is conserved, and for each value of k⊥ we
calculate the transmission coefficient T (k⊥) by matching wave
functions in the sample and the leads (see Appendix for
details). The conductance G per cone is then given by the
Landauer formula

G = e2

h

(
W

2π

)d−1 ∫
dd−1k⊥T (k⊥). (2)

The aspect-ratio dependence can be partially eliminated by
changing to the dimensionless conductance referred to a cube,
defined by the relations

G = e2

h

(
W

L

)d−1

g. (3)

In two dimensions g is identical to the conductivity σ . In
three dimensions, a finite value for g in the limit W , L → ∞
implies a vanishing conductivity σ = GL/W 2 = (e2/h)g/L.
The Fano factor, the ratio of shot noise and current, is given
by [29]

F =
∫

dd−1k⊥T (k⊥)[1 − T (k⊥)]∫
dd−1k⊥T (k⊥)

. (4)

No anisotropy, no tilt. For the isotropic cone without
tilt (ai = 0,vij = v0δij ) the conductance and Fano factor are
known from the literature [22,24,25],

g = 1

π
, F = 1

3
(d = 2), (5)

g = ln 2

2π
, F = 1 + 2 ln 2

6 ln 2
, (d = 3). (6)

Anisotropy, no tilt. For the general anisotropic case but
without tilt, ai = 0, i = 1, . . . ,d, one finds

g = 1

π

v2
xx + v2

xy

vxxvyy

(d = 2), (7)

while the Fano factor is unaffected by the anisotropy; i.e., F is
given by Eq. (5). For the diagonal case (vxy = 0) this result can
be understood as a simple scaling of the y coordinate, which
affects the conductance g, but not the Fano factor F . In three
dimensions the exact result in the diagonal case (vxy = vxz =
vyz = 0) is given by the corresponding rescaling

g = ln 2

2π

v2
xx

vyyvzz

(d = 3), (8)

while there is no simple formula for the general case. Still, the
Fano factor remains unaffected by any anisotropy and is given
by Eq. (6).

No anisotropy, tilted cones. Although a closed analytical
solution for a tilted Dirac cone is possible in two dimensions,
the explicit expressions are too lengthy to be reproduced here.
Instead, we will present a numerical evaluation of the solution
for representative values of the tilt parameters ax , ay , and az for
fixed values of vij = δij . Without anisotropy the dimensionless
conductance g and the Fano factor depend on the total
magnitude a2 = a2

x + a2
y (d = 2) or a2 = a2

x + a2
y + a2

z of the
tilt and the angle ϕ = arccos(|ax |/a) between the tilt axis and
the transport direction only. The limit a = 1 corresponds to a
maximally tilted cone with a flat band along the tilt direction.
Results are shown in Figs. 2 and 3 for d = 2 and d = 3 and
for representative values of the tilt strength a.

We note that the results are quantitatively different in two
and three dimensions, but qualitatively very similar. There is
an important difference between a tilt parallel to the transport
direction, where g decreases upon increasing the tilt strength,
and a tilt perpendicular to the transport direction, where g

increases with increasing tilt strength. The Fano factor F is

FIG. 2. (Color online) Dimensionless conductance g and Fano
factor F for a tilted two-dimensional Dirac cone, as a function of
the angle ϕ between transport and tilt direction. The tilt strength a is
given in the legend.
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FIG. 3. (Color online) Same as in Fig. 2, but for a three-
dimensional Weyl cone.

unaffected by a tilt in the transport direction, and increases with
increasing tilt if there is a finite angle between the tilt direction
and the transport axis. Interestingly, upon averaging over all
orientations of the tilt axis, we find a systematic but small
decrease in conductance for both two and three dimensions.
The main conclusion, however, is that the Fano factor is no
longer a universal number once the tilt of the dispersion is
taken into account, but depends on the magnitude and direction
of the tilt.

The analytical solution for a two-dimensional Dirac cone
takes a simple form if the tilt axis and the transport direction are
collinear (ϕ = 0). In that case one finds g = (1/π )

√
1 − a2,

F = 1/3. Further, for small tilt strengths it is possible to
expand the analytical solution in two dimensions. We find

g = 1

π
+ a2

2π

(
4

3
sin2 ϕ − 1

)
+ O(a4), (9)

F = 1

3
+ 2a2

45
sin2 ϕ + O(a4), (10)

which deviates less then 1% from the exact value up to a = 0.5.
Anisotropy and tilted cones. In the presence of both

anisotropy and tilt the dimensionless conductance and the
Fano factor are qualitatively similar as in the absence of
anisotropy. However, for a tilt in transport direction the Fano
factor changes if the anisotropies are not orientated along the
axis of the reference frames, i.e., if one of vxy,vxz or vyz is
nonzero.

IV. APPLICATION TO LATTICE MODELS

In generic lattice models, the cones are both anisotropic
and tilted, and moreover, contributions from an even number
of cones must be taken into account simultaneously. Below, we
provide explicit results for two specific tight-binding models.

Strained graphene. In “intrinsic,” unstrained graphene the
Dirac cones are located at high symmetry points in the
Brillouin zone. The application of strain changes the positions
of the Dirac points and the cones are no longer protected
by crystalline symmetries. Whereas the simplest tight-binding
model with nearest-neighbor hopping only is particle-hole
symmetric, which rules out a tilt of the Dirac cones, realistic
tight-binding models have longer-range hopping, which lifts
the particle-hole symmetry [30]. As an example, we now apply
the above calculations to the model of quinoid-type strained
graphene, as described by Goerbig et al. in Ref. [4]. Transport

FIG. 4. (Color online) Dimensionless conductance g of a
strained graphene sheet as a function of the strain ε for different
orientations ϕ (the angle between transport direction and �s) and
summed over both Dirac cones and spin. The inset shows a hexagon
of the graphene lattice for ε = 0.2.

properties of strained graphene have been studied earlier [31],
but without the inclusion of a tilt of the Dirac cones.

A schematic of the tight-binding model for quinoid-type
strained graphene is shown in the inset of Fig. 4. It consists
of a honeycomb lattice which is extended/compressed in the
direction perpendicular to the lattice vector �s, such that each
hexagon has four “short” bonds of length a and two “long”
bonds of length a′ for positive strain ε > 0. Strain is measured
in terms of a dimensionless strain parameter ε = a′/a − 1.
The tight-binding model of Ref. [4] contains nearest-neighbor
hopping amplitudes as well as next-nearest-neighbor hopping,
and we take the magnitudes of the hopping amplitudes from
Ref. [4]. Figure 4 shows the conductance g for strains
0 < |ε| < 0.3 and three representative angles ϕ. The strain
is perpendicular to the �s direction (as depicted in Fig. 4). The
angle ϕ is defined as the angle between the transport direction
and �s. The tilt is of order a/v ∼ 0.06 (v being the velocity in
tilt direction) for the (already quite unrealistic) strain ε = 0.3
[4]. As a consequence of this numerically small value of the
tilt strength, the relative change in Fano factor remains small,
�0.1% for ε < 0.3. While this variation is probably out of
reach of experimental detection, it shows that Fano factor
F = 1/3 is not strictly “universal” in graphene but can be
changed by the breaking of symmetries.

Weyl semimetal. As an example in three dimensions
we consider a tight-binding model of a spin-orbit coupled
pyrochlore slab which hosts a Weyl semimetal phase with
Weyl cones that may be significantly tilted [32,33]. In this
case the lattice structure is layered, see Fig. 5, so that it
is intrinsically anisotropic and no external strain needs to
be applied in order to lift any symmetries forbidding a tilt
of the Weyl cone. The model consists of a tight-binding
Hamiltonian that contains spin-orbit coupling, in-plane and
interplane nearest-neighbor hopping amplitudes, and in-plane
next-nearest-neighbor hopping amplitudes. It was found to
have a Weyl-semimetal phase for a certain range of parameter
space, with a tilt of the Weyl cone that depends on the
magnitude of the next-nearest-neighbor hopping amplitude
t2. There are six Weyl cones, located on the �-M lines [33]
in the projected two-dimensional Brilluoin zone of the slab
geometry. The Weyl points are related to each other by the
sixfold symmetry of the underlying lattice. We have numer-
ically determined the position as well as tilt and anisotropy
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FIG. 5. (Color online) Dimensionless conductance g (solid line)
and Fano factor F (dashed line) for a pyrochlore slab as a function of
the in-plane next-nearest-neighbor hopping amplitude t2 (left panel).
Transport direction is parallel to the crystal axis �s (as shown in the
upper right panel). Hopping parameters are indicated in the lower
right panel.

parameters as a function of the next-nearest-neighbor hopping
t2, keeping the other model parameters, defined in the lower
right panel of Fig. 5, fixed (t1 = −1,t⊥ = 2,λ1 = 0.3,λ2 =
0.2), and calculated the dimensionless conductance g and the
Fano factor F . The results are shown in Fig. 5 for an in-plane
transport direction aligned with one of the crystal axes as
indicated in the inset. The dependence on the orientation of
the pyrochlore slab is very weak, less than 1% for both g and
F , which can be understood as a consequence of there being
six different contributing cones: when rotating the sample,
some cones are rotated “away” from the transport direction,
while others are rotated “towards” the transport direction.
The changes in transport properties in different cones then
have opposite signs (cf. Fig. 3), leading to a very weak
angular dependence of g and F . The magnitude of the dimen-
sionless conductance g and the Fano factor F can however
differ substantially from the values calculated in the absence
of a tilt.

V. DISCUSSION

We have investigated the effect of anisotropies and tilts
of Dirac and Weyl cones on quantum transport properties
at the nodal point. Neither anisotropies nor tilts change the
topology of the band structure and for this reason they are
often neglected. We showed that a tilt nevertheless affects
the dimensionless conductance g and Fano factor F . The
latter observation is remarkable, since the Fano factor is often
found to be a universal number, that does not depend on
system-specific details.

Applying our results to the example of strained graphene,
we found that the inclusion of a tilt of the Dirac cone leads
to a sizable directional dependence of the conductance g.
For realistic strains, the tilt effect on the Fano factor F

is nonzero, though numerically very small—underlining the
symmetry-protected nature of “universal” quantum transport

in two-dimensional Dirac materials. The consequences of
a tilted dispersion, including a shift of the Fano factor F ,
may be more significant for other two-dimensional materials
possessing more strongly tilted Dirac cones, such as the
organic compound α-(BEDT-TTF)2I3 [4,34].

While the first observations of Weyl semimetals are a
great experimental success, they all observed time-reversal
symmetric Weyl semimetals [15–19]. These Weyl semimetals
have additional states crossing the Fermi level opposed to
the still hypothetical time-reversal symmetry breaking Weyl
semimetals [13], where the only states crossing the Fermi level
are Weyl nodes, as is the case in our example of a pyrochlore
slab. Hence the full transport properties could be obtained from
the combined contribution of the Weyl nodes, whereas in the
experimentally observed materials one should account also for
the other states at the Fermi level.

In a recent work three of us proposed that the Fano factor
can be used as a universal quantity to discriminate different
transport regimes in a disordered Weyl semimetal [25]: In
a calculation that did not include tilt or anisotropy, F was
found to take the ballistic value (6) below a critical disorder
strength, whereas F approaches the smaller diffusive value
F = 1/3 at larger disorder. Our present results indicate that
there is no universal value for the Fano factor in the ballistic
limit. However, we also find that a tilt of the Weyl cone
can only increase F , so that the Fano factor continues to be
a powerful indicator discriminating the pseudoballistic and
diffusive regimes.

For tilted and anisotropic cones the conductance varies
strongly with transport direction and can be either higher
or lower than the conductance of the symmetric cone. In
contrast the Fano factor is only sensitive to the tilt of the cone
and, whereas it still depends on the angle between tilt and
transport direction, the Fano factor always increases for tilted
cones. These insights should be useful for the experimental
identification and characterization of a range of Weyl and Dirac
materials by means of transport measurements.
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APPENDIX

We calculate ballistic transport in a scattering region of
length L and width W as described in the main text. The
Hamiltonian is given by

H =
∑
ij

vij kiσj + (aiki − u)σ0. (A1)

The aiki terms can be interpreted as a tilt of the cone and vij

as a d × d matrix describing the anisotropy of the dispersion,
where it is sufficient to have nonzero entries on the upper
triangular to describe all possible anisotropies of a cone. The
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dispersion is given by

ε1,2(k) = −u + axkx + ayky + azkz

±
√

k2
x

(
v2

xx + v2
xy + v2

xz

) + 2kx[ky(vxyvyy + vxzvyz) + kzvxzvzz] + k2
y

(
v2

yy + v2
yz

) + 2kykzvyzvzz + k2
z v

2
zz. (A2)

Whenever the above square-root expression occurs we will
abbreviate it as

√· · ·. Then the spinors are

χ1,2 =
⎛
⎝− kxvxx − i(kxvxy + kyvyy)

kxvxz + kyvyz + kzvzz ∓ √· · ·
1

⎞
⎠ , (A3)

and the velocities used to normalize incoming and outgoing
plane waves are v(k) = ∂kε(k). We consider the limit of highly
doped leads (u → ∞) in u = 0 in the scattering region. The
transverse momentum k⊥ = ky (d = 2) and k⊥ = (ky,kz) (d =
3) is quantized due to the finite width W ,

ky = 2πn

W
, kz = 2πm

W
. (A4)

For any mode of given momentum ky,kz we determine the
x component of the wave vectors kin,kr ,kt of the incoming,
reflected, and transmitted wave and the x component in the

scattering region k̃1,2 by solving Eq. (A2) for ε(k) = 0. Then
we calculate the transmission and reflection amplitude by wave
function matching at the beginning and the end of the scattering
region (x = 0,L):

1√
vin

χin + r√
vr

χr = αχ1 + βχ2, (A5)

t√
vt

χt = αχ1 expik̃1L +βχ2 expik̃2L . (A6)

The total transmission probability can be obtained by summing
over all modes:

T =
∑
k⊥

|t(k⊥)|2. (A7)

In the limit L
W

→ 0 one may replace the sum by an integral
which gives Eq. (2) of the main text.
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