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We study the spin and thermal conductivity of spin- 1
2 ladders and chains at finite temperature, relevant for

experiments with quantum magnets. Using a state-of-the-art density matrix renormalization group algorithm, we
compute the current autocorrelation functions on the real-time axis and then carry out a Fourier integral to extract
the frequency dependence of the corresponding conductivities. The finite-time error is analyzed carefully. We first
investigate the limiting case of spin- 1

2 XXZ chains, for which our analysis suggests nonzero dc conductivities in
all interacting cases irrespective of the presence or absence of spin Drude weights. For ladders, we observe that
all models studied are normal conductors with no ballistic contribution. Nonetheless, only the high-temperature
spin conductivity of XX ladders has a simple diffusive, Drude-like form, while Heisenberg ladders exhibit a
more complicated low-frequency behavior. We compute the dc spin conductivity down to temperatures of the
order of T ∼ 0.5J , where J is the exchange coupling along the legs of the ladder. We further extract mean-free
paths and discuss our results in relation to thermal conductivity measurements on quantum magnets.
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I. INTRODUCTION

Low-dimensional quantum magnetism is a field in which
an extraordinary degree of quantitative agreement between
experimental results and theory has been achieved due to
the availability of both high-quality samples and powerful
theoretical tools such as bosonization [1], the Bethe ansatz [2],
series expansion methods [3,4], or the density matrix renormal-
ization group [5,6]. This includes the thermodynamics [7,8],
inelastic neutron scattering data [9,10], as well as various other
spectroscopic methods [11]. While there are also exciting
experimental results for spin diffusion probed via NMR
[12,13] or μsr [14,15] as well as for the thermal conductivity
[16,17], the calculation of finite-temperature linear-response
transport coefficients poses a formidable problem for theorists
(see Refs. [18,19] for a review), which is further complicated
by the need to account for phonons and impurities (see
Refs. [20–26] for work in this direction).

Very recently, significant progress has been made in the
computation of linear response transport properties of the
seemingly simplest one-dimensional model, the integrable
spin- 1

2 XXZ chain with an exchange anisotropy �. Its
Hamiltonian reads

H = J

L−1∑
n=1

[
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

]
, (1)

where S
x,y,z
n is a spin- 1

2 operator acting on site n. The spin and
thermal conductivities generally take the form

Re σ (ω) = 2πDs δ(ω) + σreg(ω),
(2)

Re κ(ω) = 2πDthδ(ω) + κreg(ω),

where Ds and Dth denote the Drude weights, and σreg and κreg

are the regular parts. The exact conservation of the energy

current [27] of the XXZ chain renders the zero-frequency
thermal conductivity strictly divergent at all temperatures,
i.e., Dth > 0, κreg = 0. The thermal Drude weight has been
calculated exactly [28,29]. For spin transport, the following
picture emerges: while there is a regular contribution σreg > 0
for all |�| > 0 [30], the Drude weight Ds is nonzero for
|�| < 1 but vanishes for |�| > 1. Initially, these results were
largely based on numerical simulations [31–37] as well as
analytical approaches that use the Bethe ansatz [38–40].
Recently, a rigorous proof of finite-spin Drude weights for
|�| < 1 has been obtained [41,42] by relating Ds > 0 to
the existence of a novel family of quasilocal conservation
laws via the Mazur inequality [27]. For the experimentally
most relevant case of the spin- 1

2 Heisenberg chain (� = 1),
it is still debated whether a ballistic contribution exists at
finite temperatures (see Refs. [35,37,43,44] for recent work).
The same questions of diffusive versus ballistic transport can
be addressed in nonequilibrium setups [45–48] or for open
quantum systems [49–52]. A recent quantum-gas experiment,
in which a ferromagnetic Heisenberg chain was realized with
a two-component Bose gas, studied the decay of a spin spiral,
and the results were interpreted in terms of diffusion [53].
Other nonequilibrium experiments with quantum gases have
investigated the mass transport of interacting fermions [54]
and bosons [55] in optical lattices.

Another very interesting question pertains to the func-
tional form of the regular part σreg(ω). A field-theoretical
study [56,57], which incorporates the leading irrelevant umk-
lapp term, suggests that σreg(ω) has a simple diffusive form
at low temperatures T � J . This is consistent with early
results [58] for the generic behavior of a Luttinger liquid in the
presence of umklapp scattering as well as with quantum Monte
Carlo simulations for � = 1 [59]. At higher temperatures,
a suppression of weight at low frequencies according to
σreg(ω) ∝ ω2 has been suggested [60]. Most studies of |�| > 1
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are interpreted in terms of diffusive spin dynamics, i.e., finite
dc conductivities [48–50,61–63]; however, indications of an
anomalous low-frequency response were reported in Ref. [64].
The theory by Sachdev and Damle provides a semiclassical
interpretation for the emergence of diffusive dynamics in
gapped spin models and predictions for the low-temperature
dependence of the diffusion constant [65–67].

Many transport experiments on quantum magnets probe
materials which are described by quasi-one-dimensional mod-
els more complicated than the integrable XXZ chain. Most no-
tably, very large thermal conductivities due to spin excitations
have been observed in spin-ladder compounds [17,68,69],
which more recently have also been investigated by using
real-time techniques [70–72]. Most theoretical studies of
nonintegrable models suggest the absence of ballistic contribu-
tions [31,33,73–77] (possible exceptions have been proposed
in Refs. [51,78,79]). Numerical results for the expansion of
local spin and energy excitations in real space are consistent
with diffusive dynamics [45,48]. A qualitatively similar picture
has emerged from studies of transport in open quantum sys-
tems [49,80]. Despite the relevance for experiments, however,
transport properties of generic nonintegrable systems are still
not fully understood quantitatively. Two important and largely
open problems in the realm of spin ladders are (a) the question
of whether they exhibit standard diffusive dynamics or a more
complicated low-frequency behavior, and (b) a quantitative
calculation of their dc spin and thermal conductivities. It
turns out that a Drude-like σreg(ω) rarely exists in quasi-one-
dimensional spin Hamiltonians with short-range interactions
(see, e.g., Refs. [75,81]). A notable example in which standard
diffusion is realized in the high-temperature regime is the
XX spin ladder [82], which is equivalent to hard-core bosons
and thus relevant for recent experiments on mass transport of
strongly interacting bosons in optical lattices in one and two
dimensions [55,83].

The main goal of our work is to compute the frequency
dependence of the spin and thermal conductivity of spin
ladders as well as of the spin- 1

2 XXZ chain. We use a
finite-temperature, real-time version of the density matrix
renormalization group method (DMRG) [36,84–86] based
on the purification trick [87]. This method allows one to
calculate both thermodynamics [88] but also the time de-
pendence of current autocorrelation functions. We calculate
the conductivities from Kubo formulas. For the accessible
timescales, our results are free of finite-size effects [37]
and thus effectively describe systems in the thermodynamic
limit. Exploiting several recent methodological advances and
using an optimized and parallelized implementation allows
us to access larger timescales than in earlier applications
of the method [36,37,48]. Our data agree well with exact
diagonalization approaches [75] for the thermal conductivity
of spin ladders and the spin transport in XX ladders [82]. The
latter results have been obtained from a pure state propagation
method based on the dynamical typicality approach, which
has recently been applied to the calculation of transport
coefficients [43,82,89].

Our key results are as follows: For the spin- 1
2 XXZ chain

with 0 < � < 1, we provide evidence that σreg(ω) remains
finite in the dc limit, but its low-frequency behavior is not of
a simple Lorentzian form. For � = 0.5, we observe a sup-

pression of weight for ω � J in the high-temperature regime.
In the case of spin ladders, σreg(ω) also generically exhibits a
complicated low-frequency dependence, and a simple Drude-
like form is recovered only in the XX case � = 0 in agreement
with the results of Ref. [82]. We extract the dc spin conductivity
for temperatures T � 0.5J and discuss how it depends on
the exchange anisotropy �. We translate the high-T spin and
thermal conductivities of the Heisenberg ladder into mean-free
paths by fitting to a simple phenomenological expression often
used in the interpretation of experimental data [69]. It turns
out that the values of the mean-free paths depend on which
type of transport is considered.

The structure of this exposition is as follows: We introduce
the model and definitions in Sec. II. Section III provides details
on our numerical method. Our results are summarized in
Sec. IV, where we discuss the real-time dependence of current
correlations and the methods to convert them into frequency-
dependent conductivities, which we then study for spin chains
and ladders. Our conclusions are presented in Sec. V.

II. MODEL AND DEFINITIONS

The prime interest of this work is in two-leg spin ladders
governed by the Hamiltonian H = ∑L−1

n=1 hn and local terms

hn = J
∑
λ=1,2

[
Sx

n,λS
x
n+1,λ + S

y

n,λS
y

n+1,λ + �Sz
n,λS

z
n+1,λ

]

+ J⊥
2

∑
m=n,n+1

[
Sx

m,1S
x
m,2 + S

y

m,1S
y

m,2 + �Sz
m,1S

z
m,2

]
,

(3)

where S
x,y,z

n,λ are spin- 1
2 operators acting on the rung λ = 1,2.

The model is nonintegrable and gapped for all J⊥ > 0. At
J⊥ = 0, one recovers two identical, decoupled XXZ chains,
which (at zero magnetization) are gapless for |�| � 1 and
gapped otherwise [1].

Both the Drude weights and the regular parts of the spin
(s) and thermal (th) conductivities defined in Eq. (2) can be
obtained from the corresponding current correlation functions
Cs(t) and Cth(t) Their long-term asymptote is related to Ds

and Dth, respectively, via

Ds,th = lim
t→∞ lim

L→∞
Cs,th(t)

2T αs,th
, Cs,th(t) = Re〈Is,th(t)Is,th〉

L
,

(4)

where αs = 1 and αth = 2. The regular part of the conductivity
is determined by

Re

{
σreg(ω)

κreg(ω)

}
= 1 − e−ω/T

ωT αs,th−1
Re

∫ ∞

0
dteiωt

× lim
L→∞

[Cs,th(t) − 2T αs,thDs,th]. (5)

Only finite times can be reached in the DMRG calculation
of Cs,th(t), which leads to a “finite-time” error of σreg(ω) that
can be assessed following Ref. [63]. We will elaborate on this
below.

The current operators Is = ∑
n js,n and Ith = ∑

n jth,n are
defined via the respective continuity equations [27]. The
local spin-current operators of the XXZ chain take the
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well-known form js,n = iJSx
nS

y

n+1 + H.c. For the spin ladder,
one finds

js,n = iJ
∑

λ

(
Sx

n,λS
y

n+1,λ − S
y

n,λS
x
n+1,λ

)
, (6)

jth,n = i[hn,hn+1]. (7)

Note that our definition for the local energy density hn

preserves all spatial symmetries of the ladder, and our energy-
current operator Ith is the same as the one used in Ref. [75].
The full expression for Ith is lengthy and not given here.

III. NUMERICAL METHOD

We compute the spin- and energy-current correlation
function

〈Is,th (t) Is,th〉 ∼ Tr[e−H/T eiHt Is,the
−iH t Is,th] (8)

by using the time-dependent [90–94] density matrix renor-
malization group [5,6] in a matrix-product state [95–99]
implementation. Finite temperatures [84,87,100–103] are in-
corporated via purification of the thermal density matrix.
Purification is a concept from quantum information theory in
which the physical system is embedded into an environment.
The wave-function of the full system is then a pure state and
the mixed state describing the system is obtained by tracing out
the degrees of freedom of the environment. When using this
approach in DMRG, one typically simply chooses a copy of
the system degrees of freedom to be the environment. Details
of purification-based finite-T DMRG methods can be found
in Refs. [48,84,87,88,99]. Our actual implementation follows
Ref. [48].

The real- and imaginary-time evolution operators in Eq. (8)
are factorized by a fourth-order Trotter–Suzuki decompo-
sition with a step size of dt = 0.05, . . . ,0.2. We keep the
discarded weight during each individual “bond update” below
a threshold value ε. This leads to an exponential increase
of the bond dimension χ during the real-time evolution. In
order to access timescales as large as possible, we employ
the finite-temperature disentangler introduced in Ref. [36],
which uses the fact that purification is not unique to slow
down the growth of χ . Moreover, we “exploit time translation
invariance” [84], rewrite 〈Is(t)Is(0)〉 = 〈Is(t/2)Is(−t/2)〉 and
〈Ith(t)Ith(0)〉 = 〈Ith(t/2)Ith(−t/2)〉, and carry out two indepen-
dent calculations for Is(t/2) and Ith(t/2) as well as Is(−t/2)
and Ith(−t/2). Our calculations are performed using a system
size of L = 100 for spin ladders and L = 200 for the XXZ

chain, respectively. By comparing with other values of L we
have ensured that L is large enough for the results to be
effectively in the thermodynamic limit [37].

IV. RESULTS

A. Current autocorrelation functions

Figure 1 shows typical results for the decay of spin-current
autocorrelations of the XXZ chain as a function of time. Some
of these data have previously been shown in Refs. [37,48,63]
and are here included for comparison. For � < 1, we clearly
observe the saturation of Cs(t) at a nonzero value at long
times that, at T = ∞, agrees well with an improved lower
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T/J=3.33
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FIG. 1. (Color online) Real-time spin current correlation func-
tions of the XXZ chain [see Eq. (1)] at infinite temperature T = ∞
(main panel) and fixed exchange anisotropy � = 0.5 (inset). The
model is integrable, and the spin Drude weight Ds is finite for
|�| < 1 [35,37,41,42]. The horizontal lines show the lower bounds
for Ds established in Ref. [42] as well as the Bethe-ansatz (BA) result
from Ref. [38].

bound [42] for limT →∞ T Ds(T ) and Zotos’ Bethe-ansatz
calculation [38]. At � = 0.5, the values for Ds obtained
in Ref. [38] coincide with our tDMRG data also for the
finite temperatures T < ∞ considered here (see the inset
to Fig. 1; compare Ref. [37]). In the case of � > 1, the
current correlators appear to decay to zero, consistent with
predictions of a vanishing finite-temperature Drude weight in
this regime [31,33,39,48]. At the isotropic point � = 1, Cs(t)
does not saturate to a constant on the timescale reached in the
simulations [37], and no conclusion on the presence or absence
of a ballistic contribution is possible.

We next turn to the case of spin ladders. Exemplary
DMRG data for Cs and Cth at three different temperatures
T ∈ {∞,J,0.5J } are shown in Fig. 2. The thermal current
autocorrelation function is strictly time independent in the
chain limit J⊥ = 0 [27] (data not shown in the figure) but
decays to zero for any J⊥ > 0, which is consistent with earlier
studies that suggested the absence of ballistic contributions in
spin-ladder systems [33,75]. For the isotropic ladder J⊥/J = 1
with � = 1 at high temperatures, this decay takes place on a
fairly short timescale tJ � 8 [see Fig. 2(a)]. In Figs. 2(b)
and 2(c), we compare the behavior of Cs(t) on chains
with isotropic ladders (J⊥ = J ) for two different exchange
anisotropies � = 0.5 and � = 1. In both cases, Cs(t) decays
much faster if J⊥ > 0, and our data suggest the absence of
ballistic contributions to spin transport, in agreement with
Refs. [33,82]. Moreover, oscillations in Cs(t) emerge in the
case of ladders. They become very pronounced at lower
temperatures and are related to the existence of a spin gap
for J⊥ > 0.

B. Extraction of conductivities

We compute the spin and heat conductivities from the
corresponding real-time current correlation functions via
Eq. (5). However, only finite times t < tmax can be reached
in the DMRG calculations of Cs(t) and Cth(t), which gives
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FIG. 2. (Color online) Current autocorrelation functions of two-
leg spin ladders governed by the Hamiltonian of Eq. (3). � and J⊥
denote the exchange anisotropy and the rung coupling, respectively.
(a) Energy current autocorrelation function of isotropic ladders
J⊥/J = 1,� = 1 for various T . (b), (c) Spin-current autocorrelation
functions at � = 1 and � = 0.5, respectively. For J⊥ = 0, one
recovers two identical, decoupled XXZ chains.

rise to a “finite-time error” in σreg(ω) and κreg(ω). We assess
this error as follows:

Our data suggest (in agreement with the results of
Refs. [33,75,82]) that, for any J⊥ > 0, the spin and thermal
Drude weights vanish; the current correlators decay to zero
for t → ∞. We first compute the frequency integral in Eq. (5)
by using only the finite-time data. Thereafter, we extrapolate
Cs(t) and Cth(t) to t = ∞ by using linear prediction [101] and
recompute the frequency integral. Linear prediction attempts
to obtain data for correlation functions of interest at times
t > tmax as a linear combination of the available data for a
discrete set of times points tn < tmax (see Ref. [101] for details).
We perform the linear prediction for a variety of different
fitting parameters (such as the fitting interval) and then define
the error bar as twice the largest deviation to the conductivity
computed without any extrapolation at all.

For the XXZ chain with |�| > 1, the Drude weight also
vanishes, and the finite-time error of σreg(ω) can be assessed
in a manner analogous to that for ladders. The same holds
at |�| < 1 and T = ∞ where a lower bound for Ds is
known analytically from Prosen’s work (see the discussion
in Sec. IV A). For the values of � considered here, this
bound agrees with the Drude weight computed by using other
methods [35,37,38]; hence, we assume that it is exhaustive,
which allows us to subtract Ds in Eq. (2).

At |�| < 1 and T < ∞, the Drude weight needs to be
extracted from the numerical data [36,37], which is an addi-
tional source of error, or it has to be taken from other methods
such as the Bethe-ansatz calculation of Ref. [38]. We estimate
the corresponding uncertainty of the conductivity as follows:
For � = 0.5 and T = ∞, Cs(t) oscillates around the value
for T Ds known from the improved lower bound from [42]

(see Fig. 1); for finite temperatures T ∈ {3.3J,J,J/2}, Cs(t)
oscillates around the Bethe-ansatz result DBA

s of Ref. [38]. An
upper bound Du

s as well as a lower bound Dl
s can be determined

from the magnitude of the oscillations. For each DBA
s , Du

s , and
Dl

s, we carry out the procedure used at T = ∞ and define the
uncertainty in σreg(ω) as either twice the difference between
the curves computed with and without extrapolation or twice
the maximum difference between the curves at the different
DBA

s , Du
s , and Dl

s, whatever is larger.
For other exchange anisotropies, the accessible timescales

are either too short to fully resolve the oscillations around
Ds, or Cs(t) decays monotonically for large times. The latter
seems to be true, in particular, close to the isotropic point
� = 1. For � = 0.901 (see Fig. 1) and at T = ∞, the value
of Cs(t) at the largest time reached is approximately 10% larger
than the improved bound from Ref. [42]. For finite but not too
small T/J , we assume that Cs(t)/(2T ) = rDs at the maximal
time reached, where we typically choose r ∼ 1.2. Given this
estimate for Ds, we assess the error in a manner analogous to
that for the infinite-temperature case. Note that the larger r ,
the larger the error bars. We stress that this way of estimating
the error is less controlled than in those cases for which the
value of the Drude weight is known.

Exemplary error bars are shown in Figs. 3–6. The data
for σreg(ω) displayed in the figures are the ones obtained by
using linear prediction; the conductivities for the XXZ chain
at � = 0.5 and T < ∞ shown in Fig. 3(c) were calculated by
using the Bethe-ansatz value of Ref. [38] for the Drude weight.
Note that the numerical error of the bare DMRG data for Cs(t)
and Cth(t) is negligible compared to the finite-time error.
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FIG. 3. (Color online) Regular part of the spin conductivity of
the XXZ chain at (a) infinite temperature and various values of �,
and (b), (c) at a fixed value of � < 1 and various T . The finite-time
error can be estimated following the procedure outlined in Sec. IV B.
The insets to panels (a) and (b) show the conductivity obtained from
the finite-time data t < tm without extrapolation (“no LP”) as well
as from using linear prediction to extrapolate to t → ∞ (“LP”). The
inset to panel (c) illustrates that the optical sum rule (9) is fulfilled
accurately.
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The finite-time data used for the above procedure are the
DMRG data up to the maximum time tmax reached in the
simulation. In the case of the XXZ chain, this time is fairly
large compared to 1/J , and it is thus instructive to recalculate
σreg(ω) using only the data for half of the maximum time (both
with and without extrapolation). Results are shown in the insets
to Fig. 3; they illustrate that linear prediction provides a fairly
reliable way to estimate the error.

As an additional test for the accuracy of the conductivities,
one can verify the optical sum rule. In the spin case it reads∫ ∞

0
dω Re σ (ω) = π〈−T̂ 〉

2L
, (9)

where T̂ is the kinetic energy, i.e., all terms in Eq. (3) computed
at � = 0. We show exemplary data for the validity of the sum
rule in the insets of Figs. 3(c) and 5(b), which illustrate that
Eq. (9) holds with great accuracy.

C. Spin conductivity of spin- 1
2 X X Z chain

Figure 3 gives an overview over the behavior of σreg(ω)
for the spin- 1

2 XXZ chain for various values of the exchange
anisotropy � (results for � > 1 have previously been shown
in Ref. [63]). At infinite temperature [see Fig. 3(a)] and
for all � > 0 considered, we find a finite dc conductivity
σdc = limω→0 σreg(ω) within the error bars of our extrapolation
method. This is at odds with the predictions of Ref. [60],
where σreg(ω) ∝ ω2 was suggested in the low-frequency limit.
For the special value of � = 0.5, however, there clearly is
a suppression of weight around ω = 0 accompanied by a
pronounced maximum at ω ≈ 0.25J . For other values of
� < 1, σreg(ω) seems to exhibit a global maximum at ω = 0
as well as additional lower maxima at higher frequencies that
shift to larger values of ω as � increases. The spin conductivity
at � = 2 has also been analyzed in Ref. [64], and large,
anomalous, L-dependent fluctuations in Reσ (ω) have been
observed at low frequencies. Those are not present in our data.

Returning to the regime of � < 1, we cannot rule out that
the disagreement between our result for the low-frequency
behavior of the conductivity and the prediction of Ref. [60] is
attributed to finite-time effects. However, there is no obvious
indication for this in our data: At T = ∞, the Drude weight
is known from [42], and limT →∞[T σdc] is simply given by
the integral of Cs(t) with 2T Ds subtracted. The real-time data
are shown in Fig. 1; the errors due to the finite system size
and the finite discarded weight are negligible. As illustrated
in the insets to Figs. 3(a) and 3(b), our extrapolation scheme
using linear prediction provides a stable and meaningful way
to establish finite-time error bars. As an additional test, it is
instructive to assume that the improved lower bound—which
at T = ∞ and for the exchange anisotropies considered here
coincides with the Bethe-ansatz result of Ref. [38]—is not
fully saturated. At � = 0.5, an upper bound Du

s to the Drude
weight can be estimated from the magnitude of the oscillations
of Cs(t). Using Du

s instead of the lower bound from Ref. [42]
decreases σdc by 15% but does not yield σdc = 0.

To summarize, a vanishing dc conductivity suggested by
Ref. [60] could only be caused by oscillations at large times
around the asymptote 2T Ds, which would need to cancel
out the large positive contribution from times tJ � 40. Put

differently, if σreg(ω) ∼ ω2 holds, it only holds for very small
frequencies ω � J . This is further corroborated by the fact
that the optical sum rule of Eq. (9) is fulfilled accurately [see
the inset to Fig. 3(c)].

Even though σdc > 0 is supported by our tDMRG cal-
culation in combination with the results for Ds(T ) from
Refs. [38,42], the emergence of very narrow peaks in the
data for � = 0.309, 0.901 at low frequencies should be
taken with some caution. For these parameters, the timescale
tJ � tmax = 40/J reached in the simulation is too short to
resolve potential oscillations around the long-time asymptote.
A very conservative estimate of the accessible frequencies is
ωmin = 2π/tmax ∼ 0.15J . It is possible that redistributions of
weight below ωmin would occur if longer times were available.

The temperature dependence of σreg(ω) is shown in
Figs. 3(b) and 3(c) for two different exchange anisotropies.
At � = 0.901, the global maximum is always at ω = 0, σdc

increases with decreasing temperature, and the ω dependence
seems to become smoother the smaller T is. For � = 0.5,
the suppression of weight at low frequencies survives down to
temperatures of T � 0.5J (at T = 0.5J , the error bars become
too large to draw any conclusions).

To guide our ensuing discussion of ladders, we summarize
the � dependence of σ (ω) in the chain limit J⊥ = 0. At � = 0,
Re σ (ω) = 2πDs(T )δ(ω), and the perturbation J⊥ > 0 thus
breaks both the integrability of the model and the conservation
of the spin current. For � > 0, the spin current is no longer
conserved even for J⊥ = 0, which gives rise to a nonzero
regular contribution σreg(ω) to the conductivity. According to
recent studies [35,37,41,42], the Drude weight is finite for
any 0 � |�| < 1, but no final conclusion on Ds(T ) at � = 1
has been reached yet. At T = ∞, the relative contribution of
σreg(ω) to the total spectral weight increases monotonically
from zero at � = 0 to a value of the order of 90% close to
� = 1 [37]. For � > 1, the commonly accepted picture is
that Ds(T > 0) = 0; hence, all weight is concentrated in the
regular part. Based on these qualitative differences of σ (ω)
that depend on � and the interplay of the ballistic contribution
with finite-frequency weight at small ω, we expect significant
changes in the spin conductivity of ladders as a function of �.

D. Spin conductivity of ladders

We now turn to the spin conductivity σ (ω) of two-leg
ladders and contrast our results with the limiting case of
isolated chains (J⊥ = 0), where the behavior of σ (ω) crucially
depends on �. We first discuss the infinite-temperature case;
data for J⊥ = J are presented in Fig. 4(a). At � = 0, σreg(ω)
has a simple Lorentzian shape [see the inset to Fig. 4(a)]:

Re σ (ω) = πσdc/τ
2

ω2 + (1/τ )2 . (10)

This follows directly from the results of Ref. [82], where the
spin-autocorrelation function of the XX two-leg ladder was
studied numerically and analytically as a function of J⊥/J .
It turned out that Cs(t) decays exponentially at small values
of J⊥ � J and with a Gaussian for larger values of J⊥. The
results of Ref. [82] in conjunction with our data altogether
identify the XX spin- 1

2 ladder as a textbook realization of a
diffusive conductor with a single relaxation time τ ∝ (J/J⊥)2.
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FIG. 4. (Color online) Spin conductivity of two-leg ladders at
infinite temperature T = ∞ for (a) fixed rung coupling J⊥ = J and
(b) fixed anisotropy � = 1. At � = 0 and J⊥ � J , σreg(ω) is of the
simple Lorentzian form (see inset).

Systems with � = 0 are rarely found in real materials, but the
XX model on a ladder can easily be realized with hard-core
bosons in optical lattices (see, e.g., Ref. [55] and the discussion
in Refs. [82,83]).

For the special case of � = 1, we show exemplary data for
J⊥ �= J in Fig. 4(b). Even at T = ∞, the conductivity does
not have a simple functional form but features side maxima at
finite frequencies that shift to larger ω as J⊥/J increases.

In Figs. 5(a)–5(c), we illustrate how σreg(ω) of isotropic
ladders J⊥ = J evolves as the temperature decreases from
T = ∞ down to T = 0.29J . It turns out that it is easier to reach
low temperatures for larger values of �. In the case of � = 0
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FIG. 5. (Color online) Spin conductivity of two-leg ladders with
fixed J⊥ = J but various T and anisotropies ranging from � = 0 (XX

ladder) to � = 1 (isotropic ladder). Note that the curve at � = 1,
T = 0.29J (at � = 0, T = 0.5J ) is plotted only for frequencies
ω � J (ω � 0.2J ). The insets show the dc conductivity, the optical
sum rule, and the � dependence of the spin gap �spin (calculated for
L = 128 at J > 0), respectively.

[see Fig. 5(a)], we observe a Drude-like conductivity down
to temperatures of T ∼ 3J . At lower temperatures, however,
Re σ (ω) deviates from a simple Lorentzian (see Ref. [89] for
similar observations for a chain with a staggered field). This
is a consequence of the existence of a spin gap �spin in the
two-leg ladder which at low temperatures manifests itself by
a suppression of weight below the optical 2�spin (see, e.g.,
the case of dimerized chains studied in Ref. [104]) and a
sharp increase of σreg(ω) at ω ∼ 2�spin. As a consequence,
the dc conductivity is expected to diverge with T −α , α > 0
as T is lowered [63,65–67]. Next, we investigate how the
Drude-like conductivity observed for � = 0 evolves as �

increases. We find that (i) the current autocorrelations at
� = 0.5 and � = 1 do not follow a simple exponential or
Gaussian decay even at infinite temperature, and hence (ii) the
low-frequency conductivity is not well described by a simple
Lorentzian. Pragmatically, we associate the (zero-frequency)
current relaxation time τ with the inverse of the half-width half
maximum of the zero-frequency peak in Re σ (ω) for � 
 0.

The presence of these two scales, the optical gap 2�spin,
and the inverse high-temperature relaxation time 1/τ , which
controls the low-frequency behavior, is more visible in the data
for � = 0.5 and � = 1 [shown in Figs. 5(b) and 5(c)] even
at the highest temperatures T = 3.3J . Clearly, there are two
maxima in Re σ (ω), one at ω = 0 and one at ω � 2�spin [in
fact, at very low T , Re σ (ω) has an edge at the optical gap]. The
reason is the dependence of the optical gap on the exchange
anisotropy �. The spin gap in a two-leg ladder as a function
of � is, in the limit of J = 0, given by

�spin = J⊥
2

(1 + �). (11)

This monotonic dependence of �spin on � survives at finite
values of J⊥ ∼ J . This is shown in the inset of Fig. 5(c), which
has been obtained from �spin = E0(Sz = 1) − E0(Sz = 0) by
using standard DMRG [5,6], where E0(Sz) is the ground state
in the subspace with total magnetization Sz for L = 128.

Our data are compatible with a leading temperature depen-
dence of the form σdc(T ) ∝ 1/T . Moreover, σdc is a mono-
tonically decreasing function of � in the high-temperature
regime. The latter can be understood by the nature of the
single-particle spin-1 excitations of the two-leg ladder that
originate from the local triplet excitations of the J/J⊥ → 0
limit. Finite values of J render these triplets dispersive and
give rise to interactions between the quasiparticles. A nonzero
value of � introduces additional scattering terms, and it is thus
intuitive to expect smaller quasiparticle lifetimes and hence
also smaller dc conductivities.

E. Thermal conductivity of Heisenberg ladders

For experiments with quantum magnets, the thermal
conductivity is the most easily accessible transport coeffi-
cient, which has been investigated in a large number of
experiments on ladders [68,69], chains [105–108], and two-
dimensional antiferromagnets [109,110] (see Refs. [16,17]
for a review). These experiments have clearly established
that magnetic excitations can dominantly contribute to the
thermal conductivity of these insulating materials at elevated
temperatures, exceeding the phononic contribution (see, e.g.,
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Ref. [108]). The contribution of magnetic excitations to the
full thermal conductivity in these low-dimensional systems
manifests itself via a prominent anisotropy of the thermal
conductivity measured along different crystal axes [16,17].
Open and timely questions include a comprehensive and
quantitative theoretical explanation for the magnitude of the
thermal conductivity, a theory of relevant scattering channels
beyond pure spin systems (see, e.g., Refs. [20–26]), a full
understanding of the spin-phonon coupling including spin-
drag effects [23–25], and the understanding of a series of
experiments studying the effect of doping with nonmagnetic or
magnetic impurities and disorder onto the thermal conductivity
(see, e.g., Refs. [111,112]). Here we solely focus on pure spin
Hamiltonians. Given that most of the materials realize spin
Hamiltonians that are more complicated than just spin chains
with nearest-neighbor interactions only, one needs to resort to
numerical methods to get a quantitative picture.

The real-time energy current autocorrelations for the
Heisenberg ladder (� = 1) are shown in Fig. 2(a). At T =
∞, Cth(t) decays fast, and κ(ω) can be obtained down to
sufficiently low frequencies. For lower temperatures, however,
the accessible timescales are at present too short to reach the
dc limit in a reliable way. We therefore focus on T = ∞.

Our results for the thermal conductivity are shown in Fig. 6
for J⊥/J = 0.5,1,2. They are in reasonable agreement with
the exact diagonalization data of Ref. [75] that were obtained
by using a microcanonical Lanczos method for L = 14 sites.
Note that our data for κdc is typically larger than the exact
diagonalization results. The behavior at low frequencies is
anomalous—it does not follow a Drude-like Lorentzian shape
(this was already pointed out in Ref. [75]). The actual form
of the low-frequency dependence of κreg(ω) (discussed in
Ref. [75]) cannot be clarified by using the existing data. The
knowledge of the infinite-temperature dc conductivity κ∞

dc still
gives access to a wide temperature regime since the leading
term is κdc(T ) = κ∞

dc /T 2, and we can therefore address the
question of mean-free paths.

F. Mean-free paths for Heisenberg spin ladder

In the analysis of experimental data for κ , one often uses a
kinetic equation to extract magnetic mean-free paths [17,69].

An analogous equation can also be employed for σ , and we
obtain the following set of kinetic equations:

κ = 1

L

∑
k

vk

d(εknk)

dT
lκ,k, (12)

σ = 1

L

∑
k

vk

(
− dnk

dεk

)
lσ,k, (13)

where εk is the dispersion of the threefold degenerate triplet
excitations, vk = ∂kεk , and nk is a distribution function which
accounts for the hard-core boson nature of the triplets [69]:

nk = 3

exp(βεk) + 3
. (14)

The actual form of the dispersion is not important since
vk drops out in one dimension when the integration over
k is replaced by an integral over energy ε. The mean-free
paths lκ,k and lσ,k are taken to be independent of quasi-
momentum, lκ(σ ),k = lκ(σ ),mag. In order to analyze the total
thermal conductivity measured experimentally, one assumes
κtotal = κph + κmag, where κph and κmag represent the phononic
and magnetic contribution, respectively. Such a separation is
an approximation and should be understood as an operational
means to extract mean-free paths—in general, spin-drag
effects can lead to additional contributions to κtotal [21,23,25].

In the high-temperature limit, one needs to keep only the
leading terms in a 1/T expansion of Eqs. (12) and (13). The
mean-free paths can then be extracted from κdc = κ∞

dc /T 2 and
σdc = σ∞

dc /T via

κ∞
dc = 1

16π

(
ε3

max − ε3
min

)
lκ,mag, (15)

σ∞
dc = 3

4π
(εmax − εmin)lσ,mag, (16)

where εmax and εmin are the band minimum and band maximum
of the single-triplet dispersion, respectively. For an isotropic
ladder system such as the one realized in La5Ca9Cu24O41

(the actual Hamiltonian is more complicated, see [9]), εmin =
�spin ≈ J/2 and εmax ≈ 2J are reasonable estimates [113] for
J⊥ = J . We can thus approximate εmax − εmin = 3J/2 and
ε3

max − ε3
min ≈ 8J 3, which then leads to

κ∞
dc = J 3

2π
lκ,mag, (17)

σ∞
dc = 9J

8π
lσ,mag. (18)

For the isotropic ladder J⊥/J = 1, � = 1, we have κ∞
dc ≈

0.66J 3 and σ∞
dc ≈ 0.39J 2 and thus lκ,mag ≈ 4.2 and lσ,mag ≈

1.1. Hence, lκ,mag > lσ,mag such that the (averaged) mean-free
paths differ from each other. In this framework the mean-free
paths in the high-temperature regime are T independent, which
seems reasonable since at large T 
 J,J⊥ (i.e., T larger than
the bandwidth of triplets) all states are populated equally. In
other words, the qualitative difference with phonons, the most
typical bosonic quasiparticle that contributes to the thermal
conductivity in solids, is that the number of triplet excitations
saturates at large T due to their hard-core nature, reflecting the
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fact that the spin system has a spectrum that is bounded from
above.

Our results demonstrate that the extraction of mean-free
paths as commonly employed in the analysis of the exper-
imental data, while providing very useful intuition, cannot
easily be related to single-excitation mean-free paths, due to
the different results obtained for κ and σ and the gap in the
excitation spectrum (see also the discussion in Ref. [21]). We
stress that the observation of different mean-free paths for
different transport channels is not unusual. Even in metals
(more generally, Fermi liquids) momentum and energy can
relax differently via inelastically scattering processes [114].
Moreover, more dramatic deviations from the Wiedemann–
Franz law are well known for non-Fermi liquids (see, e.g.,
Ref. [115]), in Luttinger liquids [116,117] and mesoscopic
systems [118,119].

V. SUMMARY

In this work, we studied the spin and thermal conductivity
of spin chains and ladders using finite-temperature, real-time
density matrix renormalization group techniques. We first
computed the spin conductivity of the spin- 1

2 XXZ chain
as a function of the exchange anisotropy � > 0. Our data
suggest finite dc conductivities for all � > 0, yet a suppression
of weight at low frequencies for special values such as
� = 0.5. While the main drawback of the numerical method
is that only finite times can be reached in the simulations,
the comparison of various schemes to extract the frequency
dependence supports our conclusion.

Our results for two-leg spin ladders are consistent with
the absence of ballistic contributions in agreement with
Refs. [33,75,77,82]. At high temperatures, the XX ladder—
which is equivalent to a system of hard-core bosons—exhibits

a simple, Drude-like spin conductivity [82]. This property
is lost as either the temperature is lowered or the exchange
anisotropy is increased. At low temperatures, the spin conduc-
tivity features a two-peak structure with a maximum at ω = 0
and a large weight for frequencies above the optical spin gap.
We further computed the dc spin conductivity; it decreases as
the exchange anisotropy increases from � = 0 towards � = 1
and is a monotonically increasing function of temperature.

The thermal conductivity was obtained in the infinite-
temperature limit, and our data agree reasonably well with
earlier exact-diagonalization results [75]. We extracted esti-
mates for mean-free paths via kinetic equations that are used
in the analysis of experimental data [69]. The (momentum-
averaged) mean-free paths lmag obtained from κ are larger
than the ones calculated from σ . Thus, lmag depends on
the type of transport considered, and it is therefore not
obvious that values for lmag can directly be interpreted as a
mean-free path of single-particle excitations. Future time- and
real-space experiments could provide additional insight into
the connection between single-excitations and the mean-free
paths observed in transport measurements.
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[6] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[7] D. C. Johnston, R. K. Kremer, M. Troyer, X. Wang,
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[18] X. Zotos and P. Prelovšek, Strong Interactions in Low Di-

mensions (Kluwer Academic Publishers, Dordrecht, 2004),
Chap. 11.

[19] F. Heidrich-Meisner, A. Honecker, and W. Brenig, Eur. Phys.
J. Spec. Top. 151, 135 (2007).

[20] E. Shimshoni, N. Andrei, and A. Rosch, Phys. Rev. B 68,
104401 (2003).

115130-8

http://dx.doi.org/10.1007/BFb0119598
http://dx.doi.org/10.1007/BFb0119598
http://dx.doi.org/10.1007/BFb0119598
http://dx.doi.org/10.1007/BFb0119598
http://dx.doi.org/10.1007/s100510050026
http://dx.doi.org/10.1007/s100510050026
http://dx.doi.org/10.1007/s100510050026
http://dx.doi.org/10.1007/s100510050026
http://dx.doi.org/10.1103/PhysRevLett.85.4373
http://dx.doi.org/10.1103/PhysRevLett.85.4373
http://dx.doi.org/10.1103/PhysRevLett.85.4373
http://dx.doi.org/10.1103/PhysRevLett.85.4373
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://arxiv.org/abs/arXiv:cond-mat/0001147
http://dx.doi.org/10.1103/PhysRevLett.98.027403
http://dx.doi.org/10.1103/PhysRevLett.98.027403
http://dx.doi.org/10.1103/PhysRevLett.98.027403
http://dx.doi.org/10.1103/PhysRevLett.98.027403
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.87.127002
http://dx.doi.org/10.1103/PhysRevLett.87.127002
http://dx.doi.org/10.1103/PhysRevLett.87.127002
http://dx.doi.org/10.1103/PhysRevLett.87.127002
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevB.83.174419
http://dx.doi.org/10.1103/PhysRevB.83.174419
http://dx.doi.org/10.1103/PhysRevB.83.174419
http://dx.doi.org/10.1103/PhysRevB.83.174419
http://dx.doi.org/10.1088/0953-8984/25/36/365601
http://dx.doi.org/10.1088/0953-8984/25/36/365601
http://dx.doi.org/10.1088/0953-8984/25/36/365601
http://dx.doi.org/10.1088/0953-8984/25/36/365601
http://dx.doi.org/10.1103/PhysRevLett.96.247203
http://dx.doi.org/10.1103/PhysRevLett.96.247203
http://dx.doi.org/10.1103/PhysRevLett.96.247203
http://dx.doi.org/10.1103/PhysRevLett.96.247203
http://dx.doi.org/10.1007/s10909-007-9317-x
http://dx.doi.org/10.1007/s10909-007-9317-x
http://dx.doi.org/10.1007/s10909-007-9317-x
http://dx.doi.org/10.1007/s10909-007-9317-x
http://dx.doi.org/10.1140/epjst/e2007-00363-8
http://dx.doi.org/10.1140/epjst/e2007-00363-8
http://dx.doi.org/10.1140/epjst/e2007-00363-8
http://dx.doi.org/10.1140/epjst/e2007-00363-8
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1140/epjst/e2007-00369-2
http://dx.doi.org/10.1103/PhysRevB.68.104401
http://dx.doi.org/10.1103/PhysRevB.68.104401
http://dx.doi.org/10.1103/PhysRevB.68.104401
http://dx.doi.org/10.1103/PhysRevB.68.104401


SPIN AND THERMAL CONDUCTIVITY OF QUANTUM SPIN . . . PHYSICAL REVIEW B 91, 115130 (2015)

[21] A. L. Chernyshev and A. V. Rozhkov, Phys. Rev. B 72, 104423
(2005).

[22] A. V. Rozhkov and A. L. Chernyshev, Phys. Rev. Lett. 94,
087201 (2005).

[23] E. Boulat, P. Mehta, N. Andrei, E. Shimshoni, and A. Rosch,
Phys. Rev. B 76, 214411 (2007).

[24] S. Gangadharaiah, A. L. Chernyshev, and W. Brenig, Phys.
Rev. B 82, 134421 (2010).

[25] C. Bartsch and W. Brenig, Phys. Rev. B 88, 214412 (2013).
[26] H. Rezania, A. Langari, P. H. M. van Loosdrecht, and X. Zotos,

arXiv:1310.5943.
[27] X. Zotos, F. Naef, and P. Prelovšek, Phys. Rev. B 55, 11029
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