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Electrons, holes, and photons in semiconductors are interacting fermions and bosons. In this system, a variety
of ordered coherent phases can be formed through the spontaneous phase symmetry breaking because of their
interactions. The Bose-Einstein condensation (BEC) of excitons and polaritons is one of such coherent phases,
which can potentially cross over into the Bardeen-Cooper-Schrieffer (BCS) type ordered phase at high densities
under quasiequilibrium conditions, known as the BCS-BEC crossover. In contrast, one can find the semiconductor
laser, superfluorescence (SF), and superradiance as relevant phenomena under nonequilibrium conditions. In this
paper, we present a comprehensive generating functional theory that yields nonequilibrium Green’s functions in
a rigorous way. The theory gives us a starting point to discuss these phases in a unified view with a diagrammatic
technique. Comprehensible time-dependent equations are derived within the Hartree-Fock approximation, which
generalize the Maxwell-semiconductor-Bloch equations under the relaxation time approximation. With the help
of this formalism, we clarify the relationship among these cooperative phenomena and we show theoretically
that the Fermi-edge SF is directly connected to the e-h BCS phase. We also discuss the emission spectra as well
as the gain-absorption spectra.
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I. INTRODUCTION

Spontaneous development of macroscopic coherence is
at the very heart of cooperative phenomena in condensed
matter physics. One major example is the superconductivity
[1,2] in metals successfully explained by the Bardeen-Cooper-
Schrieffer (BCS) theory [3]. In this case, weakly bound
pairs of two electrons (Cooper pairs) are formed around
the Fermi surface by their attractive many-body interaction
and condensed by a similar mechanism to the Bose-Einstein
condensation (BEC) [4]. In the last decades, these cooperative
phenomena have been intensively studied in several physical
systems such as ultracold atomic systems [5–12] as well as
superconductors [13–15].

In semiconductor systems, in a similar way, Cooper pairs of
an electron and a hole can be considered through the Coulomb
attractive interaction when the density is high enough to form
the Fermi surface [16]. With decreasing the density, however,
the electron-hole (e-h) Cooper pairs can smoothly change into
excitons, that is, tightly bound e-h pairs through the Coulomb
attraction. As a result, the e-h BCS phase is expected to cross
over into the exciton BEC [17–20]. The BCS-BEC crossover
recently highlighted in atomic Fermi gas systems [6–8], in fact,
arises partly from these considerations of the semiconductor
e-h systems [19,21]. In this sense, fundamental research on
semiconductors is of great importance as it provides a stage to
find concepts applicable to a wide range of fields [22–24].

Open and dissipative nature of the system, however, should
be taken care, particularly when electrons and holes have
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non-negligible interactions with photons because they are
easily lost into free space even if confined in a cavity
[25]. This is in stark contrast to the BCS and BEC phases,
concepts basically for closed systems following equilibrium
statistical physics. Pictures and approaches in quantum optics
[25–27], then, play a significant role to understand the
appearance of macroscopic coherence in such nonequilibrium
situations. Striking examples are the superradiance (SR) and
the superfluorescence (SF) as well as the laser [26,28–33].
Here, the SR is known as the cooperative radiation process
where individual dipoles of emitters are synchronized with one
another through their common radiation field [34,35]. The SF
is a special case of the SR for the cooperative emission started
from an initial state with no macroscopic coherence [36,37].
These radiative processes are sometimes called mirrorless
lasers [28] because the cavity plays no essential role and is
not necessarily required, in contrast to the standard lasers.
Although these cooperative phenomena can be found in
quantum optics by using atomic discrete energy-level systems
[38–43], semiconductor electron-hole-photon (e-h-p) systems
are unique in relation to the pairing condensation, as described
above, and provoke a nontrivial fundamental question about
the relationship among these cooperative phenomena.

Vasil’ev and co-workers, for instance, studied the SF in
an electrically pumped GaAs/AlGaAs heterostructure and
suggested a hypothesis that the generation of superfluorescent
pulses is a result of the radiative recombination of the e-h
BCS-type state [44]. Unfortunately, however, their discussions
on this scenario remain largely speculative even though
outstanding. Nevertheless, the Fermi-edge SF [33] recently
demonstrated by Kim et al. is rather suggestive where the
macroscopic coherence is spontaneously developed near the
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Fermi edge due to the Coulomb-induced many-body effects;
the physics seems closely related to the e-h BCS phase in
our view, even though this similarity is not pointed out in
the literature [33]. In an analogous sense, Dai and Monkman
studied the SF in a highly excited bulk ZnTe crystal and
claimed that the SF can be viewed as the exciton BEC
developed on an ultrafast time scale [45]. These expectations
might be plausible in terms of the spontaneous phase symmetry
breaking and highly related to the above question. However,
such a question could not be previously addressed by any
theoretical work because it is not trivial to incorporate both
physics simultaneously.

Further intensive debate on this issue can be seen in
the exciton-polariton systems [46–55]: the relationship be-
tween the exciton-polariton BEC and the semiconductor laser
[56–64]. Two distinct thresholds observed in several experi-
ments were discussed in this context and the second threshold
was interpreted in terms of a change from the exciton-polariton
BEC into the standard lasing, the mechanism of which is
attributed to a shift into the weak coupling regime due to
dissociations of the excitons into the e-h plasma [59,60,62–64].
However, there is no convincing discussion why such disso-
ciations lead to nonequilibration of the system essential for
lasing [65], while the laser is inherently a nonequilibrium
phenomenon [66,67]. In a similar context, the distinction
between the lasers and the photon BEC is also one of hot
issues [68–72].

One difficulty to understand these phenomena results from
a theoretical aspect; in most cases in quantum optics, equations
do not recover results expected from thermal equilibrium
statistical physics even when equilibrium situations are consid-
ered [73]. To overcome this difficulty, special care is required to
use, for example, a quantum master equation (QME) approach
[73,74]. Szymańska and co-workers, in contrast, showed that a
nonequilibrium Green’s function (NEGF) approach is equally
helpful to this problem even though the excitons are simply
modeled by two-level systems with no internal e-h structures
[75,76].

In previous papers [65,77], motivated by their seminal
work, we developed a steady-state framework based on the
NEGF approach, which can treat the phases of the BEC,
BCS, and laser in a unified way with the e-h pairing
mechanisms as well as an appropriate e-h picture. This
formalism results in the BCS theory [78,79] when the system
can be regarded as in (quasi)equilibrium, while it recovers the
Maxwell-semiconductor-Bloch equations [80,81] (MSBEs) of
describing the laser when nonequilibrium features become
important. The mechanisms of the second threshold are, then,
discussed and it is found that light-induced bound e-h pairs
must remain alive even after the second threshold [65], in
contrast to the above scenario. At the same time, light-induced
band renormalization causes the pairing gaps inside the
conduction and valence bands. In this paper, we elucidate
several aspects of such a BEC-BCS-LASER crossover which
we did not address in our previous papers. In particular, we
study the influence of the detuning and the pumping strength
by showing the phase diagram and clearly reveal the possible
types of the ordered phases, their individual mechanisms
of appearance, and the criteria to distinguish these phases.
Spectral structures included in the emission spectra as well as

the gain-absorption spectra are also clarified by introducing the
energy- and momentum-resolved distribution functions. One
of our main purposes is thus to understand the nature lying
between equilibrium and nonequilibrium steady states.

A time-dependent formalism is, however, required to fully
discuss the relationship of the cooperative phenomena because
the SR and the SF are inherently transient phenomena. In
this context, another main purpose in this paper is to give
a comprehensive generating functional theory [82–86] that
yields NEGFs systematically in a time-dependent manner
[87–89]. As a result, we show that the unknown variables in the
MSBEs should evolve simultaneously with the time-dependent
band renormalization, at least in principle. This is quite natural
for theorists because the NEGF approach originally describes
the evolutions of the retarded, advanced, and Keldysh Green’s
functions (GFs); the retarded and advanced GFs correspond
to the band renormalization effects, while the Keldysh GF
describes the distributions. Nevertheless, we emphasize it
because the band renormalization is critical for a unified view
of the cooperative phenomena. With the help of this formalism,
we can directly tackle the problem of the relationship between
the SF and the equilibrium phases. As a result, we show that the
Fermi-edge SF can be seen as a precursor of the e-h BCS phase
in a sense that the Fermi-edge SF evolves toward the e-h BCS
phase under the continuous pumping. This is striking because
the presence of the e-h BCS phase is a subject of long-time
active interest not yet evidenced experimentally. Our result
promisingly foresees the experimental observation of the e-h
BCS phase in the context of the Fermi-edge SF.

Finally, the last purpose of this paper is to show the
theoretical usefulness of the generating functional approach
[82–86] that can offer several advantages over the standard
NEGF [65,75–77,90,91] and QME [73,74,92,93] approaches
as follows: (a) double counting problems of the Feynman
diagrams are removed because dressed diagrams are directly
obtained; (b) at least in principle, equations can be closed
when the hierarchy of the coupled GFs is truncated at certain
level; (c) except for initial states, the Born approximation is
not required in contrast to the QME approach; (d) two-particle
GFs required for the calculations of the emission spectrum
as well as the gain-absorption spectrum can be obtained in
a convincing way. These features seem somewhat technical
but become significant if one extends our theory or develops a
framework in similar open-dissipative systems. However, there
are few theoretical reports pointing out these features and no
reports taking such an approach to address the relationship
of the cooperative phenomena ranging from equilibrium to
nonequilibrium in the semiconductor e-h-p systems. We there-
fore describe our detailed theoretical treatment of the generat-
ing functional approach, which gives a starting point to study
the above-described cooperative phenomena in a unified view.

As we now know, this paper covers cross-sectoral issues
ranging from condensed matter physics to quantum optics.
In order to make the paper accessible to experimentalists as
well as theorists in both fields, therefore, we try to provide
sufficient explanations and reinterpretations of the formalism
and physics as far as possible even if these are well known to
some specialists.

The remainder of the paper is organized as follows. In
Sec. II, as a typical example of the semiconductor e-h-p
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systems, we consider the exciton-polariton system and
introduce our Hamiltonians. We then show our key results of
the formalism after briefly reviewing the BCS theory and the
MSBEs under the relaxation time approximation (RTA). Our
theoretical formulation is not shown here but will be presented
in later sections for clarity (Secs. V and VI). In Sec. III, we
study the relationship between the cooperative phenomena.
We first show that our formalism is appropriate to study the
cooperative phenomena in a unified way, and then, study
the steady-state phase diagrams. Here, we will give detailed
insights to the BEC-BCS-LASER crossover [65,77,94]. We
then discuss the connections between the Fermi-edge SF
and the e-h BCS phases, the theoretical study of which
has been impossible before. In Sec. IV, we shortly explain
our formalism to calculate the emission spectrum and the
gain-absorption spectrum and then present several numerical
results. With the help of the energy- and momentum-resolved
distribution functions, we will clarify that the underlying
physics can basically be understood from the picture of the
Mollow triplet in quantum optics [26,95]. In addition, it is
further found that the gain-absorption spectra can be affected
by the phase difference between the external probe field and
the spontaneous coherence developed in the system. In Sec. V,
we present a general formalism based on the generating
functional approach. We define the relevant NEGFs and
explain their equations of motion on the closed-time contour,
together with their diagrammatic representations. In Sec. VI,
we transform the NEGFs into the real-time formulation.
Within the Hartree-Fock (HF) approximation, we derive a
time-dependent framework that generalizes the MSBEs under
the RTA. Readers who are not familiar with the NEGFs can,
however, skip Secs. V and VI because these sections are mainly
devoted to the theoretical explication of our formalism. Finally,
in Sec. VII, our main results are summarized with some final
remarks and the paper is concluded.

II. THEORETICAL FRAMEWORK

As a typical model of the semiconductor e-h-p systems, we
consider the exction-polariton systems where electrons and
holes are in quantum wells while photons are confined in a
microcavity [25,46–52]; see also Ref. [96] for a recent review.
In this section, we introduce our Hamiltonians and describe
key results of our formalism. For simplicity, we set � = kB = 1
throughout this paper.

A. Hamiltonians

Open and dissipative nature of a certain system is commonly
described by its interactions with reservoirs in quantum optics
[25–27]. Our Hamiltonian for the exciton-polariton system
can, therefore, be described as

Ĥ = ĤS + ĤR + ĤSR (1)

in the Schrödinger picture, where ĤS, ĤR, and ĤSR are
the system, reservoir, and their interaction Hamiltonians,
respectively. Here, the system Hamiltonian ĤS is given by

ĤS = Ĥ0 + Ĥe-e + Ĥe-ph, (2)

FIG. 1. (Color online) Schematic illustration of the model. (a)
The structure of the conduction band (CB) and the valence band
(VB). (b) Relationship between the system and reservoirs [94].

where

Ĥ0 =
∑
α,k

εα,k ĉ
†
α,k ĉα,k +

∑
k

εph,kâ
†
kâk (3)

describes the free-particle Hamiltonian with α ∈ {1,2}. ĉ1,k

(ĉ2,k) is the fermionic annihilation operator of electrons
in the conduction (valence) band, while âk is the bosonic
annihilation operator of photons inside the cavity, with in-plane
wave number k. ε1(2),k ≡ k2/2mc(v) ± Eg/2 denotes the energy
dispersion of the conduction (valence) band with the effective
mass mc(v) and the band-gap energy Eg [Fig. 1(a)]. Similarly,
εph,k ≡ k2/2mcav + Ecav denotes the energy dispersion of
photons with the effective mass mcav and the cavity mode
energy Ecav for k = 0 [52]. We note that, instead of holes,
electrons in the valence band are treated in our model and the
e-h picture will be introduced after the formulation.

Ĥe-e and Ĥe-ph in Eq. (2) are the interactions between the
particles and described as [78,79]

Ĥe-e = 1

2

∑
k,k′,q

∑
α,α′

U ′
q ĉ

†
α,k+q ĉ

†
α′,k′−q ĉα′,k′ ĉα,k, (4)

Ĥe-ph = −
∑
k,q

(g∗âq ĉ
†
1,k+q ĉ2,k + H.c.). (5)

Here, g is the light-matter coupling constant under the dipole
approximation and

U ′
q ≡

{
Uq for q �= 0,

0 for q = 0 (6)

is the Coulomb interaction. Our model, thus, treats electrons,
holes (electrons in the valence band), and photons explic-
itly in contrast to the well-known approaches, such as the
Gross-Pitaevskii equations in the exciton-polariton community
[97–100], where the excitons are regarded as simple bosons.
This is because our interest includes, for example, the e-h BCS
phase where the phase space filling of electrons and holes
plays an important role. In this way, the semiconductor e-h-p
system can be described by the Hamiltonians in Eqs. (2)–(5)
if nonequilibrium effects are not taken into account.

ĤR and ĤSR in Eq. (1) are, however, required to consider
the pumping and loss of the system, as schematically shown
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in Fig. 1(b), and described as

ĤR =
∑
α,k

εB
α,kb̂

†
α,kb̂α,k +

∑
k

εB
ph,kΨ̂

†
k Ψ̂k, (7)

ĤSR =
∑
α,k,q

ςα,k(ĉ†α,kb̂α,q + H.c.)

+
∑
k,q

ζk(â†
kΨ̂q + H.c.). (8)

Here, b̂1,k and b̂2,k are fermionic annihilation operators of
the pumping baths for the conduction and valence bands,
respectively, and Ψ̂k is a bosonic annihilation operator of the
free-space vacuum fields. ςα,k and ζk are coupling constants
between the system and the respective reservoirs, which are
assumed to satisfy the standard approximations in quantum
optics [65,77]

γ ∼= γα,k
∼= π |ςα,k|2DB

α (ε), (9a)

κ ∼= κk
∼= π |ζk|2DB

ph(ε), (9b)

with the following definitions of the density of states:

DB
α (ε) ≡

∑
k′

δ
(
εB
α,k′ − ε

)
, (10a)

DB
ph(ε) ≡

∑
k′

δ
(
εB

ph,k′ − ε
)
. (10b)

We note that the thermalization rate of the e-h system and the
cavity photon loss rate will be described by 2γ and 2κ , as
seen in later discussion, while their dependence on the wave
number is neglected in Eq. (9) for simplicity [77].

Finally, we note that [Ĥ ,N̂ ] = 0 can be found when a total
excitation number is defined as

N̂ ≡ N̂S + N̂R, (11)

where

N̂S ≡
∑

k

{
1

2
(ĉ†1,k ĉ1,k − ĉ

†
2,k ĉ2,k) + â

†
kâk

}
, (12)

N̂R ≡
∑

k

{
1

2
(b̂†1,kb̂1,k − b̂

†
2,kb̂2,k) + Ψ̂

†
k Ψ̂k

}
. (13)

In the following, therefore, we redefine Ĥx − μN̂x as Ĥx with
x ∈ {S,R}. This means that the dynamics of certain physical
quantities is captured on a rotating frame with a frequency μ for
time-dependent problems, while a grand canonical ensemble
can be considered with a chemical potential μ if the system
is identified as being in (quasi)equilibrium phases [94]. As
a result, ε1(2),k and εph,k in Eq. (3) are replaced by ξ1(2),k ≡
ε1(2),k ∓ μ/2 and ξph,k ≡ εph,k − μ, respectively. In the same
manner, εB

1(2),k and εB
ph,k in Eq. (7) are replaced by ξB

1(2),k ≡
εB

1(2),k ∓ μ/2 and ξB
ph,k ≡ εB

ph,k − μ, respectively.

B. BCS theory and the MSBEs

Based on the Hamiltonians presented above, physical quan-
tities of our interest are the cavity photon amplitude a0(t) ≡
〈âk=0(t)〉, the polarization function pk(t) ≡ 〈ĉ†2,k(t)ĉ1,k(t)〉,

and the distribution functions of electrons in the conduc-
tion band n1,k(t) ≡ 〈ĉ†1,k(t)ĉ1,k(t)〉 and in the valence band

n2,k(t) ≡ 〈ĉ†2,k(t)ĉ2,k(t)〉. Here, 〈Ô(t)〉 denotes the expectation

value and is equivalent to Tr[Ôρ̂(t)] in the Schrödinger picture.
To study these physical quantities, one of the well-known
approaches is the mean-field approximation that reduces the
many-body problems to the single-particle one. Here, let us
shortly review such an approach [94] to make our discussion
and standpoint as clear as possible and to fix the notations.

In the mean-field approximation, certain operators Ôi

(i = 1,2, . . .) are described by Ôi = 〈Ôi〉 + δÔi and the
quadratic terms δÔiδÔj are neglected in the Hamiltonians. By
taking Ôi ∈ {âk,ĉ

†
2,k ĉ1,k′ ,ĉ

†
1,k ĉ1,k′ ,ĉ

†
2,k ĉ2,k′ }, with definitions

〈âk〉 ≡ δk,0a0, 〈ĉ†2,k ĉ1,k′ 〉 ≡ δk,k′pk, and 〈ĉ†α,k ĉα,k′ 〉 ≡ δk,k′nα,k,

we obtain the mean-field Hamiltonian Ĥ MF
S for the system

Hamiltonian ĤS as

Ĥ MF
S =

∑
k

(∑
α

ξ̃α,k ĉ
†
α,k ĉα,k − [Δkĉ

†
1,k ĉ2,k + H.c.]

)

+
∑

k

(ξph,kâ
†
kâk − [gpkâ

†
0 + g∗p∗

kâ0]). (14)

Here, Δk ≡ g∗a0 + ∑
k′ U

′
k′−kpk′ is the generalized Rabi

frequency describing the effect of forming the e-h pairs
[65,94,101] and ξ̃α,k ≡ ξα,k + ΣBGR

α,k denotes the single-
particle energy renormalized by the Coulomb interaction
ΣBGR

α,k ≡ − ∑
k′ U

′
k′−knα,k′ , which includes the band-gap

renormalization (BGR) in semiconductor physics. In Eq. (14),
constants are ignored because the following discussion is not
affected.

In the Schrödinger picture, therefore, the density operator of
the system ρ̂MF is determined by the mean-field Hamiltonian
Ĥ MF

S which includes ρ̂MF through the definition of the expec-
tation values. In this context, the self-consistency condition

〈Ôi〉 = Tr[Ôi ρ̂
MF(〈Ô1〉,〈Ô2〉, . . .)] (15)

should be satisfied. The BCS theory and the MSBEs for the
exciton-polariton systems can be derived from this type of
self-consistent equations, as described in the following.

1. BCS theory

By assuming that the exciton-polariton system is in equi-
librium at temperature T , the density operator ρ̂MF is given
by

ρ̂MF = ρ̂MF
eq ≡ 1

Z
exp

(−βĤ MF
S

)
, (16)

where Z ≡ Tr[exp(−βĤ MF
S )] and β ≡ 1/T . We note that,

in this case, μ is a given parameter corresponding to the
chemical potential, as described above. With the aid of the
e-h picture in Table I, by assuming εe,k = εh,k for simplicity,
it is straightforward to obtain the following self-consistent
equations from Eq. (15):

a0 =
∑

k′

g

ξph,0
pk′ , (17a)

pk = Δk

2Ek
tanh

(
βEk

2

)
, (17b)
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TABLE I. Definitions of the variables in the e-h picture.

Variable Definition Variable Definition

ne,k n1,k nh,k 1 − n2,−k

f B
e (ν) f B

1 (ν) f B
h (ν) 1 − f B

2 (−ν)
me mc mh −mv

εe,k ε1,k εh,k −ε2,k + ∑
k′ U ′

k′
ε̃e,k εe,k + ΣBGR

e,k ε̃h,k εh,k + ΣBGR
h,k

ξe,k εe,k − μ/2 ξh,k εh,k − μ/2
ξ̃e,k ξe,k + ΣBGR

e,k ξ̃h,k ξh,k + ΣBGR
h,k

ΣBGR
e,k − ∑

k′ U ′
k′−kne,k′ ΣBGR

h,k − ∑
k′ U ′

k′−knh,k′

μB
e μB

1 μB
h −μB

2

ne,k = nh,k = 1

2

{
1 − ξ̃+

eh,k

Ek
tanh

(
βEk

2

)}
, (17c)

by diagonalizing Ĥ MF
S through the Bogoliubov transformation

for ĉ1,k and ĉ2,k and a displacement of â0. This can be
performed because the Hilbert space of the first (second) line
in Eq. (14) is spanned solely by the electron (photon) degrees
of freedom. Here, we have defined

Ek ≡
√

(ξ̃+
eh,k)2 + |Δk|2,

with ξ̃±
eh,k ≡ (ξ̃e,k ± ξ̃h,k)/2 in the derivation.

By putting Eqs. (17a) and (17b) into the definition of Δk,
the equations for a0 and pk can be combined into one equation:

Δk =
∑

k′
U eff

k′,k
Δk′

2Ek′
tanh

(
βEk′

2

)
, (18)

which is formally equivalent to the gap equation of the BCS
theory for superconductors. In this context, Δk describes an
order parameter for the e-h pairing and U eff

k′,k ≡ |g|2/ξph,0 +
U ′

k′−k represents an effective attractive e-h interaction. As a
result, the equations are closed by Eqs. (17c) and (18) with the
unknown variables Δk, ne,k, and nh,k. Especially for T = 0,
this treatment is known to cover the equilibrium phases from
the BEC to the BCS states [17,78,79].

2. MSBEs

The BCS theory described above is, however, not appropri-
ate to treat nonequilibrium cooperative phenomena, such as the
SR, SF, and lasing, because of the excitation and thermalization
of the e-h system and the loss of photons from the microcavity.
In this context, the effect of reservoirs cannot be neglected. For
this reason, it is convenient to discuss the dynamics of the total
density operator ρ̂MF with the total mean-field Hamiltonian
Ĥ MF ≡ Ĥ MF

S + ĤSR + ĤR. Since i∂t ρ̂
MF = [Ĥ MF,ρ̂MF] in the

Schrödinger picture, a time derivative of Eq. (15) yields

i∂t 〈Ôi〉 = Tr
[[

Ôi,Ĥ
MF
S

]
ρ̂MF] + Tr[[Ôi,ĤSR]ρ̂MF], (19)

where [Ôi,ĤR] = 0 and Tr[ÂB̂] = Tr[B̂Â] are used. Substi-
tution of Eq. (14) into the first term, then, reads the MSBEs

∂ta0 = −iξph,0a0 + ig
∑

kpk − κa0, (20a)

∂tpk = −2iξ̃+
eh,kpk − iΔkNk − 2γ

(
pk − p0

k

)
, (20b)

∂tne/h,k = −2 Im[Δkp
∗
k] − 2γ

(
ne/h,k − n0

e/h,k

)
, (20c)

where Nk = ne,k + nh,k − 1 denotes the population inversion.
In the derivation, the second term in Eq. (19) has been replaced
by phenomenological relaxation terms proportional to γ and
κ and we have introduced

p0
k ≡ 0, n0

e/h,k ≡ fe/h,k. (21)

Here, fe/h,k ≡ [1 + exp{β(ε̃e/h,k − μB
e/h)}]−1 denotes the

Fermi distribution with the chemical potential μB
e/h of the

electron (hole) pumping bath, the approximation of which
is called the RTA [102]. Each relaxation term suggests that
the photon field a0 decays with a rate of κ , the distribution
function ne/h,k is driven to approach the Fermi distribution
fe/h,k, namely, the thermalization, and pk is reduced due to
the thermalization-induced dephasing.

Under the steady-state condition ∂t 〈Ôi〉 = 0, for example,
the lasing solution can be obtained by determining the
unknown variables a0, pk, ne/h,k, and μ in Eqs. (20) and (21).
We note that, in contrast to the BCS theory, μ is not a given
parameter but an unknown variable corresponding to the laser
frequency. This is equivalent to find an appropriate frequency
with which the lasing oscillation of a0 and pk seems to remain
stationary on the rotating frame.

C. Key results of our formalism

As seen in Sec. II B, the BCS theory and the MSBEs
are based on the common Hamiltonian with the same mean-
field approximation. However, the way of deriving the self-
consistent equations are different from each other. In the
case of the BCS theory, the density operator ρ̂MF is directly
described by Ĥ MF

S [Eq. (16)]. In contrast, in the case of
the MSBEs, Eq. (19) is alternatively used to introduce the
phenomenological relaxation terms. Here, we should notice
that any assumption is not used for ρ̂MF in Eq. (19), which
indicates that the MSBEs under the RTA may incorporate the
BCS theory at least in principle.

It would therefore be instructive to discuss an approach to
derive the BCS theory from the MSBEs under the RTA. It is,
however, apparent that the BCS theory cannot be reproduced
by the MSBEs when the relaxation term is completely
neglected (κ = γ = 0) because there is no term to drive the
system into equilibrium in the MSBEs [103]. In this context,
we should consider a physically natural limit of γ → 0+ after
κ → 0 in order to thermalize the system into equilibrium.
Unfortunately, however, the MSBEs under the RTA cannot
recover the BCS theory even by taking this limit. Obviously,
the phenomenological RTA is the cause of this failure.

Based on the generating functional approach (see Secs. V
and VI), our key result to this problem is to simply replace
Eq. (21) by

p0
k(t) = i

∫ ∞

−∞

dν

2π

[{
1 − f B

h (−ν)
}
GR

12,k(t ; ν)

−f B
e (ν)GR∗

21,k(t ; ν)
]
, (22a)

n0
e/h,k(t) =

∫ ∞

−∞

dν

2π
f B

e/h(ν)A11/22,k(t ; ±ν), (22b)

where f B
e/h(ν) = [1 + exp{β(ν − μB

e/h + μ/2)}]−1 denotes the
Fermi distribution of the electron (hole) pumping bath and
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GR
αα′,k(t ; ν) is an element of the 2 × 2 matrix which evolves

according to

G−1
0,kG

R
k (t ; ν) − GR

k (t ; ν)[G−1
0,k]†

= ΣR
k (t)GR

k (t ; ν) − GR
k (t ; ν)ΣR

k (t)

− i

2

{
∂tΣ

R
k (t)∂νG

R
k (t ; ν) + ∂νG

R
k (t ; ν)∂tΣ

R
k (t)

}
, (23)

where

G−1
0,k ≡

(
i
2∂t + ν − ξe,k 0

0 i
2∂t + ν + ξh,k

)
, (24a)

ΣR
k (t) ≡

(
ΣBGR

e,k − iγ −Δk

−Δ∗
k −ΣBGR

h,k − iγ

)
. (24b)

The time-dependent single-particle spectral function Aαα′,k is
then given by

Aαα′,k(t ; ν) ≡ i
[
GR

αα′,k(t ; ν) − GR∗
α′α,k(t ; ν)

]
, (25)

which couples to Eq. (20) through Eq. (22).
Although the equations still keep the form of MSBEs

[Eq. (20)], the important difference is that the renormalization
of the electronic band structures, caused by the e-h pairing
Δk, for example, is taken into account through Aαα′,k, or
equivalently GR

αα′,k. In this sense, the formalism generalizes
the MSBEs under the RTA. The frequency ν dependence in
Eq. (22) means that the correlations with the pumping baths,
or the past history of the system-bath interactions, influence on
the dynamics in the non-Markovian way. This is important to
describe the redistributions of the carriers in the renormalized
bands because the particle energies cannot be measured
instantaneously due to the uncertainty principle. In the next
section, we also see that the band renormalization and the
correlations are essential to study the cooperative phenomena
ranging from (quasi)equilibrium to nonequilibrium in a unified
way.

III. RELATIONSHIP OF THE COOPERATIVE
PHENOMENA

In the previous section, we have introduced our model
Hamiltonians and described our key results based on the
generating functional approach. Although we will postpone
our theoretical treatment and derivation to Secs. V and VI
for clarity, we alternatively show here that our formalism
is appropriate to discuss the cooperative phenomena, such
as the BEC, BCS, LASER , SR, and SF, in a unified way.
Then, as important examples, we study the BEC-BCS-LASER
crossover in the exciton-polariton systems [56–65,77,94] and
the connections between the Fermi-edge SF [33] and the e-h
BCS phase with several numerical calculations.

A. Connections to the BCS theory and the MSBEs

One of the fastest ways to understand our formalism is
to find the conditions to recover the BCS theory and the
MSBEs under the RTA. For this purpose, we first consider the
situation where the band renormalization caused by the e-h
pairing Δk is neglected. In this case, by considering only the

electron-electron (e-e) and hole-hole (h-h) Coulomb interac-
tions, the single-particle spectral function can be approximated
as

A11/22,k(t ; ν)  2πδ(ν ∓ ξ̃e/h,k), (26)

and, in the same accuracy, the off-diagonal element of GR
αα′,k

becomes

GR
12/21,k(t ; ν)  0, (27)

which are essentially the same approximation known as the
quasiparticle approximation [104]. As a result, we do not have
to solve Eq. (23) any more. By substituting Eqs. (26) and (27)
into Eq. (22), we obtain

p0
k = 0, n0

e/h,k = 1

1 + exp
{
β

(
ε̃e/h,k − μB

e/h

)} , (28)

which is now exactly identical to Eq. (21) and the standard
MSBEs under the RTA are recovered. In this context, in
the standard MSBEs describing the semiconductor lasers, the
effects of the e-h pairing are not taken into account in the
band renormalization. This would be one of the major reasons
why many authors believe that the e-h pairs are dissociated
under the standard lasing condition, based on the knowledge
under the nonlasing conditions [105]. This is, however, only
an approximation to simply describe the lasing physics in
semiconductors; Eqs. (26) and (27) are validated, for example,
when |Δk| � γ � T if the time dependence of the band
renormalization can be adiabatically eliminated, the situation
of which is similar to the gapless superconductor [106]. At
least in principle, therefore, there should be bound e-h pairs
whenever lasing [65] or, more generally, whenever the phase
symmetry is broken, as discussed later [107].

For the description of the SR, we note that the standard
time-dependent MSBEs can be used in the limit of large κ in
an analogous way to the two-level systems interacting with a
single-mode photon field, called the Dicke model [34–37]. In
the case of the SF, however, the initial condition [108] should
be determined by the quantum fluctuations or, equivalently,
the spontaneous emission to the photon field, which triggers
the spontaneous development of the macroscopic coherence;
see also Ref. [28] for a review. In this context, our formalism
is also available to discuss the SF if the initial condition is
determined correctly.

In contrast to the standard MSBEs, however, our treatment
can drive the system toward the quasiequilibrium state as well
as the nonequilibrium steady state (NESS), after a certain
period of time. To see this, we next consider the steady-state
condition t → ∞ by taking ∂t = 0 in Eqs. (20) and (24a). In
this situation, we can find the solution for Eq. (23) as

GR
k (ν) =

(
ν − ξ̃e,k + iγ Δk

Δ∗
k ν + ξ̃h,k + iγ

)−1

. (29)

As a result, the single-particle spectral function becomes

A11/22,k(ν) = 2|uk|2 γ

(ν − ξ̃−
eh,k ∓ Ek)2 + γ 2

+ 2|vk|2 γ

(ν − ξ̃−
eh,k ± Ek)2 + γ 2

, (30)
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where uk and vk are the Bogoliubov coefficients

uk ≡
√

1

2
+ ξ̃+

eh,k

2Ek
, vk ≡ eiθk

√
1

2
− ξ̃+

eh,k

2Ek
,

with θk ≡ arg(Δk). Now, Eqs. (20) and (22) with Eqs. (29)
and (30) [Eq. (25)] are the very equations shown in our
previous work [65,77]. Note that, under the steady-state
condition ∂t = 0, μ becomes one of the unknown variables
with which the temporal oscillation of the photon amplitude
a0 and polarization function pk seems to remain stationary on
the rotating frame, as described above. Hence, μ corresponds
to the frequency of the cavity photon amplitude a0, at
which the photoluminescence has a main peak (Sec. IV).
At the same time, a0 can be set to be real without loss of
generality.

Under the steady-state condition, the formalism now allows
us to clearly understand the standpoint of the BCS theory. For
this purpose, let us discuss the limit of equilibrium, namely,
γ → 0+ after κ → 0. By assuming εe,k = εh,k (me = mh)
with the charge neutrality μB

e = μB
h for simplicity, μ = μB ≡

μB
e + μB

h can be obtained in the vanishing limit of κ . This
means that the system reaches in chemical equilibrium with
the pumping baths because photons are not lost any more from
the microcavity. As a result, μ becomes a given parameter
equivalent to μB. Then, by taking the limit of γ → 0+,
the integrals in Eq. (22) can be performed analytically; the
BCS theory (Sec. II B 2) is then successfully recovered. In
this derivation, γ �= 0 is required to be canceled down even
though γ does not appear in the final form. This means
that thermalization is essential to recover the equilibrium
theory.

In a physical sense, however, this limit is trivial because
the nonequilibrium theory should recover the equilibrium
theory by taking the negligible limit of reservoirs. More
important situation is that the system can be identified as
being in equilibrium (quasiequilibrium) as long as the e-h
system is excited and thermalized even though photons are
continuously lost. In this context, we have revealed [65,77]
that the system can indeed be in quasiequilibrium if the
condition

(I) min[2Ek] � μB − μ + 2γ + 2T

is satisfied, where min[2Ek] denotes the minimum of 2Ek

when the wave number k is changed. From Eqs. (20) and
(22) with Eqs. (29) and (30), then, we can obtain the gap
equation [Eq. (18)] and the number equation [Eq. (17c)]. In
this case, the effective e-h attractive potential U eff

k′,k is replaced

by U
eff,κ
k′,k ≡ |g|2/(ξph,0 − iκ) + U ′

k′−k where the effect of κ is
included [110]. We remark that, in this situation, β and μ can be
regarded as the inverse temperature and the chemical potential
of the system, respectively, even though β and μ are originally
introduced as the inverse temperature of the pumping baths
and the frequency of the rotating frame, respectively [see below
Eq. (22)]. Also, min[2Ek] is equivalent to the minimum energy
required to break the e-h pairs in a similar context to the metal
superconductors. The equilibrium phases from the BEC to the
BCS states can then be covered by our formalism at least for
T = 0 [17,78,79].

However, the system can no longer be in quasiequilibrium
when the condition (I) is violated and nonequilibrium effect
becomes significant. The standard steady-state MSBEs are
then recovered in k regions satisfying

(II′) μB − μ � 2Ek + 2γ + 2T ,

which can be found whenever

(II) μB − μ � min[2Ek] + 2γ + 2T

is fulfilled [110]. The system thus enters into the lasing
regime in the NESS [111] and the physical meaning of μ

changes into the oscillating frequency of the laser action. In
this context, the formalism can naturally describe the change
from the quasiequilibrium (the BEC and BCS phases) to
nonequilibrium phenomena (lasing) without a priori assuming
the quasiequilibrium and nonequilibrium situations [112].

It is now instructive to note that the single-particle spectral
function A11/22,k(ν) in Eq. (30) has remarkable similarities to
the superconductivities in the equilibrium statistical theory [2].
However, if the unknown variables are determined by Eqs. (20)
and (22), Eq. (30) can be used even in the lasing regime because
only the steady-state assumption (∂t = 0) is required in the
derivation. It is then obvious that the pairing gaps of min[2Ek]
are opened around ±μ/2 in the renormalized CB and VB
structures in a very similar way to the superconductivities.
In the case of the conduction band, for example, A11,k(ν)
has peaks around ν = ξ̃−

eh,k ± Ek and the difference of the
two peaks becomes 2Ek in energy at fixed k; the gap
therefore corresponds to min[2Ek], as typically shown in
Fig. 2(a).

The mechanism of opening the gaps is closely related to the
Rabi splitting or the Mollow triplet in resonance fluorescence
[26,95,101,102,109] although the phase symmetry is sponta-
neously broken in our case; see also Refs. [113,114] for the
Mollow triplet under the incoherent pumping. Without the e-h
pairing effect, the CB and VB structures are represented by the
solid lines in the left side of Fig. 2(b) when nph photons in the
cavity. Here, the CB and VB are renormalized by the e-e and
h-h Coulomb interactions, as already seen in Eq. (26), and the
total energy is shifted by μnph from Fig. 1. The total energy
can further be shifted by ±μ when the number of photons is
changed by one, as illustrated by the dotted and dashed lines.
These energy bands are not mixed with each other because
the total Hamiltonian Ĥ commutes with the total excitation
number N̂ . However, this is not the case once the phase
symmetry is broken or, equivalently, the photon amplitude is
developed. As a result, the pairing gaps are inherently opened
[the right side of Fig. 2(b)] whenever the photon amplitude
a0 has a nonzero value, regardless of whether the system is
in quasiequilibrium. In other words, there must be e-h pairs
whenever the symmetry is broken, at least in principle. This
is an important result because this means that (light-induced)
bound e-h pairs should exist even in the standard lasing regime
in contrast to earlier expectations [65].

For later convenience, we further point out that, under the
steady-state assumption, Eqs. (20) and (22) with Eqs. (29) and
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FIG. 2. (Color online) Schematic illustration of the typical band renormalization. (a) Typical renormalized CB and VB structures obtained
from the single-particle spectral functions A11,k(ν) and A22,k(ν) in Eq. (30), respectively. The energies are shifted by ±μ/2 to recover the
laboratory frame. The gray solid lines show the band structures without the e-h pairing effect Δk. One can find remarkable similarities to the
excitation spectrum in the BCS theory for the metal superconductors. (b) The mechanism of opening the gaps. Without the e-h paring, the CB
and VB structures with nph photons are shown by the solid lines (left). These bands are further shifted by ±μ in energy when the number of
photons are incremented (decremented) by one, as indicated by the dotted and dashed lines. The gaps are then opened in the same manner as
the Rabi splitting or the Mollow triplet in resonance fluorescence [26,95,101,102,109] when the phase symmetry is broken (right). Thus, the
BCS theory has close relationship to the Mollow triplet in semiconductors. For simplicity, εe,k = εh,k is assumed with the charge neutrality
μB

e = μB
h . E∗

g ≡ Eg + ΣBGR
e,k=0 + ΣBGR

h,k=0 is the Coulomb-renormalized band-gap energy.

(30) can be rewritten as

Δk =
∑

k′
U

eff,κ
k′,k

∫ ∞

−∞

dν

2π
f SS

eh,k′(ν)A12,k′(ν), (31a)

ne/h,k =
∫ ∞

−∞

dν

2π
f SS

e/h,k(ν)A11/22,k(±ν), (31b)

where f SS
eh,k(ν) and f SS

e/h,k(ν) are defined as

f SS
eh,k(ν) ≡ 1

2

{
f B

e (ν) − f B
h (−ν)

}

+ 1

2

{
f B

e (ν) + f B
h (−ν) − 1

} ξ̃+
eh,k + iγ

ν − ξ̃−
eh,k

, (32a)

f SS
e/h,k(ν) ≡ f B

e/h(ν)ηe/h,k(ν)

+ {
1 − f B

h/e(−ν)
}{1 − ηe/h,k(ν)}, (32b)

respectively; see also Appendix A for the derivation. Equation
(31) is formally analogous to the BCS gap equation and the
number equation [Eqs. (18) and (17c)] rather than the MSBEs
under the RTA. In particular, f SS

e/h,k(ν) corresponds to the
effective steady-state distribution function in which

ηe/h,k(ν) ≡ (ν + ξ̃h/e,k)2 + γ 2

(ν + ξ̃h/e,k)2 + γ 2 + |Δk|2
(33)

denotes a weighting factor (0 < ηe/h,k(ν) � 1) due to the
mixture of the conduction and valence bands. Note that
ηe/h,k(ν) = 1 and f SS

e/h,k(ν) = f B
e/h(ν) when there is no e-h

pairing effect (Δk = 0). However, Eqs. (31b), (32b), and (33)

mean that ne,k and nh,k are also influenced by the hole and
electron bath distributions [f B

h (−ν) and f B
e (−ν)], respectively,

when the band mixing occurs (Δk �= 0).

B. BEC-BCS-LASER crossover

To gain further insight into the relationship among the
cooperative phenomena, we now discuss numerical results
calculated under the steady-state condition. In the calculations,
the k dependence of Δk is eliminated by using a contact
potential U ′

q = U with the replacement of
∑

k → S
2π

∫ kc

0 dk k

[115]. Here, S is the area of the system and kc is the cutoff wave
number. For simplicity, me = mh is also assumed with the
charge neutrality μB

e = μB
h . In this context, our calculation is

not quantitative but qualitative even though the parameters are
taken as realistic as possible; unless otherwise stated, we use
the parameters shown in Table II. In this situation, the exciton

TABLE II. Parameters in the calculation. m0 denotes the electron
mass in vacuum.

Quantity Value Unit

me 0.068 m0

γ 4.0 × 10−3 eV
U 2.66 × 10−10 eV
g 6.29 × 10−7 eV
S 100 × 100 (μm)2

kc 1.36 × 109 m−1

T 10 K
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FIG. 3. (Color online) Phase diagrams for (a) κ = 0.1 μeV,
(b) κ = 100 μeV, and (c) κ = 100 meV. Red and blue colors indicate
that the quasiequilibrium condition (I) and the lasing condition (II)
are satisfied, respectively, while green colors indicate that neither of
them is satisfied. A condition of μB = Ecav is indicated by the dotted
line; the influence of the cavity becomes large when μB goes over the
line. We note that ELP in the horizontal axis depends on the cavity
resonance Ecav.

level Eex is formed at 10 meV below Eg (Eex = Eg − 10 meV)
and the lower polariton (LP) level ELP is formed at 20 meV
below Eg (ELP = Eg − 20 meV = Eex − 10 meV) under
the resonant condition Ecav = Eex [110]. The Rabi splitting
(≡ ERabi) is therefore 20 meV. To see the nonequilibrium
effects, κ = 0.1 μeV, 100 μeV, and 100 meV are used for
comparison but we note that κ = 100 μeV is a reasonable
value in current experiments [65,96].

Figure 3 shows the phase diagrams calculated by changing
the detuning Ecav − Eex and the chemical potential of the
pumping baths μB, the pumping parameter. The landscape
of the phase diagram is significantly modified by the rate of
the cavity photon loss κ . For the case with κ = 0.1 μeV in

Fig. 3(a), most of the area is dominated by quasiequilibrium
phases satisfying the condition (I) due to the low rate of
the cavity photon loss and, as a result, one finds a variety
of distinct BEC and BCS phases smoothly connected with
each other. In contrast, for the case with κ = 100 μeV in
Fig. 3(b), there arises the lasing phase satisfying the condition
(II) and the whole area of the ordered phases is decreased. We
note that ERabi � κ holds in Figs. 3(a) and 3(b). However,
when κ becomes sufficiently large (κ � ERabi) in Fig. 3(c),
the quasiequilibrium phases again spread over the large area
despite the increased photon loss. The emergence of the
quasiequilibrium phases is seemingly counterintuitive but the
situation is quite similar to the Purcell effect [26,116,117]
known for a two-level emitter inside a single-mode cavity; the
emission rate of the two-level emitter is decreased when the
cavity photon loss is increased in the weak coupling regime,
the physics of which is intuitively the same as the impedance
matching. Hence, there exists an optimal κ to maximize the
decay rate [118] and, in the ultimate limit of κ = ∞, the effect
of the cavity loss inversely becomes negligible. In other words,
κ = ∞ is identical to the situation that the cavity is practically
nonexistent. As a result, the quasiequilibrium phases dominate
the phase diagram when κ becomes sufficiently large. This
situation is, in turn, appropriate to study the SF under the
continuous pumping, as we will see later, because the cavity
plays no essential role.

In the low-density regime with ERabi � κ [Figs. 3(a)
and 3(b)], the behaviors are roughly understood from the
photonic and excitonic components of the LP state [52,67].
In the positively detuned regime, the excitonic component is
increased in the LP state and the photonic component becomes
negligible in the limit of Ecav − Eex � ERabi. Around the area
labeled by the exciton BEC in Figs. 3(a) and 3(b), therefore,
the ordered phase is insensitive to the value of the detuning
and the cavity photon loss. In the negatively detuned regime, in
contrast, the LP state is dominated by the photonic component
in the limit of −Ecav + Eex � ERabi. As a result, the system is
susceptible to the photonic effect around the area labeled by the
photon BEC [68] in Fig. 3(a) and the ordered phase disappears
in the corresponding area in Fig. 3(b) due to the increased
cavity photon loss. For the case with κ � ERabi, on the other
hand, the normal-mode splitting does not take place. However,
the system still experiences the photonic effect weakly when
|Ecav − Eex| � κ in the low-density regime. As a result, in
the positively detuned regime, the boundary with the normal
phase depends on the detuning in Fig. 3(c), while it is almost
constant in Figs. 3(a) and 3(b).

In the high-density regime, however, the pictures of the
excitons are not available any more because the phase
space filling of the e-h system becomes non-negligible. In
this situation, the relation between μB and the bare cavity
resonance Ecav is important to discuss the photonic effect in
the case with the positive detuning. For μB � Ecav, there is no
carrier around the cavity resonance because the cavity is far
above the Fermi edge of the e-h system if the broadening effect
of κ is neglected. The system is therefore still insensitive to the
photonic effect, as seen in the area of the e-h BCS in Figs. 3(a)
and 3(b). As the pumping is further increased, however, the
photonic effect would be discernible for μB  Ecav (indicated
by the dotted lines) and become prominent for μB � Ecav.
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FIG. 4. (Color online) The distribution functions ne,k (solid lines) and the polarization functions |pk| (dotted lines) for various values of
μB at the detuning of +100, 0, and −100 meV, indicated by the arrows in Fig. 3. At the detuning of +100 meV, μB − ELP = 5 meV for
panels (a) and (i), 15 meV for panels (b) and (j), 90 meV for panels (c) and (k), and 400 meV for panels (d) and (l). For the zero detuning
case, μB − ELP = 3 meV for panels (e) and (m), 100 meV for panels (f) and (n), and 400 meV for panel (o). Finally, when the detuning is
−100 meV, μB − ELP = 10 meV for panel (g) and 400 meV for panels (h) and (p). Insets show the parameters corresponding to the panels
(a)–(p) in the phase diagrams. kF and kHB denote the momentum of the Fermi edge and the kinetic hole burning, respectively. In our calculations,
kF is introduced by kF = √

2mr(μB − E∗
g ) with m−1

r ≡ m−1
e + m−1

h .

These are given by the change from the e-h polariton BCS
to the photonic polariton BEC [78,119] [Fig. 3(a)] and to the
lasing phase [Fig. 3(b)]. However, when κ is sufficiently large,
the photonic effect becomes week due to the Purcell-type effect
and the high-density regime is basically in the e-h BCS phase,
as in Fig. 3(c).

We can thus give rough explanations for the phase diagrams
even without studying the details of the variables, such as a0,
pk, ne/h,k, and μ. However, to identify the variety of the BEC
and BCS phases, we need more careful discussions with clear
criteria to distinguish the respective phases, for example, the
photon BEC and the photonic polariton BEC. For this purpose,
in the followings, we focus on the phases with κ = 0.1 and
100 μeV for the moment to keep our discussion as simple as
possible.

Figure 4 shows the distribution function ne,k and the
polarization function |pk| obtained for various values of μB

at the detuning of +100, 0, and −100 meV, indicated by the
arrows in Figs. 3(a) and 3(b). The lasing phase is then easily
distinguished from the other phases when the kinetic hole
burning (the dip in the distribution function) is seen [Figs. 4(l),
4(o), and 4(p)]. In contrast, the BCS phase can be distinguished
by the presence of a peak in pk around the Fermi momentum
kF resulting from the phase space filling effect [Figs. 4(b),
4(c), 4(j), and 4(k)], whereas pk and ne,k are slowly decreased

as a function of k ≡ |k| in the BEC phase [Figs. 4(a), 4(d),
4(e)–4(h), 4(i), and 4(m)]. In particular, in Figs. 4(d), 4(f), and
4(h), the plateau of pk  0.5 is known as a signature for the
photonic polariton BEC [78].

The photonic effect can then be estimated from the photonic
fraction Fph, the ratio of photons to the effective excitation
density contributing to the ordered phase; see also Appendix
B for details. At the detuning of +100 meV with κ = 0.1 μeV,
Fph [the dotted line in Fig. 5(a)] is nearly zero for μB − ELP �
70 meV but grows rapidly around μB − ELP  100 meV, and
then, Fph  1.0 for larger pumping. We note that μB − ELP 
100 meV is almost identical to the dotted line in Fig. 3(a)
at +100 meV detuning. These results indeed reveal that the
photonic effect is negligible in the low-density regime but is
discernible for μB  Ecav and finally becomes dominant for
μB � Ecav with increasing the pumping, as described above.
As a result, Figs. 4(a)–4(d) are identified as the exciton BEC
[Fph  0.0], e-h BCS [Fph  0.0], e-h polariton BCS [Fph 
0.5], and photonic polariton BEC [Fph  1.0], respectively.
The e-h polariton BCS state has been explicitly distinguished
from the e-h BCS phase because the e-h attraction is enhanced
by the cavity photons to form the e-h Cooper pairs [78,79].
This identification is also evidenced by the behavior of
μ (dotted line) in Fig. 5(c), where μ  μB  Eex for the
exciton BEC, μ  μB for the e-h BCS and e-h polariton BCS

115129-10



GENERATING FUNCTIONAL APPROACH FOR . . . PHYSICAL REVIEW B 91, 115129 (2015)

0

5

10

−10

−5

10−1 100 101 102

0.0
0.2
0.4
0.6
0.8
1.0

0

50

100

−100

−50

Pumping : μB − ELP (meV)

μ
− 
E e

x
(m

eV
)

Ph
ot

on
ic

 fr
ac

tio
n 

: F
ph

(c)

(a)

(d)

(b)

10−1 100 101 102

κ = 0.1 μeV κ = 100 μeV

1011

1010

109

108

107

106

105

104

103

In
te

ns
ity

 : 
|a

0|2 (g) (h)

103

102

101

m
in

[2
E k

] (
m

eV
) (e) (f)

FIG. 5. (Color online) Numerical results for the photonic fraction
Fph, the frequency μ, the gap energy min[2Ek], and the coherent
number of photons in the cavity |a0|2. The detuning is +100 meV
(dotted lines), 0 meV (solid lines), and −100 meV (dashed lines), as
indicated by the arrows in Fig. 3. Left panels are for κ = 0.1 μeV
and right panels are for κ = 100 μeV.

phases (not shown), and μ  Ecav for the photonic polariton
BEC.

It is here interesting to notice that μ is not necessarily in the
vicinity of the cavity resonance even though μ can be regarded
as the frequency of the cavity photon amplitude under the
steady-state assumption. This is intuitively equivalent to the
classical forced oscillation of the cavity mode; in the case of
the exciton BEC (e-h BCS state), for example, the coherence is
developed at the exciton resonance (at the Fermi level) which
in turn drives the cavity photon amplitude forcibly, resulting
in μ  Eex (μ  μB).

For κ = 100 μeV, essentially the same identification can
be performed for Figs. 4(i)–4(k) with the results shown in
Figs. 5(b) and 5(d). The similarities between Figs. 4(i)–4(k)
and 4(a)–4(c) directly shows that the ordered phases become
insensitive to the photonic effect when μB � Ecav in the
positively detuned regime.

In the case of zero detuning Ecav = Eex, the situation
is slightly different in particular in the low-density regime;
Fph ∼ 0.5 can be seen immediately after the ordered phase is
developed [Figs. 5(a) and 5(b); solid lines]. At the same time,
μ  ELP (μ − Eex  −10 meV) is observed [Figs. 5(c) and

5(d); solid lines]. In this context, it is reasonable to identify the
ordered phase [Figs. 4(e) and 4(m)] as the exciton-polariton
BEC. With the increased pumping for κ = 0.1 μeV, however,
Fph  1.0 [Fig. 5(a)] is again found with μ  Ecav [Fig. 5(c)].
Figure 4(f) is thus identical to the photonic polariton BEC.
For κ = 100 μeV, in contrast, the system enters into the lasing
phase as already revealed by the kinetic hole burning [Fig. 4(o)]
through the crossover regime [Fig. 4(n)].

Finally, when the detuning is −100 meV, for κ = 0.1
μeV, Fph  1.0 is almost always maintained with μ  Ecav

[Figs. 5(a) and 5(c); dashed lines]. Figure 4(h) is there-
fore the photonic polariton BEC as also evidenced by the
plateau structure of pk  0.5. However, in Fig. 4(g), the
plateau cannot be found even with Fph  1.0 and μ  Ecav.
We can therefore understand this phase as a kind of the
photon BEC because the LP state is dominated by the photonic
component. We note that the photon BEC in the present case
is given by the quasiequilibrium for the whole e-h-p system
in the negligible limit of the e-h system and indeed covered
by the original sense of the photon BEC [68], in which only
the photon system is in quasiequilibrium and the state of the
medium is not taken care. For κ = 100 μeV, in contrast, the
system directly goes into the lasing phase when the pumping
is increased, as evidenced by Fig. 4(p). This is because, in the
negatively detuned regime, the thermalization speed can easily
become insufficient to recover the equilibrium phase due to the
increased photonic component [67].

In this way, all of the distinct phases can be identified
definitely in Figs. 3(a) and 3(b). The same identification
procedure is applicable to the case with κ = 100 meV
[Fig. 3(c)]. However, the gap energy min[2Ek], the coherent
number of photons inside the cavity |a0|2, and the renormalized
band structure A11/22,k(ν) provide further insight into the
underlying physics.

To see this, let us first focus on the case with κ =
0.1 μeV. For the detuning of +100 meV, min[2Ek] is less than
10 meV when μB − ELP � 4 meV [Fig. 5(e); dotted line].
The thermalization rate 2γ (= 8 meV; Table II), therefore,
becomes the same order as the gap energy min[2Ek] in this
regime. This means that the thermalization-induced dephasing
is significant and, as a result, the nonequilibrium phase appears
in Fig. 3(a). By increasing the pumping, however, min[2Ek] in-
creases gradually and grows rapidly at μB − ELP  100 meV.
At the same time, |a0|2 shows the two-threshold behavior
[Fig. 5(g); dotted line]. These results indicate that the change
into the photonic phase Fph  1.0 indeed enhances the e-h
attraction notably and can cause the two-threshold behavior
[65].

In the renormalized band structures [Figs. 6(a)–6(d)], on
the other hand, the gap is opened around k  0 for the exciton
BEC when the pumping is small [Fig. 6(a)] but it moves to kF

for the e-h BCS and e-h polariton BCS phases by increasing
the pumping [Figs. 6(b) and 6(c)]. These results are consistent
with the standard picture of the BCS-BEC crossover [17].
With increasing the pumping further, the plateau is formed
when the photonic polariton BEC is achieved [Fig. 6(d)].
Note that the k region of the plateau corresponds to that in
Fig. 4(d). In this context, we can now understand that the
plateau of pk  0.5 originates from the enhanced gap energy
due to Fph  1.0, namely, the large gap energy compared with
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|μ − E∗
g |, as schematically illustrated in the right upper inset of

Fig. 6.
We remark that qualitatively similar features, i.e., the rapid

enhancement of min[2Ek], the two-threshold behavior of |a0|2,
and the plateau structure, can still be found in the resonant
case in Figs. 5(e) and 5(g) (solid lines) and in Figs. 6(e)
and 6(f) even though the clarity of the threshold behavior
is reduced. However, in the case of −100 meV detuning, only
the monotonic increase of min[2Ek] and |a0|2 can be seen in
Figs. 5(e) and 5(g); as a consequence, there is only a single
threshold for |a0|2. This is because Fph  1.0 is satisfied almost
from the beginning of the ordered phase. These results also
support the above-described interpretation that the increase of
Fph can cause the two-threshold behavior.

Focusing next on the case with κ = 100 μeV, at the
detuning of +100 meV, Figs. 6(i)–6(k) are quite similar to
Figs. 6(a)–6(c) because the ordered phases are insensitive
to the change of κ for μB � Ecav in the positively detuned
regime. By increasing μB, however, the system enters into the
lasing phase with the multiple thresholdlike behavior of |a0|2
(dotted line) in Fig. 5(h). In this situation, the renormalized
CB structure [Fig. 6(l)] is quite different from Fig. 6(d) but has
a formal similarity to the BCS phases, for example, Fig. 6(k).
The major difference is, however, that the paring gap is opened
around the momentum of the kinetic hole burning kHB in

the lasing phase, whereas the gap is around kF in the BCS
phase; see also the right lower inset of Fig. 6. This means
that the (light-induced) e-h pairs are formed around the laser
frequency under the lasing condition, while the e-h Cooper
pairs are formed around the Fermi energy. Even at different
detuning, the same picture holds for Figs. 6(o) and 6(p) though
kHB is located at different position. Our theory thus predicts
the existence of the bound e-h pairs even in the lasing phase
in contrast to earlier expectations [57,59,62–64]. However,
we note that the e-h pair breaking energy is reduced by the
crossover into the lasing phase, as shown in Fig. 5(f), dotted
and solid lines. Such a “lasing gap” has not been observed
experimentally but, at least in principle, can be measured in
the optical gain spectrum because it is strongly affected by the
renormalized band structure in general [65,94]; the details will
be discussed later (Sec. IV).

It is now important to notice that the two- or multiple-
threshold behavior found in Fig. 5(h) (solid and dotted lines)
cannot be explained solely by the increase of Fph because
Fph is decreased after the crossover into the lasing phase
[Fig. 5(b)]. This means that there is another mechanism to
cause the thresholdlike behavior, explained as follows. In the
quasiequilibrium phases, the quasiequilibrium condition (I),
min[2Ek] � μB − μ, is satisfied when γ and T are neglected
for simplicity. This condition is equivalent to the situation in
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which μB stays inside the energy gaps min[2Ek] located at
±μ/2 [cf. Fig. 2(a)]. As a result, the pumping is inherently
blocked by the gaps. In this sense, the system is protected by
the gaps from the chemical nonequilibrium effect. In contrast,
the lasing condition (II), μB − μ � min[2Ek], indicates that
μB goes beyond the energy gaps, as shown in the right lower
inset of Fig. 6. This means that electrons and holes above the
gaps are supplied suddenly when the system changes into the
lasing phase and the rapid increase of photons is expected.
This mechanism can also cause the thresholdlike behavior
even without the increase of the photonic fraction Fph and the
combination of the two mechanisms can successfully explain
the two or multiple thresholds in Fig. 5(h). In the case of zero
detuning, in particular, the two-threshold behavior as well as
the blue-shift of μ [Figs. 5(h) and 5(d); solid lines] are in good
qualitative agreement with experiments [65].

We have thus described the fundamental relationship of
the cooperative phenomena under the steady-state condition,
that is, the BEC-BCS-LASER crossover. We have shown that
the phase diagram on the detuning and the pumping strength
plane exhibits a variety of distinct ordered phase depending
on the cavity photon loss. The individual mechanisms of
developing such phases and the criteria to distinguish them
are clearly addressed by studying the physical quantities of
|a0|2, pk, ne,k, and μ as well as the renormalized band
structure through the single-particle spectral function Aαα,k(ν).
As another application of our theory, in the next subsection, we
will discuss the dynamics of the system under the continuous
pumping to study the connections between the Fermi-edge SF
[33] and the other phases, in particular.

C. Fermi-edge SF and the e-h BCS phase

We now turn to the study of the Fermi-edge SF recently
found in the quantum-degenerate high-density e-h system
[33], in which the macroscopic coherence is spontaneously
developed near the Fermi edge due to the Coulomb-induced
many-body effects. As a result, the experiment showed the
coherent pulsed radiation of photons or, equivalently, the
SF, at the Fermi level. However, in our view, the physics
seems closely related to the e-h BCS phase even though the
Fermi-edge SF is a time-dependent phenomenon. It is also
worth noting that, to the best of our knowledge, there is no
conclusive evidence for the presence of the e-h BCS phase in
the past experiments. In this context, it is of great importance
to understand the relationship between the Fermi-edge SF and
the the e-h BCS phase.

For this purpose, we have to directly solve the time-
dependent equations [Eq. (20) with Eqs. (22)–(25)], in princi-
ple. For the reduction of numerical cost, however, we assume
that the dynamics of the band renormalization [Eqs. (23) and
(24)] can be eliminated adiabatically by Eqs. (29) and (30) with
the steady-state value of μ. We note that μ can be set to any
value in principle because, for the time-dependent problems, μ
is merely the frequency of the rotating frame. However, for the
adiabatic elimination, it is reasonable to use the steady-state
value of μ, if exists, to recover the steady state. At the same
time, the cavity photon amplitude a0(t) now has to be treated
as a complex variable.

In order to discuss the Fermi-edge SF, we further assume
that, at t = 0, the distribution function is described by
the Fermi distribution ne/h,k = 1/[1 + exp{β(ε̃e/h,k − μB

e/h)}]
with no polarization function pk = 0 [cf. Eq. (28)]. However,
instead of a0 = 0, the photon amplitude is initially set to a0 = 1
to ad hoc trigger the development of the macroscopic coher-
ence. This indicates that the SF starts from the photon number
of the order of vacuum fluctuation [28] or, equivalently, the
spontaneous emission event. However, we remark that the
statistical feature of the initial condition is still a nontrivial
problem in semiconductor systems, in contrast to the two-level
systems.

With these assumptions, the evolution of the system is
calculated under the continuous pumping. Figure 7(a) shows
the time dependence of the coherent photon number |a0(t)|2
and the gap energy min[2Ek(t)] normalized by their steady-
state values for κ = 100 μeV. The parameters are the same as
in Figure 4(k) and, therefore, the evolution finally recovers the
e-h polariton BCS phase in the steady state. We can see that
|a0(t)|2 and min[2Ek(t)] exponentially grow at early times
and then show oscillatory behaviors with approaching their
steady-state values. In this situation, however, κ = 100 μeV
is much smaller than γ = 4 meV, namely κ � γ , which is in
the opposite limit of κ � γ for the SF [35]. This means that
the cavity has non-negligible effect on the dynamics and, as a
result, the (Fermi-edge) SF is not allowed in Fig. 7(a). For this
reason, we categorize the oscillation as a kind of the relaxation
oscillation.

To satisfy the necessary condition κ � γ , in Fig. 7(b), κ is
increased up to 100 meV with the other parameters unchanged.
In this situation, the cavity effect becomes sufficiently weak
or negligible indeed in the corresponding steady-state phase
diagram [Fig. 3(c)] and the parameters are now appropriate
to discuss the superfluorescent emission. Compared with
Fig. 7(a), in Fig. 7(b), the visibility of the oscillation is reduced
for |a0(t)|2 but the (normalized) peak value is increased with
the exponential growth. As a result, the behavior becomes
similar to the ringing of the SF known for the two-level
systems [28] under the continuous pumping [120]. Analogous
qualitative behavior can also be seen for min[2Ek(t)]. In
the distribution function [Fig. 8(a)], the major modification
can be found around the Fermi momentum, whereas in
the polarization function [Fig. 8(b)], a peaked structure is
developed around the same momentum with a dip. ne,k and
pk then approach the profiles of the e-h BCS phase as the
steady state. The signature of the kinetic hole burning is also
found around the Fermi momentum at 0.270 ps. This means
that the carriers are excessively expended at the Fermi edge
even without the cavity effect: the signature of the SF. The
Fermi-edge SF thus appears in our calculation and converges
toward the e-h BCS phase. The Fermi-edge SF can therefore
be seen as a precursor of the e-h BCS phase. This result is
striking by considering the current situation of experiments;
the e-h BCS phase is not yet evidenced but the Fermi-edge
SF is recently demonstrated by Kim et al. [33]. Our theory
clearly predicts that the e-h BCS phase can be observed after
the Fermi-edge SF, the result of which could not be obtained
by the other past theories. We remark that the Fermi-edge SF
already has the macroscopic order through the spontaneous
symmetry breaking and, therefore, the pairing gaps are opened,
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SF, κ � γ .

as evidenced by the nonzero value of min[2Ek]. In this context,
the Fermi-edge SF should not be confused with the preformed
e-h Cooper pairs [24], in which such an order is not developed.

However, we note that the ringing behavior is not neces-
sarily observed in the evolution toward the e-h BCS phase
when the pumping is reduced, as shown in Fig. 7(c). The
delay time is also increased because it takes more time to form
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macroscopic coherence as the Fermi edge is decreased from
Ecav. In this case, ne,k and pk smoothly turn into the profiles
of the e-h BCS phase in Figs. 8(c) and 8(d). In particular, the
absence of the temporal kinetic hole burning indicates that the
thermalization speed becomes relatively large to compensate
the lost carriers instantaneously. In a narrow sense, therefore,
the evolution in Fig. 7(c) would not be the SF because the above
description means that the photon loss rate becomes effectively
smaller than the thermalization rate, the very opposite limit
of the ordinary SF. We remark, however, that the evolution
largely shares essential physics: the spontaneous process of
developing macroscopic coherence as a result of quantum
fluctuation. The emission property naturally fluctuates from
shot to shot also in this case.

The important point here is that, in both cases [Figs. 7(b)
and 7(c)], the system eventually evolves toward the e-h BCS
state after the spontaneous phase symmetry breaking. In this
context, we do not rule out the Fermi-edge SF experimentally
demonstrated in Ref. [33] is already in the e-h BCS phase
because the time scale of the pulsed emission is one order of
magnitude larger than the presented results even though our
calculations do not purpose quantitative discussions. These
results strongly encourage the experimental discovery of the
e-h BCS phase in the context of the Fermi-edge SF. In a
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theoretical viewpoint, we also stress that the results presented
above are the physics elucidated only by considering the
macroscopic coherence in a unified way. To our knowledge,
there has been no theoretical framework that has the ability to
address the relationship between the SF and the BCS phase in
the past.

IV. SPECTRAL PROPERTIES

We have thus explained the relationship of the cooperative
phenomena. However, the properties on the emission spectrum
and the gain-absorption spectrum are still unclear. In this
section, by assuming the steady state for simplicity, we
first explain the formalism briefly to calculate the spectral
properties (Secs. IV A–IV B). We then show several numerical
results for the BEC-BCS-LASER crossover in Sec. IV C.

A. Emission spectrum

According to the standard quantum optics [25–27], the
steady-state emission spectrum observed outside is defined
by the Fourier transformation of the correlation function

SSS(ω,q) ≡ κ

π
lim
t→∞

∫
dτeiωτ 〈â†

q(t)âq(t + τ )〉, (34)

the definition of which can be rewritten as

SSS(ω,q) = Scoh
SS (ω,q) + S inc

SS (ω,q), (35)

where Scoh
SS (ω,q) and S inc

SS (ω,q) denote, respectively, the
coherent and incoherent parts of the spectrum:

Scoh
SS (ω,q) ≡ 2κ lim

t→∞ |a0(t)|2δq,0δ(ω), (36a)

S inc
SS (ω,q) ≡ κ

π
lim
t→∞

∫
dτ eiωτ 〈Δâ†

q(t)Δâq(t + τ )〉

= i
κ

π
lim
t→∞ D<

11,q(t ; ω). (36b)

Here, we have used 〈âq(t)〉 = δq,0a0 and Δâq(t) ≡ âq(t) −
〈âq(t)〉. D<

α1α2,q(t ; ν) is the Wigner representation of the lesser
photon GF, which will be introduced in Sec. V. αi ∈ {1,2}
denotes the index for the Nambu space of the photon GF. In
the RAK basis, S inc

SS (ω,q) becomes

S inc
SS (ω,q) = i

κ

2π

[
DK

11,q(ω) − DR
11,q(ω) + DA

11,q(ω)
]
, (37)

where we have dropped the argument t because we assume
the steady state throughout this section. Equation (36a) means
that a delta function peak is formed at ω = 0 when |a0|2 �= 0
in the same manner as the Mollow triplet [26,27]. Note that the
origin of ω corresponds to μ because we are on the rotating
frame. In contrast, Eq. (37) means that the incoherent part of
the emission spectrum can be calculated if the photon GFs
are obtained. We do not show the way to estimate the photon
GFs here. However, we emphasize that the partially dressed
two-particle GF K̃0,C plays an essential role to calculate the
Dyson equation for the photon GFs (Sec. V); see also Appendix
G for the estimation of the partially dressed two-particle GFs.

B. Gain-absorption spectrum

Before proceeding further, let us turn to the gain-absorption
spectrum. For this purpose, we consider a situation where a
weak probe field F (t) is applied to the system in the steady state
and interacts with the e-h system through the Hamiltonian, [65]

Ĥ ′(t) = −F (t)
∑

k

[d12ĉ
†
1,k ĉ2,k + d∗

12ĉ
†
2,k ĉ1,k]. (38)

Here, F (t) is real and d12 = |d12| exp(iφ) is the dipole matrix
element. Within the linear response theory for the NESS [121],
the microscopic response function χk(τ ) for the polarization
pk becomes

χk(τ ) = iθ (τ )
∑

k′
〈[p̂k(τ ),d∗

12p̂k′ + d12p̂
†
k′]〉SS, (39)

where p̂k ≡ ĉ
†
2,k ĉ1,k and 〈[Ô1(τ ),Ô2]〉SS corresponds to

limt→∞〈[Ô1(t + τ ),Ô2(t)]〉 for certain operators Ô1 and Ô2.
The optical susceptibility [115] is then given by χ (ω) =
d∗

12

∑
k χk(ω) in the Fourier domain. It is then straightforward

to rewrite χ (ω) as

χ (ω) = −i|d12|2
∑
k1,k2

KR
11,q=0(ω; k1k2)

− i(d∗
12)2

∑
k1,k2

KR
12,q=0(ω; k1k2), (40)

where KZ
α1α2,q(t1t2; k1k2) corresponds to the fully dressed

two-particle GF KC , which will be introduced in Sec. V, and
αi denotes the index for the conduction band (αi = 1) and
valence band (αi = 2), corresponding to the Nambu space in
the matrix form of the GFs. The gain-absorption spectrum
G(ω) is then given by G(ω) = −Im[χ (ω)]. Again, we do not
go into the detail here but it is noteworthy that the required
two-particle GF is not the partially dressed one but the fully
dressed one. Such a distinction is naturally obtained through
the generating functional approach, as we shall see in Sec. V;
see also Appendix G for the estimation of the fully dressed
two-particle GFs.

Here, we note that the second term in Eq. (40) is nonzero
only when the phase symmetry is broken because the off-
diagonal elements in Nambu space naturally vanish in the
normal phase. In this context, χ (ω) depends on the phase
φ when the macroscopic coherence is developed, while it is
independent of the phase φ in the nonordered phase. Equation
(40), therefore, suggests that the phase difference between
the developed order in the system and the coherent probe field
may affect the susceptibility even though φ = 0 was implicitly
assumed in our previous work [65]. The dependence will be
discussed in the next section.

C. Numerical results

Based on the above formalism, Figs. 9(a)–9(e) show the
typical emission spectra for κ = 0.1 and 100 μeV under the
resonant condition (Ecav = Eex); the parameters are the same
for the panels (e), (f), (m)–(o) in Figs. 4 and 6, respectively. We
then find that the spectral profiles are significantly changed by
increasing the pumping strength. In the case with κ = 0.1 μeV,
for μB − ELP = 3 meV [Fig. 9(a)], two side-band peaks can
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FIG. 9. (Color online) Emission spectra S inc
SS (ω,q = 0) [panels (a)–(e)] and the corresponding distributions of electrons ne,k(ν) [panels

(a′)–(e′)] and holes nh,k(ν) [panels (a′′)–(e′′)] under the resonance condition (Ecav = Eex). The parameters for the panels (a)–(e) are the same
for the panels (e), (f), (m)–(o) in Figs. 4 and 6, respectively. In the panels (a′)–(e′) and (a′′)–(e′′), the dotted lines indicate the peak position of
A11,k(ν) and A22,k(−ν); see also the panels (e), (f), and (m)–(o) in Fig. 6. The downward arrows between the panels (b′) and (b′′) typically
explain the recombinations of electrons and holes that form the peaks of the emission spectrum in the panel (b) in an analogous way to the
Mollow triplet. Basically, the same picture holds for understanding the emission spectra in the other panels. The left arrows signify the Fermi
level and anti-Fermi level formed by the pumping baths. The two-headed arrows in the panel (e) are the guides for the eye that indicate the
continuum structures.

be found on each side of the main peak at ω = μ. We also find
that the intensity on the lower-energy side is brighter than the
higher-energy side. These properties become more prominent
when the pumping is increased up to μB − ELP = 100 meV
[Fig. 9(b)]. Furthermore, there also appears a steep reduction
of the intensity around ω − μ  100 meV.

In the case for κ = 100 μeV, the side peaks become brighter
and more conspicuous when the system is in the crossover
regime [Fig. 9(d)] even though Fig. 9(c) is quite similar to
Fig. 9(a) because the exciton-polariton BEC is the relevant
phase in both cases [Figs. 4(e) and 4(m)]. In this situation,
the relative peak intensity on the higher-energy side is greater
than the lower-energy side [109]. However, the continuum
structures are developed instead when the system enters deeply
inside the lasing regime as seen in Fig. 9(e).

To clearly explain these spectral properties, based on
Eq. (31b), we here introduce energy- and momentum-resolved
distributions of electrons and holes as

ne,k(ν) ≡ f SS
e,k(ν)A11,k(ν), nh,k(ν) ≡ f SS

h,k(ν)A22,k(−ν),

respectively. Notice that ne/h,k = ∫
dν
2π

ne/h,k(ν) by definition
and ne/h,k(ν) allows us to estimate how electrons and holes
are distributed in the renormalized band structures, as shown
in Figs. 9(a′)–9(e′) and 9(a′′)–9(e′′). This, in turn, enables us
to discuss the e-h recombination process that illustrates the
respective emission peaks.

The peak positions indicated by the arrows in Fig. 9(b),
for example, can be explained through the e-h recombination
expressed by the downward arrows between Figs. 9(b′) and
9(b′′). The mechanism is again similar to the Mollow triplet in
quantum optics. In our case, however, the greater amount of
distributions in the low-energy side of the renormalized bands
makes the lower sideband peak brighter than the higher one.
The steep reduction of the intensity is then attributed to the
Fermi levels lying inside the gaps because there is small but
nonzero density of states even inside the gaps due to γ [see
Eq. (30)]. Essentially the same interpretation is possible for
the spectra seen in Figs. 9(a) and 9(c) even though the energy
difference between the Fermi levels approximately overlaps
with the main peak.

In contrast, in Figs. 9(d′) and 9(d′′), the Fermi and anti-
Fermi levels reach the upper and lower edges of the gaps.
The increased distributions on the upper edges, then, brighten
the higher-energy sideband peak than the lower one. In this
situation, furthermore, the density of states is enhanced around
the edges of the pairing gaps. As a result, the Fermi-edge
enhancement [109,122,123] is emphasized notably on these
edges, which makes the side peaks more pronounced in
Fig. 9(d).

In the lasing regime [Figs. 9(e′) and 9(e′′)], the renormalized
bands above the gaps are filled with electrons and holes
because the Fermi levels are present sufficiently above the
gaps. As a result, the distributions are spread in energy, which
forms the continuum structures in Fig. 9(e). The end of the
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continuum around ω − μ = 400 meV in Fig. 9(e) is again
attributed to the Fermi levels of electrons and holes. We
remark that, in some cases, the anti-Fermi levels can also
cause an additional weak structure in the emission spectra
even though not shown in the figures. The opposite end of the
continuum around ω − μ = −200 meV, in contrast, is due to
the renormalized band-gap energy determined by the optical
Stark effect as well as the Coulomb-induced BGR.

These results reveal that the distributions of carriers in
the renormalized band structures are reflected mainly in the
side peaks of the emission spectra. Compared with the main
peak, however, the intensity is fairly small in our calculations.
Therefore, we finally study the gain-absorption spectra G(ω),
as shown in Figs. 10(a)–10(e). As discussed in Sec. IV B,
the phase difference between the weak probe field and the
spontaneously developed order of the system may change the
gain-absorption spectra at least in principle. In this context,
the averaged result as well as the dependence on the phase
φ are shown in each panel. We note that the averaged one is
equivalent to taking only the first term in Eq. (40) into account.

By focusing on the averaged results in Figs. 10(a)–10(c),
the gain-absorption spectra are mainly dominated by the
absorption. This is roughly because there is no or little
population inversion (Nk > 0 or ne,k > 0.5) in Figs. 4(e),
4(f), and 4(m). However, the intensity of the gain peak is
modified and even enhanced when φ is changed. At φ = π/2
in Fig. 10(b), for example, the gain peak becomes comparable
to the absorption peak. The positions of the two peaks are
again understood from Figs. 9(b′) and 9(b′′) and the separation
between the peaks is determined by the sum of the gap
energies min[4Ek]. However, the dependence on φ cannot
be understood from ne/h,k(ν). To our knowledge, there has
been no theoretical work pointing out that the gain-absorption
spectrum is changed by the relative phase of the probe field.
However, our result is not surprising because there are two
relevant phases as a result of the broken symmetry.

We here note that any structures cannot be found around
ω  μ in Fig. 10(b) because such optical transitions for
the external probe light are vanishingly low in Figs. 9(b′)
and (b′′). In the crossover regime, however, the Fermi and
anti-Fermi levels are located at the edges of the pairing gaps,
as described above [Figs. 9(d′) and 9(d′′)]. As a result, the gain
and absorption peaks corresponding to the relevant transitions
become apparent, leading to the characteristic structures
around ω  μ in Fig. 10(d). The peaks are further pronounced
because the Fermi-edge enhancement is emphasized by the
increased density of states around the edges of the pairing
gaps. In fact, the other peaks around ω  μ ± 85 meV also
arise from such transitions and indeed become prominent,
compared with the other situations.

In the lasing regime [Fig. 10(e)], the structures around
ω  μ still exist but become almost invisible, which is
consistent with the above scenario. However, in contrast to
Figs. 10(a)–(d), the numerical results become independent of φ

as a consequence of KR
11,q=0 � KR

12,q=0 in Eq. (40). We expect
that this is because the distributions far from the gaps dominate
the gain-absorption spectra in this situation [see Fig. 9(e)]. As a
result, regardless of the phase φ, the lasing gap appears around
ω = μ as a nearly transparent frequency window, or a kind
of the spectral hole burning [101,102]. The gain-absorption
spectrum is thus one of important ways for the verification of
the lasing gap or, equivalently, the e-h pairing.

V. GENERATING FUNCTIONAL APPROACH

In the preceding sections, we have highlighted the re-
lationship of the cooperative phenomena and their spectral
properties, the study of which is enabled by our formalism
based on the generating functional approach. In particular,
the relationship between the Fermi-edge SF and the e-h BCS
phase is one of the most prominent results, which has not been
reported previously. However, until now, we did not show the
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FIG. 11. (Color) An overview of our generating functional approach depicted in the same structure as Sec. V. The diagrammatic
representations of the individual NEGFs are defined in Fig. 12. Inset shows the closed-time contour C ≡ C1 + C2. The contour time τ

goes forward from τ0 to +∞ along the contour C1 and then backward from +∞ to τ0 along the contour C2.

detailed formalism of the generating functional. In Secs. V
and VI, therefore, we finally present our general framework
to treat the semiconductor e-h-p systems and derive the key
equations [Eqs. (20) with Eqs. (22)–(25)] shown in Sec. II C.

An overview of our approach is schematically shown in
Fig. 11, which is depicted in the same structure of this section.
We first explain our preliminary definitions and notations
with the closed-time contour C ≡ C1 + C2 (inset of Fig. 11)
in Sec. V A and introduce the generating functional W in
Sec. V B. The relevant NEGFs are defined in Sec. V C
and their equations of motion are derived in relation to the
Dyson equations and the Bethe-Salpeter equations (BSEs) in
Sec. V D. As a result, we can naturally introduce a partially
dressed photon GF and a partially dressed two-particle GF, as
shown in Fig. 11.

As already mentioned in the Introduction, this approach
has several theoretical advantages to systematically study the
relevant equations by the diagrammatic technique. However,
readers who are not interested in the formalism may go
directly to Sec. VII because Secs. V and VI involve long
theoretical argument.

A. Preliminary definitions and notations

In order to take the generating functional approach, we first
introduce the following Hamiltonian

Ĥtotal = Ĥ + ĤA(t) (41)

in the Schrödinger picture, where Ĥ is the Hamiltonian
described in Sec. II A, while the time dependent ĤA(t) is
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an auxiliary perturbing Hamiltonian to formally derive the
NEGFs, the concept of which is based on the idea that the
GFs are, in general, response functions to a certain kind
of perturbations. In this context, the auxiliary perturbing
Hamiltonian ĤA(t) is initially assumed and then set to zero
after the formulation is completed. Since we are interested in
the electronic responses as well as the photonic ones, we define
ĤA(t) as

ĤA(t) =
∑
α,k

ηα,k(t)âα,k+
∑

α,α′,k,k′
Uαα′,kk′(t)ĉ†α,kĉα′,k′ , (42)

where ηα,k(t) and Uαα′,kk′(t) ≡ Uαα′,k(t)δkk′ are the auxiliary
external source fields. Note that ĤA(t) does not have to be
physical because it will be used purely for mathematical
purpose and we will take the limit of ĤA(t) → 0 [ηα,k(t) → 0
and Uαα′,kk′(t) → 0] at the final stage of our formulation. In
Eq. (42), the following operators are also defined:

â1,k ≡ âk, â2,k ≡ â
†
−k, (43)

which allows us to derive the photon GF in the Nambu space
in later discussion.

In order to keep the description of our formalism as simple
as possible, let us introduce abridged notations preliminary
to our treatments of the NEGFs. By introducing zi ≡ {αi,ki}
with αi ∈ {1,2}, the interaction Hamiltonians of Ĥe-e, Ĥe-ph,
ĤSR, and ĤA(t) become

Ĥe-e = U ′(z1z2z3z4)ĉ†z1
ĉ†z2

ĉz3 ĉz4/2, (44)

Ĥe-ph = g(z1; z2z3)â†
z1
ĉ†z2

ĉz3 , (45)

ĤSR = ς (z1z2)(ĉ†z1
b̂z2 + H.c.) + ζ (z1z2)Ψ̂z1 â

†
z2
, (46)

ĤA(t) = ηz1 (t)âz1 + Uz1z2 (t)ĉ†z1
ĉz2 , (47)

where Ψ̂1,k ≡ Ψ̂k and Ψ̂2,k ≡ Ψ̂
†
−k in a similar manner to

Eq. (43) and a summation over repeated arguments zi are
assumed. One can easily confirm that Eqs. (44)–(47) are
equivalent to Eqs. (4), (5), (8), and (42), respectively, with
the interaction coefficients shown in Table III.

In these notations, âz and â
†
z are related with each other by

âz1 = σ (1)
z1z2

â†
z2
, â†

z1
= σ (1)

z1z2
âz2 , (48)

when we define σ (1)
z1z2

and σ (3)
z1z2

through the Pauli matrices σ (i)
α1α2

as

σ (1)
z1z2

≡ σ (1)
α1α2

δk1,−k2 , σ (3)
z1z2

≡ σ (3)
α1α2

δk1,k2 . (49)

TABLE III. Definitions of the interaction coefficients in
Eqs. (44)–(47). g1 ≡ g∗, g2 ≡ g, and σ

(i)
αα′ is the Pauli matrix.

U ′(z1z2z3z4) U ′
k4−k1

δk1+k2,k3+k4δα1,α4δα2,α3

g(z1; z2z3) −gα2σ
(1)
α1α2

σ (1)
α2α3

δk2,k3−k1

ς (z1z2) ςα1,k1δα1,α2

ζ (z1z2) ζk2δ1,α1σ
(1)
2,α2

+ ζ−k2δ2,α1σ
(1)
1,α2

ηz1 (t) ηα1,k1 (t)
Uz1z2 (t) Uα1α2,k1 k2 (t)

The commutation relations are then given by

[âz1 ,â
†
z2

] = σ (3)
z1z2

, [âz1 ,âz2 ] = σ
(3)
z1z

′
1
σ

(1)
z′

1z2
, (50)

due to Eq. (43). Note that Ψ̂z and Ψ̂
†
z also satisfy similar

equations to Eqs. (48) and (50).
By the way, in the limit of ĤA(t) → 0, an expectation value

O(t) of any operator ÔS(t) is, in general, given by

O(t) = Tr[û(t0t)Ô
S(t)û(t t0)ρ̂0]

= Tr
[
T̄

{
e−i

∫ t0
t

dt ′Ĥ (t ′)}ÔS(t)T
{
e
−i

∫ t

t0
dt ′Ĥ (t ′)}

ρ̂0
]
, (51)

where ρ̂0 is an arbitrary initial state at an initial time t0, T (T̄ ) is
the chronological (antichronological) time ordering operator,
and û(t2t1) is the evolution operator defined as

û(t2t1) ≡
{
T exp

{−i
∫ t2
t1

dt ′Ĥ (t ′)
}
, t2 > t1

T̄ exp
{+i

∫ t1
t2

dt ′Ĥ (t ′)
}
, t1 > t2.

The superscript “S” emphasizes that the operator is described
in the Schrödinger picture. In the second line of Eq. (51),
the mathematical structure is notable because the products of
operators are finally arranged, from right to left, in temporal
order of t0 → t → t0 according to the position of the time
arguments. In this context, it is convenient to consider the
operator ordering on the closed-time contour C ≡ C1 + C2

(Fig. 11, inset) by introducing the contour time τ . By defining
Ĥ (τ ) ≡ Ĥ (t) and ÔS(τ ) ≡ ÔS(t), Eq. (51) is, then, compactly
rewritten as

O(t) = Tr
[
TC

{
e−i

∫
C dτ ′Ĥ (τ ′)ÔS(τ )

}
ρ̂0

]
, (52)

where
∫
C dτ is the integral along the closed-time contour C and

TC (T̄C) denotes the chronological (antichronological) contour-
time ordering operator. The GFs defined on such a closed-
time path correspond to the NEGFs; see Refs. [104,124], for
examples.

In order to take the generating functional approach with
ĤA(t) �= 0, however, it is further required to define the contour
interaction picture for an operator ÔS(τ ) as

ÔI(τ ) ≡ Û(τ0τ )ÔS(τ )Û(ττ0), (53)

with the contour evolution operator [124]

Û(τ2τ1) ≡
{
TC exp

{ − i
∫ τ2

τ1
dτĤ (τ )

}
, τ2 later than τ1

T̄C exp
{ + i

∫ τ1

τ2
dτĤ (τ )

}
, τ1 later than τ2

(54)

because the equations of motion for the NEGFs will be
discussed on the closed-time contour. The superscript “I”
signifies the contour interaction picture, in a similar manner
to the superscript S for the Schrödinger picture. In Eq. (54),
Ĥ (τ ) corresponds to Ĥ = ĤS + ĤR + ĤSR in Eq. (41), which
does not explicitly depend on the contour time. For the reader’s
convenience, we briefly summarize the fundamental features
of Û in Appendix C.

For later use, by defining j ≡ {zj ,τj } = {αj ,kj ,τj }, we
here introduce the contour-time interaction coefficients, as
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TABLE IV. Definitions of the contour-time interaction coeffi-
cients, where the indices zj and τj are compactly labeled by the
number j .

U ′
C(1234) U ′(z1z2z3z4)δC(τ1τ2)δC(τ2τ3)δC(τ3τ4)

gC(1; 23) g(z1; z2z3)δC(τ1τ2)δC(τ2τ3)
ςC(12) ς (z1z2)δC(τ1τ2)
ζC(12) ζ (z1z2)δC(τ1τ2)
η(1) ηz1 (τ1)
U (12) Uz1z2 (τ1)δC(τ1τ2)

shown in Table IV, with the contour-time delta function [104]

δC(τ1τ2) ≡

⎧⎪⎨
⎪⎩

δ(τ1τ2) for τ1 ∈ C1,τ2 ∈ C1,

−δ(τ1τ2) for τ1 ∈ C2,τ2 ∈ C2,

0 for others.

(55)

These definitions and notations will considerably reduce our
effort to formally describe the NEGFs in the subsequent
sections.

B. Generating functional

We can now introduce the generating functional W as

W ≡ ln〈ŜC〉, (56)

with the S-matrix operator

ŜC ≡ TC exp

{
−i

∫
C
dτ Ĥ I

A(τ )

}
. (57)

Here, 〈. . .〉 = Tr[. . . ρ̂0] denotes the expectation value. With
the definition of the contour interaction picture [Eqs. (53) and
(54)], substitution of Eq. (42) into Eq. (57) yields

ŜC = TC exp{−iη(1)â(1) − iU (11′)ĉ†(1)ĉ(1′)}, (58)

where the definitions of η(1) and U (11′) can be found
in Table IV and the superscript I is dropped when the
contour evolution of an operator is evidently in the contour
interaction picture. We also assume that repeated arguments j

are integrated by
∫
C dj ≡ ∑

zj

∫
C dτj unless otherwise stated;

η(1)â(1) means
∫
C d1η(1)â(1), for example. Thus, W can

obviously be regarded as a functional of the auxiliary source
fields W [η,U ].

C. Definitions of the NEGFs

One of the advantages of the generating functional is that the
NEGFs can be systematically defined through the functional
derivative of W [η,U ]. For example, by using relations

η̄(1) ≡ σ
(1)
C (12)η(2), η(1) = σ

(1)
C (12)η̄(2), (59)

with a definition of a Pauli-type matrix function

σ
(i)
C (12) ≡ σ (i)

z1z2
δC(τ1τ2), (60)

one readily obtains

aC(1) ≡ i
δW

δη(1)
= 〈TC[â(1)]〉A,

(61)

a∗
C(1) ≡ i

δW

δη̄(1)
= 〈TC[â†(1)]〉A,

through the standard functional derivative technique. In the
derivation, we have used

â(1) = σ
(1)
C (12)â†(2), â†(1) = σ

(1)
C (12)â(2), (62)

derived from Eqs. (48) and (60), and

δη̄(1)

δη(1′)
= σ

(1)
C (11′) = δη(1)

δη̄(1′)
, (63)

derived from Eq. (59) with the chain rule of the functional
derivative. The auxiliary expectation value is also introduced
in Eq. (61) as

〈TC[. . .]〉A ≡ 1

〈ŜC〉
〈TC[ŜC . . .]〉. (64)

Note, however, that 〈TC[. . .]〉A reduces to the standard statis-
tical expectation value 〈TC[. . .]〉 = Tr[TC[. . .]ρ̂0] in the limit
of the vanishing auxiliary source fields. In this context, aC(1)
and a∗

C(1) correspond to the response functions to the auxiliary
source fields and can be regarded as the single contour-time
NEGFs for the cavity photon amplitude. aC(1) and a∗

C(1) will
take nonzero values only when the macroscopic coherence is
developed through the phase symmetry breaking.

The photon GF is then introduced as

DC(11′) ≡ i
δ2W

δη(1)δη̄(1′)
= δaC(1)

δη̄(1′)
= δa∗

C(1′)
δη(1)

, (65)

which, from Eqs. (56) and (58), can be described as

DC(11′) = −i〈TC[Δâ(1)Δâ†(1)]〉A

= −i{〈TC[â(1)â†(1′)]〉A − aC(1)a∗
C(1′)}, (66)

where Δâ(1) and Δâ†(1) are the fluctuation operators

Δâ(1) ≡ â(1) − aC(1),
(67)

Δâ†(1) ≡ â†(1) − a∗
C(1).

It is important to note that, in Eqs. (66) and (67), the condensed
part of the photon operator is separated from the noncondensed
part. Essentially identical treatments are well known in the
weakly interacting Bose condensed systems [2,86,125,126].

In a similar manner, the single-particle GF GC(11′) and the
two-particle GF KC(11′22′) for the electronic system can be
introduced as

GC(11′) ≡ − δW

δU (1′1)
= −i〈TC[ĉ(1)ĉ†(1′)]〉A, (68)

KC(11′22′) ≡ δ2W

δU (1′1)δU (2′2)
= −δGC(11′)

δU (2′2)
= −δGC(22′)

δU (1′1)
.

(69)

It follows from Eqs. (56) and (58) that [83,84]

KC(11′22′) = GC(11′22′) − GC(11′)GC(22′), (70)

where GC(11′22′) is defined as

GC(11′22′) ≡ (−i)2〈TC[ĉ(1)ĉ(2)ĉ†(2′)ĉ†(1′)]〉A. (71)

Since our system is the interacting Bose-Fermi mixture,
however, it might be insufficient to prepare only the bosonic
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FIG. 12. (Color online) Diagrammatic representations of (a) the dressed NEGFs, (b) the bare NEGFs, and (c) the interaction coefficients
(the bare vertices). In panel (a), aC(1) is the photon amplitude in the cavity and DC(11′) describes the photon GF. GC(11′) and KC(11′22′)
are the single-particle and two-particle GFs for electrons, respectively. • in KC(11′22′) means that the edge is directed outward. In panel (b),
G0,C(11′) and D0,C(11′) describe the bare NEGFs for electrons and photons, while B0,C(11′) and Ψ0,C(11′) are those for electrons in the pumping
baths and photons in the free-space vacuum reservoir, respectively. In panel (c), the interaction coefficients (the bare vertices) are defined in
Tables IV and VI.

and fermionic NEGFs described above. As an intermediate
NEGF, we here introduce a photon-assisted electronic GF as

PC(22′; 1) ≡ −i
δ2W

δη̄(1)δU (2′2)
= i

δGC(22′)
δη̄(1)

= −i〈TC[â†(1)ĉ(2)ĉ†(2′)]〉A − a∗
C(1)GC(22′), (72)

the name of which is due to the formal similarity to the
photon-assisted polarization in the cluster expansion method
[127–129]. As we shall see later, the correlations between
photons and electrons (holes) are essentially included in this
GF.

We have, thus, described the definitions of the NEGFs,
the diagrams of which are shown in Fig. 12(a). However,
these NEGFs are basically categorized as the fully dressed
diagrams. For the study of their equations of motion, the bare
(noninteracting) NEGFs are, if defined, favorable to describe
the contour-time free evolution of the particles [104]. For this
purpose, in Table V, the inverse of the bare NEGFs X−1

0,C are
introduced by taking into account only the noninteracting part
of our Hamiltonian in the Heisenberg equations of motion, the
definitions of which will come into clearer view in the next
subsection. The bare NEGFs X0,C are then introduced as a
function that satisfies the following relation:

X−1
0,C(12)X0,C(21′) = δC(11′) = X0,C(12)X−1

0,C(21′), (73)

TABLE V. The inverse of the bare NEGFs X−1
0,C .

D−1
0,C(11′) i∂τ1σ

(3)
C (11′) − ξph,k1δC(11′)

Ψ −1
0,C (11′) i∂τ1σ

(3)
C (11′) − ξB

ph,k1
δC(11′)

G−1
0,C(11′) (i∂τ1 − ξz1 )δC(11′)

B−1
0,C(11′) (i∂τ1 − ξB

z1
)δC(11′)

where, in a similar manner to Eq. (60), the delta function is
given by

δC(11′) ≡ δz1z
′
1
δC(τ1τ

′
1)

= δα1α1δk1 k′
1
δC(τ1τ

′
1). (74)

In this paper, we diagrammatically represent the bare NEGFs,
as shown in Fig. 12(b).

D. Equations of motion for the NEGFs

In the previous subsection, we have explained the defini-
tions of NEGFs in our generating functional approach. The
equations of motion for these NEGFs are now ready to be
studied, some of which are identical to the Dyson equations
in differential forms [104]. In the following, we describe the
way to obtain the equations of motion, the self-energies, and
their diagrammatic representation in our formalism.

1. Photon amplitude

We first study the equations of motion for the photon
amplitude aC(1). By differentiating aC(1) with respect to τ1,
we obtain

i
∂

∂τ1
aC(1) = i

∂

∂τ1

{
1

〈ŜC〉
〈Ŝ(τ0τ1)âz1 (τ1)Ŝ(τ1τ0)〉

}

=
〈
TC

[
i
∂âz1 (τ1)

∂τ1

]〉
A

+ 〈TC[âz1 (τ1),Ĥ I
A(τ1)]〉A

= 〈
TC

[
âz1 (τ1),Ĥ I

total(τ1)
]〉

A. (75)

In the first line, together with Eqs. (61) and (64), we have used
a description of

ŜC = Ŝ(τ0,∞)Ŝ(∞,τ0), (76)
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TABLE VI. Definitions of additional interaction coefficients
helpful to understand our formalism.

ḡC(12; 3) gC(2′; 12)σ (1)
C (2′3)

ζ̄C(12) σ
(1)
C (11′)ζC(1′2′)σ (1)

C (2′2)

by introducing a contour evolution operator

Ŝ(τ2τ1) ≡
{
TC exp

{ − i
∫ τ2

τ1
dτĤ I

A(τ )
}
, τ2 later than τ1

T̄C exp
{ + i

∫ τ1

τ2
dτĤ I

A(τ )
}
, τ1 later than τ2.

(77)

We note that Ŝ(τ2τ1) has analogous properties to Û(τ2τ1)
summarized in Appendix C; the second and third lines of
Eq. (75) are obtained by using Eqs. (C1) and (C2) with
replacing Û → ŜC and Ĥ (τ ) → Ĥ I

A(τ ). Here, Eq. (75) means
that the contour evolution of aC(1) can simply be described
by the contour Heisenberg equations [124]. A straightforward
application of the commutation relations [Eq. (50)] to Eq. (75)
then gives

D−1
0,C(11′)aC(1′)

= −igC(1; 23)GC(32) + ζC(12)ΨC(2) + η̄(1), (78)

where ΨC(1) ≡ 〈TC[Ψ̂ (1)]〉A. It is now evident that D−1
0,C de-

fined in Table V arises originally from the Heisenberg equation
of motion with the noninteracting part of our Hamiltonian, as
described above. We also note that formal notational simplicity
is seen in Eq. (78) by virtue of the preliminary arrangements
in Sec. V A.

Exactly in the same manner, for the contour evolution of
ΨC(1), we can obtain

Ψ −1
0,C (11′)ΨC(1′) = ζ̄C(11′)aC(1′) ≡ JB(1), (79)

where ζ̄C(12) is defined in Table VI. Here, by taking the
functional derivative with respect to JB, we have

Ψ −1
0,C (11′)Ψ0,C(1′2) = δC(12) = Ψ0,C(11′)Ψ −1

0,C (1′2), (80)

with a definition of

Ψ0,C(12) ≡ δΨC(1)

δJB(2)
. (81)

Since Eq. (80) is now identical to Eq. (73), Eq. (81) is adequate
for the definition of Ψ0,C(12).

We have thus obtained the equations of motion for the
photon amplitudes in the cavity aC(1) [Eq. (78)] and in
the vacuum photon bath ΨC(1) [Eq. (79)]. Naturally, these
equations are coupled with each other. However, we are mainly
interested in the dynamics of the variables in the system. In
order to eliminate the dynamics of ΨC(1) from Eq. (78), a
formal solution of Eq. (79),

ΨC(1) = Ψ0,C(12)ζ̄C(23)aC(3), (82)

is available, derived by multiplying Eq. (79) by Ψ0,C(21) from
the left and using Eq. (80). This equation physically suggests
that the photon amplitude observed in the vacuum photon
bath corresponds to the freely propagated field after escaping
from the cavity through the coupling constant. As a result,
substitution of Eq. (82) into Eq. (78) yields

D̃−1
0,C(11′)aC(1′) = −igC(1; 23)GC(32) + η̄(1), (83)

with a definition of the inverse of the partially dressed photon
GF

D̃−1
0,C(11′) ≡ D−1

0,C(11′) − ζC(12)Ψ0,C(23)ζ̄C(31′), (84)

the meaning of which will soon become apparent. These two
equations play the most fundamental roles when we discuss
the dynamics of the cavity photon amplitude, which reproduce
the Heisenberg-Langevin–type equation of motion [Eq. (20a)],
as seen in Sec. VI B.

In order to obtain the diagrammatic representations, we
define the partially dressed photon GF as

D̃0,C(12) ≡ δaC(1)

δJS(2)
, (85)

where, in a similar manner to Eq. (79), JS(1) is introduced as
the right-hand side of Eq. (83):

JS(1) ≡ −igC(1; 23)GC(32) + η̄(1). (86)

It is then obvious that D̃0,C(12) satisfies

D̃−1
0,C(11′)D̃0,C(1′2) = δC(12) = D̃0,C(11′)D̃−1

0,C(1′2), (87)

by taking the functional derivative of Eq. (83) with respect
to JS. This means that Eq. (85) is indeed appropriate for the
definition of D̃0,C(12) because Eq. (87) takes the same form
as Eq. (73) when the bare NEGF is replaced by the partially
dressed one. As a result, Eqs. (83) and (84) can be rewritten,
respectively, as

aC(1) = −iD̃0,C(11′)gC(1′; 23)GC(32) + D̃0,C(11′)η̄(1′),
(88)

D̃0,C(11′) = D0,C(11′) + D0,C(12)ζC(22′)Ψ0,C(2′3)

× ζ̄C(33′)D̃0,C(3′1′). (89)

Note that Eq. (89) takes the form of the Dyson equation
[104,124] with the self-energy Σκ

C made of the bare photon
bath GF:

Σκ
C (23′) ≡ ζC(22′)Ψ0,C(2′3)ζ̄C(33′). (90)

The superscript κ indicates that this self-energy describes
the effect of the cavity photon loss in later discussion. By
introducing the graphical representations of the interaction
coefficients (the bare vertices) as shown in Fig. 12(c), Eqs. (88)
and (89) are drawn diagrammatically in Fig. 13, which are
equivalent to Eqs. (83) and (84). Here, we emphasize that
the tail of the tadpole diagram in Fig. 13(a) is not the fully
dressed photon GF DC but the partially dressed one D̃0,C .
Such a diagrammatic structure is not evident if the standard
diagrammatic technique is employed because there are several
choices to replace the skeleton diagram by the fully dressed one
or partially dressed ones. We also remark that the bare photon
bath GF Ψ0,C in Eq. (89) cannot be replaced by the fully dressed
one ΨC in order to avoid the double counting of the photon
GF. However, even without considering these problems, the
generating functional approach allows us to naturally derive
the equations of motion, as presented above.

2. Single-particle GF

The dynamics of the single-particle GF GC(11′), however,
should be given to study the behavior of the cavity photon
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FIG. 13. (Color) Diagrammatic representations of (a) Eq. (88)
and (b) Eq. (89) in the limit of the vanishing auxiliary source
fields. These are equivalent to Eqs. (83) and (84), respectively. The
Heisenberg-Langevin–type equation of motion for the cavity photon
amplitude [Eq. (20a)] can be recovered from these diagrams, as seen
in Sec. VI B.

amplitude aC(1), as seen in Eq. (83). To obtain the contour
evolution of GC(11′), we differentiate GC(11′) with respect to
τ1, in a similar manner to Eq. (75). As a result, we can find

i
∂

∂τ1
GC(11′) = δC(11′) − i

〈
TC

[[
ĉz1 (τ1),Ĥ I

total(τ1)
]
ĉ
†
z′

1
(τ ′

1)
]〉

A.

(91)

In the derivation, from Eqs. (64) and (68), we have used that
GC(11′) can be rewritten as

GC(11′)

= −i

〈ŜC〉
θC(τ1τ

′
1)

〈
Ŝ(τ0τ1)ĉz1 (τ1)Ŝ(τ1τ

′
1)ĉ†

z′
1
(τ ′

1)Ŝ(τ ′
1τ0)

〉

+ i

〈ŜC〉
θC(τ ′

1τ1)
〈
Ŝ(τ0τ

′
1)ĉ†

z′
1
(τ ′

1)Ŝ(τ ′
1τ1)ĉz1 (τ1)Ŝ(τ1τ0)

〉
,

(92)

where θC(τ1τ
′
1) = 1 if τ1 is later than τ ′

1 on the contour and zero
otherwise: the Heaviside function on the contour [124]. The
delta function in Eq. (91) arises from the Heaviside functions
in Eq. (92). A straightforward calculation of the commutation
relation in Eq. (91) then yields

G−1
0,C(12)GC(21′) = δC(11′) + U (12)GC(21′)

+ [
ΣH

C (12) + ΣMF
C (12)

]
GC(21′)

− iU ′
C(1234)KC(41′32)

+ gC(2; 13)PC(31′; 2)

− iςC(12)〈TC[b̂(2)ĉ†(1′)]〉A, (93)

where ΣH
C (12) denotes the self-energy called the Hartree term,

ΣH
C (12) ≡ −iU ′

C(1432)GC(34), (94)

and ΣMF
C (12) is the self-energy of the mean-field potential

formed by the cavity photon field

ΣMF
C (12) ≡ ḡC(12; 3)aC(3). (95)

Σ H(12)C

2

4 3

1

1 3 23'

Σ (12)C
γ

(a) (b)

(c) (d)

3' 21
ΛC

3

4
4'

Σ (12)C
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3

Σ (12)C
MF

FIG. 14. (Color online) Self-energy diagrams for the single-
particle GF GC . The Hartree term [Eq. (94)] and the mean-field
potential formed by the cavity photon field [Eq. (95)] are shown
in panels (a) and (b), respectively. Correlations beyond these effects,
Eqs. (102) and (103), are shown in panels (c) and (d). The interaction
between the e-h system and the pumping baths can be found in panel
(e) [Eq. (108)].

These self-energies are diagrammatically shown in Figs. 14(a)
and 14(b), respectively. It is then obvious that the electronic
correlations beyond the Hartree term [Eq. (94)] are described
by KC , while those with photons beyond the mean-field poten-
tial [Eq. (95)] are expressed by PC . A source of spontaneous
emission from the e-h system to the cavity, for example, is
provided from PC as is well known in the cluster expansion
approach; see Ref. [128] for details. However, at this stage,
these correlation terms prevent the diagrammatic description
with the self-energies even though Eq. (93) is analogous to the
Dyson equation in the differential form.

As a next step, we therefore explain the way to formally
obtain the self-energies in our formalism by using the chain
rule of the functional derivative [82–89]. For this purpose, it
is convenient to introduce the inverse of the single-particle GF
G−1

C that satisfies

G−1
C (12)GC(21′) = δC(11′) = GC(12)G−1

C (21′), (96)

in the same manner as Eq. (73). By taking the variation of both
sides in Eq. (96), one finds

δGC(11′) = −GC(12)δG−1
C (22′)GC(2′1′), (97)

which allows us to transform the correlations of KC and PC
into the following forms:

KC(41′32) = GC(45)
δG−1

C (56)

δU (23)
G(61′), (98)

PC(31′; 2) = −iGC(34)
δG−1

C (44′)
δη̄(2)

GC(4′1′)

= −iGC(34)DC(52)
δG−1

C (44′)
δaC(5)

GC(4′1′), (99)
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FIG. 15. Definitions of the vertex functions.

where the chain rule of the functional derivative as well as
Eqs. (65), (69), and (72) have been used. By substituting them
into Eq. (93), we can find

−iU ′(1234)KC(41′32) = Σel
C (12)GC(21′), (100)

gC(2; 13)PC(31′; 2) = Σ
ph
C (12)GC(21′), (101)

with the self-energies

Σel
C (12) ≡ iGC(33′)ΓC(13′23), (102)

Σ
ph
C (12) ≡ igC(4′; 13)DC(44′)GC(33′)ΛC(3′2; 4), (103)

and the vertex functions

ΓC(1234) ≡ −U ′(12′3′4)
δG−1

C (23)

δU (2′3′)
, (104)

ΛC(12; 3) ≡ −δG−1
C (12)

δaC(3)
. (105)

The terms arising from KC and PC in Eq. (93) can, thus,
be described by the self-energies with the vertex functions.
The corresponding diagrammatic representations are shown
in Figs. 14(c), 14(d), and 15.

Finally, it is straightforward to obtain

B−1
0,C(12)〈TC[b̂(2)ĉ†(1′)]〉A = iςC(21)GC(21′), (106)

by differentiating 〈TC[b̂(2)ĉ†(1′)]〉A with respect to τ2 in a
similar manner to Eqs. (75) and (91). As a result, we can
rewrite the last term in Eq. (93) as

−iςC(12)〈TC[b̂(2)ĉ†(1′)]〉A = Σ
γ

C (12)GC(21′), (107)

with a definition of

Σ
γ

C (12) ≡ ςC(13)B0,C(33′)ςC(23′), (108)

the diagram of which is in Fig. 14(e). The superscript
γ signifies the thermalization effect in a similar manner
to Eq. (90). The Dyson equation is then obtained in the
differential form by inserting Eqs. (100), (101), and (107)
into Eq. (93):

G−1
0,C(12)GC(21′)

= δC(11′) + ΣC(12)GC(21′) + U (12)GC(21′), (109)

where ΣC ≡ ΣH
C + ΣMF

C + Σel
C + Σ

ph
C + Σ

γ

C . This equation
plays a key role when we derive the equation of motion for the
polarization function pk [Eq. (20b)] as well as the distribution
functions of electrons ne,k and holes nh,k [Eq. (20c)]; see also
Sec. VI C. Equation (109) is, of course, equivalent to

GC(11′) = G0,C(11′) + G0,C(12)ΣC(22′)GC(2′1′), (110)

in the limit of the vanishing auxiliary source fields and can be
drawn diagrammatically in Fig. 16(a).

1 1'
= +

1 1'
ΣC

1 1'2 2'

1 1'
=

1 1'
+

1 1'
ΠC

2 2'

(a)

(b)

FIG. 16. (Color) Diagrammatic descriptions of the Dyson equa-
tions for (a) GC(11′) [Eq. (109) or (110)] and (b) DC(11′) [Eq. (116)].
ΣC is the summation of the self-energies shown in Fig. 14, while ΠC
is in Fig. 17.

The equation of motion for the single-particle GF GC
can thus be obtained in the form of the Dyson equation
successfully. However, there arise further needs to study

(i) the photon GF DC(11′) [Eq. (103)],
(ii) the vertex functions of ΓC(1234) [Eq. (102)] and

ΛC(12; 3) [Eq. (103)].
Although not yet encountered,

(iii) the two-particle GF KC(11′22′)
should also be discussed. In the following, we discuss the
equations of motion for these NEGFs.

3. Photon GF

By using Eqs. (65) and (85), the chain rule of the functional
derivative allows us to rewrite the photon GF as

DC(11′) = δaC(1)

δJS(2)

δJS(2)

δη̄(1′)
= D̃0,C(12)

δJS(2)

δη̄(1′)
, (111)

where, from Eq. (86),

δJS(2)

δη̄(1′)
= δC(21′) − igC(2; 33′)

δGC(33′)
δη̄(1′)

. (112)

By introducing an effective potential Ũ (12) and a partially
dressed two-particle GF K̃0,C(11′22′) as

Ũ (12) ≡ U (12) + ḡC(12; 3)aC(3), (113)

K̃0,C(11′22′) ≡ −δGC(11′)
δŨ (2′2)

, (114)

the last term in Eq. (112) can be calculated as

δGC(33′)
δη̄(1′)

= δGC(33′)
δŨ (4′4)

δŨ (4′4)

δη̄(1′)

= −K̃0,C(33′44′)ḡC(4′4; 5)DC(51′). (115)

The roles of Eqs. (113) and (114) will be illustrated in the
next section. Here, by putting Eq. (112) into Eq. (111) with
Eq. (115), one finds the Dyson equation

DC(11′) = D̃0,C(11′) + D̃0,C(12)ΠC(22′)DC(2′1′), (116)

with the self-energy defined as

ΠC(22′) = igC(2; 3′3)K̃0,C(33′44′)ḡC(4′4; 2′). (117)

We can now successfully represent the diagrams of these
equations in Figs. 16(b) and 17(a) with a definition of
K̃0,C(11′22′) in Fig. 17(b). We note that, in Fig. 17, the self-
energy ΠC is not described by the fully dressed two-particle GF
KC but by the partially dressed two-particle GF K̃0,C , which
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FIG. 17. (Color online) (a) The self-energy ΠC for the photon GF
[Eq. (117)]; (b) the definition of the partially dressed two-particle GF
K̃0,C .

has an effect to avoid the double-counting problem in the
calculation of the photon GF. This feature will become more
evident by studying the equations of motion for KC and K̃0,C
in the next section. Equations (116) and (117) are important
for the study of the emission spectrum [Eq. (37)] as discussed
in Sec. IV and Appendix G.

4. Two-particle GF

The chain rule of the functional derivative can also make
a connection between KC and K̃0,C in a similar manner to
Eq. (111). From Eqs. (69) and (114), KC can be written as

KC(11′22′) = K̃0,C(11′33′)
δŨ (3′3)

δU (2′2)
, (118)

where, from Eqs. (113) and (86), one can find

δŨ (3′3)

δU (2′2)
= δC(3′2′)δC(32) + ḡC(3′3; 4)D̃0,C(44′)

δJS(4′)
δU (2′2)

= δC(3′2′)δC(32) + iḡC(3′3; 4)D̃0,C(44′)

× gC(4′; 5′5)KC(55′22′). (119)

As a result, we obtain

KC(11′22′) = K̃0,C(11′22′) + iK̃0,C(11′33′)ḡC(3′3; 4)

× D̃0,C(44′)gC(4′; 5′5)KC(55′22′), (120)

the diagram of which is shown in Fig. 18(a). Note that Eq. (120)
is a kind of the Bethe-Salpeter equation [130] (BSE) for the
two-particle GF KC . In contrast, the equation of motion for the
partially dressed GF K̃0,C can be obtained by applying Eq. (97)

to Eq. (114) as

K̃0,C(11′22′)

= GC(13)GC(3′1′)
δG−1

C (33′)
δŨ (2′2)

= −GC(12′)GC(21′) − GC(13)GC(3′1′)
δΣ̃C(33′)
δŨ (2′2)

= −GC(12′)GC(21′) + GC(13)GC(3′1′)

× IC(33′44′)K̃0,C(44′22′), (121)

where

IC(33′44′) ≡ δΣ̃C(33′)
δGC(44′)

. (122)

In the second line of Eq. (121), we have used the following
equation derived from Eqs. (95), (109), and (113):

G−1
C = G−1

0,C − U − ΣC = G−1
0,C − Ũ − Σ̃C, (123)

with

Σ̃C ≡ ΣC − ΣMF
C .

Again, Eq. (121) is a kind of the BSE and diagrammatically
shown in Fig. 18(b). Here, the integration kernel IC can
be determined if the self-energy diagrams (or the vertex
functions) are truncated at a certain level, which allows us
to consider the rational BSEs required for the calculations of
the emission spectrum as well as the gain-absorption spectrum;
see Appendix G.

It is also instructive to mention that, from Fig. 18, the
fully dressed KC can be decomposed into two categories of
diagrams; the chain diagram connected by D̃0,C is included or
not. The former evidently causes the double-counting problem
if used for the self-energy ΠC because the chain diagrams are
also generated from the Dyson equation in Fig. 16(b), while the
latter does not cause such a problem and, in fact, corresponds to
K̃0,C . This is the reason why the partially dressed K̃0,C appears
in the description of ΠC [Eq. (117)]. In this context, KC should
not be confused with K̃0,C . Now, it is evident that, although
K̃0,C is enough to study the photon GF as shown in Fig. 17(a),
we have to take the fully dressed KC in the calculations of the
gain-absorption spectrum [Eq. (40)], as described in Sec. IV.

1'

1

2
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1

2
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= +
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4 4'
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1

2

2'

= + IC

(a)

(b)
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3

2

2'

4'

4

−

FIG. 18. (Color) Diagrammatic descriptions of the Bethe-Salpeter equations for (a) the fully dressed two-particle GF KC(11′22′) [Eq. (120)]
and (b) the partially dressed one K̃0,C(11′22′) [Eq. (121)].
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FIG. 19. (Color) Diagrammatic representations of the vertex
functions ΓC [Eq. (126)] and ΛC [Eq. (127)].

5. Vertex functions

Finally, we study the vertex functions ΓC and ΛC . By
substituting Eq. (123) into Eqs. (104) and (105),

ΓC(1234) = U ′
C(12′3′4)

{
δŨ (23)

δU (2′3′)
+ δΣ̃C(23)

δU (2′3′)

}
, (124)

ΛC(12; 3) = δŨ (12)

δaC(3)
+ δΣ̃C(12)

δaC(3)
. (125)

We then obtain for the vertex function ΓC

ΓC(1234) = U ′
C(1234) − iḡC(23; 5)D̃0,C(55′)gC(5′; 3′2′)

× GC(2′1′)GC(4′3′)ΓC(11′4′4)

+ IC(232′3′)GC(2′1′)GC(4′3′)ΓC(11′4′4),
(126)

where we have used Eq. (119) with Eq. (98). In the same
manner, by using Eq. (113),

ΛC(12; 3) = ḡC(12; 3) + δΣel
C (12)

δaC(3)
+ δΣ

ph
C (12)

δaC(3)
. (127)

We note that, for our purpose, there is no need to expand
the second and third terms in Eq. (127) that yield higher-
order terms in the interaction coefficients. As a result, the
diagrammatic representations for Eqs. (126) and (127) are
shown in Fig. 19.

In summary, in this section, we have constructed a general
formalism to treat the semiconductor e-h-p systems, based on
the generating functional approach. The equations of motion
for the relevant NEGFs are derived with the diagrammatic
representations, as shown in Figs. 13, 16, and 18, some of
which are identical to the Dyson equations and the Bethe-
Salpeter equations. The self-energies for the single-particle
GF GC and the photon GF DC are summarized in Figs. 14
and 17, while the vertex functions are in Fig. 19. The partially
dressed NEGFs D̃0,C and K̃0,C have been naturally introduced
as a result of the generating functional formalism, which plays
a key role to correctly describe the equations of motion with
avoiding the double-counting problem. Figure 11 thus shows
the summary of this section.

In the next section, we transform the NEGFs into the
real-time matrix representations and derive a time-dependent
framework that generalizes the MSBEs under the RTA. This

framework will give a starting point to study the cooperative
phenomena in a unified view.

VI. REAL-TIME FORMALISM

The main purpose of this section is to derive the time-
dependent simultaneous equations of motion for the physical
quantities of the cavity photon amplitude a0(t), the polarization
function pk(t), and the distribution functions of electrons in
the conduction band n1,k(t) and in the valence band n2,k(t)
based on the formalism presented in Sec. V. The scheme
of our derivation is shown in Fig. 20, again depicted along
the structure of this section. We first illustrate the required
assumptions and approximations in Sec. VI A. We then derive
the equation of motion for the photon amplitude in Sec. VI B
and the polarization and distribution functions in Sec. VI C by
using the results shown in Sec. V. As a result, it is found
that the time-dependent renormalization of the electronic
band structures should be traced together with the evolution
of the relevant physical quantities, at least in principle. By
transforming the results, we finally obtain the generalization
of the MSBEs, namely, the key results [Eqs. (20) with
Eqs. (22)–(25)] shown in Sec. II C.

A. Assumptions and approximations

In order to treat the open-dissipative nature, we first assume
that the system and the reservoirs are initially uncorrelated and
the initial state ρ̂0 can be described by

ρ̂0 = ρ̂S ⊗ ρ̂B, (128)

where ρ̂S is an arbitrary initial state of the system, while
ρ̂B is the direct product of the pumping baths in thermal
equilibrium and the vacuum photon bath in Fig. 1(b). The
separable assumption of Eq. (128) is sometimes called the Born
approximation. We note that, in our formalism, the system
and the baths do not have to be separable in the process of
evolution in contrast to the QME approach [73,74,92,93] and
will be entangled.

In addition, for simplicity, we also assume the spatial homo-
geneity of the system. We therefore consider the macroscopic
coherence of the photon amplitude developed only for the
k = 0 state

ak ≡ 〈âk〉 = δk,0〈âk=0〉 = δk,0a0, (129)

and the NEGFs satisfying

XC(11′) = δk1 k′
1
XC(τ1τ

′
1; α1α

′
1; k1k1), (130)

due to the momentum conservation law.
Under these assumptions, only the self-energies of the first

order in U ′
C and gC are taken into account. In this context, we

truncate the vertex functions as

ΓC(1234)  U ′
C(1234), ΛC(12; 3)  0. (131)

As a result, Σel
C and Σ

ph
C are approximated as shown in the

vertex truncations of Fig. 20. This means that we neglect the
correlations beyond the HF approximation for the Coulomb
interaction and those beyond the MF potential formed by
the photon amplitude. In this limit, it can be found that the
equations of motion for aC (Fig. 13) and GC [Figs. 14 and
16(a)] are closed even without DC and KC . In the following,
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FIG. 20. (Color) Our scheme for the derivation of equations of motion, depicted along the structure of Sec. VI. Aαα,k(t ; ν) and G
R/A
12,k(t ; ν)

describe the time-dependent renormalization of the electronic band structures.

therefore, we focus on the dynamics of aC and GC derived in
the previous section. Note, however, that DC and KC can be
studied by using the solution of aC and GC , which is required to
study the emission spectrum [Eq. (37)] and the gain-absorption
spectrum [Eq. (40)]; see Appendix G for the evaluation of DC
and KC .

B. Equation for the photon amplitude

We now consider the equation of motion for the photon
amplitude a0(t) by using Eqs. (83) and (84), or equivalently
Eqs. (88)–(90) (Fig. 13). In the limit of ĤA(t) → 0, Eqs. (83)
and (84) can be rewritten in the RAK basis (see Appendix D) as{

D−1
0,kl(11′) − Σκ

kl(11′)
}
al(1

′)

= −ig(1; 23)Lklσ
(3)
ll′ Ḡll′ (32), (132)

where, in the case of the real-time RAK representation, the
times in j = {αj ,k,tj } are the standard real time,

g(1; 23) ≡ g(z1; z2z3)δ(t1t2)δ(t2t3),

and it is assumed that the repeated arguments j are integrated
by

∫
dj ≡ ∑

zj

∫ ∞
−∞ dtj . By using the definitions of ζC and ζ̄C

with Eqs. (9b), (10b), (90), and (130), the self-energy Σκ
kl(11′)

can be described as

ΣR/A
κ (11′) ≡ Σκ

11/22(11′)

= δk1 k′
1
δ(t1t

′
1)

(∓iκ

±iκ

)
, (133)

ΣK
κ (11′) ≡ Σκ

12(11′)

= δk1 k′
1
δ(t1t

′
1)

(−2iκ

−2iκ

)
(134)

in the RAK basis. Here, the 2 × 2 matrix arises from the
arguments of α1 and α2, i.e., the Nambu space for photons.
As a result, Eq. (132) becomes(

i∂t1 − ξph,k1 + iκ

−i∂t1 − ξph,k1 − iκ

)(
ak1 (t1)
a∗

−k1
(t1)

)

= δk1,0

∑
k2

( −gpk2 (t1)
−g∗p∗

k2
(t1)

)
, (135)

where the third and fourth elements in the four-component
vector [Eq. (D7)] are omitted because these are always zero in
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the RAK basis. In the derivation, we have used D−1
0 defined

in Table VIII (Appendix D) and pk(t) = −iG<
12,k(t t) [see also

Eq. (137)]. We then obtain the equation of motion for a0(t) as

∂ta0 = −iξph,0a0 + ig
∑

k

pk − κa0, (136)

which is a member of our self-consistent equations of motion
[Eq. (20a)]. Although Eq. (136) is the same as obtained by
the Heisenberg-Langevin approach [26], we now know the
diagrammatic representation to derive Eq. (136), as shown in
Fig. 13, which in turn clarifies our standpoint for the study of
the single-particle GF.

C. Equations for the polarization and distribution functions

We now discuss the equations of motion for pk(t), n1,k(t),
and n2,k(t) by using the Dyson equation [Fig. 16(a)] with the
self-energies in Fig. 14 and the vertex truncations in Fig. 20.
For this purpose, in the subsequent sections, we will relate the
physical quantities pk(t), n1,k(t), and n2,k(t) to the GFs in the
Wigner representations [104,131]. We then describe the self-
energies in the Wigner coordinates and give finally our time-
dependent formalism to study the cooperative phenomena.

1. Physical quantities

The physical quantities of pk(t), n1,k(t), and n2,k(t) defined
in Sec. II B can be related to the lesser GF (see also TableVII
in Appendix D) as(

n1,k(t) pk(t)

p∗
k(t) n2,k(t)

)
= −i

(
G<

11,k(t t) G<
12,k(t t)

G<
21,k(t t) G<

22,k(t t)

)
. (137)

In the RAK basis, we obtain(
1 − 2n1,k(t) −2pk(t)

−2p∗
k(t) 1 − 2n2,k(t)

)
= i

(
GK

11,k(t t) GK
12,k(t t)

GK
21,k(t t) GK

22,k(t t)

)

(138)

because

iGK(12)|t1=t2 = i[G>(12) + G<(12)]|t1=t2

= δz1z2 + 2iG<(12)|t1=t2 (139)

is satisfied from Eq. (D2) with the equal-time anti-
commutation relations of the Fermi operators.

In contrast, the time-dependent renormalization of the
electronic band structures can be discussed through the single-

particle spectral function A(12) defined as [104]

A(12) ≡ i[G>(12) − G<(12)]

= i[GR(12) − GA(12)], (140)

where

A(12)|t1=t2 = δz1z2 (141)

is satisfied again from the equal-time anticommutation rela-
tions of the Fermi operators. The retarded and advanced GFs
are therefore essential to describe the renormalization of the
electronic band structures, the explicit treatment of which is
one of the important advantages of the RAK basis.

In order to proceed further, we here introduce the relative
time t12 ≡ t1 − t2 and the average time T12 ≡ (t1 + t2)/2 and
perform the Fourier transformation with respect to the relative
time: the Wigner representation [104,131] (see also Appendix
E). By using Eq. (E3), we can rewrite Eq. (139) as

i

∫ ∞

−∞

dν

2π
GK

z1z2
(T12; ν) = δz1z2 − 2fz1z2 (T12), (142)

with a definition of

fz1z2 (T12) ≡ −iG<(12)|t1=t2

= −i

∫ ∞

−∞

dν

2π
G<

z1z2
(T12; ν). (143)

This means that the ν-integrated Keldysh GF [Eq. (142)]
is directly related to pk(t), n1,k(t) and n2,k(t) in the
Wigner representation. For example, pk(t) = f12,kk(t) when
z1 = {α1,k1} = {1,k} and z2 = {α2,k2} = {2,k} because of
Eq. (137) and the first line of Eq. (143). In the same manner,
we obtain n1,k(t) = f11,kk(t) and n2,k(t) = f22,kk(t).

In contrast, Eq. (141) becomes∫ ∞

−∞

dν

2π
Az1z2 (T12; ν) = δz1z2 , (144)

which corresponds to the sum rule of the single-particle
spectral function. The renormalized band structure as well
as the physical quantities pk(t), n1,k(t), and n2,k(t) are, thus,
closely linked with the GFs in the RAK basis.

2. Self-energy

In order to derive the equations of motion for pk(t), n1,k(t),
and n2,k(t), however, we also have to transform the contour
self-energy ΣC(12) into the real-time matrix representation
in the RAK basis, in the same manner as presented in
Appendix D. As a result of straightforward calculations
(see Appendix F), the self-energies in Fig. 14 under the HF
approximation (Fig. 20) give the total self-energy in the Wigner

representation as

Σ(T12; ν; k1k2) =
(

ΣR(T12) ΣK(ν)
ΣA(T12)

)

= δk1 k2

⎛
⎜⎜⎝

ΣBGR
1,k1

(T12) − iγ −Δk1 (T12) −2iγ F B
1 (ν)

−Δ∗
k1

(T12) ΣBGR
2,k1

(T12) − iγ −2iγ F B
2 (ν)

ΣBGR
1,k1

(T12) + iγ −Δk1 (T12)
−Δ∗

k1
(T12) ΣBGR

2,k1
(T12) + iγ

⎞
⎟⎟⎠ , (145)
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where Δk(T12) denotes the renormalized Rabi frequency

Δk(T12) ≡ g∗a0(T12) +
∑

k′
U ′

k′−kpk′(T12), (146)

describing the effect of forming the e-h pairs [65,94,101] and
ΣBGR

α,k (T12) is the Coulomb-induced renormalization of the
single-particle energy

ΣBGR
α,k (T12) ≡ −

∑
k′

U ′
k′−knα,k′(T12), (147)

including the band-gap renormalization (BGR) in semicon-
ductor physics. These are nothing but the variables defined in
Eq. (14). F B

α (ν) denotes the distribution of the pumping bath

F B
α (ν) ≡ 1 − 2f B

α (ν), (148)

through the Fermi distribution function

f B
1/2(ν) ≡ 1

1 + exp
[
β(ν − μB

1/2 ± μ/2)
] , (149)

where β ≡ 1/T and μB
α are the inverse temperature and the

chemical potential of the pumping bath, respectively. We
note that, in Eq. (145), the retarded and advanced parts are
independent of the frequency ν, while the Keldysh part does
not include the average time T12. In other words, in our
treatments, the memory effect (the frequency dependence) is
not taken into account in the retarded and advanced parts but
it remains in the Keldysh part due to the correlations with the
pumping baths [76,77]. These behaviors arise solely from our
truncations of the vertex functions shown in Figure 20; see also
Appendix F. These correlations as well as the renormalization
of the band structures are essential for our theory to especially
recover the equilibrium phases because the carriers have to
be redistributed in the renormalized band according to their
energies in equilibrium, the information of which, however,
cannot be obtained instantaneously (with no memory time)
due to the uncertainty principle. As a consequence, the memory
effect has to be taken into account, at least in the Keldysh part
of the self-energy.

3. Equations of motion

By using the real-time matrix form in the RAK basis, the
Dyson equation [Eq. (109) or (110)] becomes

G−1
0 (12)Gii ′(21′) = δii ′δ(11′) + Σij (12)Gji ′ (21′) (150)

in the limit of ĤA(τ ) → 0, where δ(11′) ≡ δz1z
′
1
δ(t1t ′1). Equiv-

alently, we can find

Gii ′ (12)G−1
0 (21′) = δii ′δ(11′) + Gij (12)Σji ′ (21′). (151)

In a similar manner to study the Boltzmann equation by the
NEGF technique [104], we perform the subtraction of the left
and right Dyson equations (150) and (151), and then, after
taking the Keldysh part (i = 1, i ′ = 2), we obtain[

G−1
0

⊗, GK]
− =ΣR ⊗ GK + ΣK ⊗ GA

− GK ⊗ ΣA − GR ⊗ ΣK, (152)

where ⊗ denotes the summation over the possible internal

degrees of freedom and [X
⊗, Y ]− ≡ X ⊗ Y − Y ⊗ X. It

follows from Eq. (E6) that

(i∂T12 − ξz1 + ξz2 )GK
z1z2

(T12; ν)

= ΣR
z1z3

(T12) � GK
z3z2

(T12; ν) + ΣK
z1z3

(ν) � GA
z3z2

(T12; ν)

−GK
z1z3

(T12; ν) � ΣA
z3z2

(T12) − GR
z1z3

(T12; ν) � ΣK
z3z2

(ν),

(153)

where Σ
R/A/K
z1z2 corresponds to the element of the matrix in

Eq. (145) and � denotes the Moyal product. By integrating both
sides of Eq. (153) in terms of ν after applying the gradient ap-
proximation for the Moyal products (see Appendix E), we get

δk1 k2 (i∂t − ξz1 + ξz2 ){δα1α2 − 2fα1α2,k1 (t)}

= δk1 k2

∑
α3

{
ΣR

α1α3,k1
(t){δα3α2 − 2fα3α2,k1 (t)}

+i

∫ ∞

−∞

dν

2π
ΣK

α1α3,k1
(ν)GA

α3α2,k1
(t ; ν)

−{δα1α3 − 2fα1α3,k1 (t)}ΣA
α3α2,k1

(t)

−i

∫ ∞

−∞

dν

2π
GR

α1α3,k1
(t ; ν)ΣK

α3α2,k1
(ν)

}
, (154)

where XZ
z1z2

= XZ
α1α2,k1 k2

= δk1 k2Xα1α2,k1 and fz1z2 =
fα1α2,k1 k2 = δk1 k2fα1α2,k1 have been used with Eq. (142) and
the average time T12 has been replaced simply by t . By taking
(α1,α2) = (1,2), Eq. (154) results in

∂tpk(t) = −i{ξ̃1,k(t) − ξ̃2,k(t)}pk(t)

− iΔk(t)Nk(t) − 2γ {pk(t) − p0
k(t)}, (155)

where ξ̃α,k(t) ≡ ξα,k + ΣBGR
α,k (t) is the Coulomb-renormalized

single-particle energy, Nk(t) ≡ n1,k − n2,k denotes the
population inversion, and p0

k(t) is defined as

p0
k(t) ≡ i

∫ ∞

−∞

dν

2π

[
f B

2 (ν)GR
12,k(t ; ν) − f B

1 (ν)GA
12,k(t ; ν)

]
.

(156)

In the derivation, we have used pk(t) = f12,k(t) from
Eqs. (137) and (143). In the same manner, since nα,k(t) =
fαα,k(t), Eq. (154) for (α1,α2) = (1,1) and (2,2) leads to

∂tnα,k(t) = −2 Im[Δk(t)p∗
k(t)] − 2γ

{
nα,k(t)−n0

α,k(t)
}

(157)

for α ∈ {1,2} with

n0
α,k(t) ≡

∫ ∞

−∞

dν

2π
f B

α (ν)Aαα,k(t ; ν). (158)

Note that Eqs. (155) and (157) have the well-known forms of
the MSBEs under the RTA [77,80,102] if n0

α,k is replaced by
the Fermi distribution with p0

k = 0. In general, the MSBEs
under the RTA can describe the physics of semiconductor
lasers but cannot describe those of the BEC and BCS
states because the equations of motion cannot recover
the (quasi)equilibrium physics in the steady state [65,94].
However, the key point here is that p0

k and n0
α,k are defined

by Eqs. (156) and (158), respectively, and the effects of
the time-dependent renormalization of the electronic band
structures are taken into account through GR/A and A.
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In a similar manner to Eq. (152), the subtraction of the left
and right Dyson equations for the retarded part (i = 1,i ′ = 1)

gives [G−1
0

⊗, GR] = ΣR ⊗ GR − GR ⊗ ΣR and the Wigner
representation becomes

(i∂t − ξα1,k + ξα2,k)GR
α1α2,k(t ; ν)

=
∑
α3

{
ΣR

α1α3,k(t) � GR
α3α2,k(t ; ν)

−GR
α1α3,k(t ; ν) � ΣR

α3α2,k(t)
}
. (159)

Within the gradient approximation, we therefore obtain

G−1
0,kG

R
k (t ; ν) − GR

k (t ; ν)
[
G−1

0,k

]†
= ΣR

k (t)GR
k (t ; ν) − GR

k (t ; ν)ΣR
k (t)

− i

2

{
∂tΣ

R
k (t)∂νG

R
k (t ; ν) + ∂νG

R
k (t ; ν)∂tΣ

R
k (t)

}
, (160)

with

G−1
0,k ≡

(
i
2∂t + ν − ξ1,k 0

0 i
2∂t + ν − ξ2,k

)
(161)

in the 2 × 2 matrix representation. GA and A can then
be obtained from the relation GA

z1z2
(t ; ν) = GR∗

z2z1
(t ; ν) and

Eq. (140), respectively. As a result, Eqs. (136), (155), and
(157) are closed simultaneously with Eqs. (156), (158),
and (160). The time-dependent renormalization of the elec-
tronic band structures is thus taken into account. These
are the main results of Sec. VI summarized in Fig. 20,
which generalize the standard MSBEs under the RTA. By
transforming them into the e-h picture (Table I), our key results
[Eqs. (20) with Eqs. (22)–(25)] can successfully be obtained.

VII. CONCLUSIONS

In this paper, we have presented a unified theory to study
the relationship of the cooperative phenomena spontaneously
developed in semiconductor e-h-p systems. Starting from the
microscopic Hamiltonian, as a key result of our theory, we
presented a time-dependent formalism for the photon ampli-
tude a0, the polarization function pk, and the distributions
of electrons in the conduction band ne,k and holes in the
valence band nh,k, based on the generating functional approach
[Eqs. (20) with (22)–(25)]. The simultaneous equations of
motion keep a similar form to the MSBEs under the RTA
[Eq. (20)] but the key differences are the following two points:
(i) the e-h pairing effect is taken into account in the band
renormalization and (ii) the thermalization by the pumping
baths is treated in the non-Markovian way. The first one is
evidently important because the e-h BCS gap, for example,
must be included in the theory. The second one, on the other
hand, plays a crucial role to describe the redistributions of
carriers in the renormalized bands. In our view, the non-
Markov treatment is required because the particle energies
cannot be measured instantaneously (or in the Markovian way)
due to the uncertainty principle. These are one of our key
results (Sec. II C) and enable us to discuss the cooperative
phenomena in a unified view.

As an important application, we have studied the BEC-
BCS-LASER crossover in the exciton-polariton systems

[65,77]. The steady-state phase diagrams then revealed that
the system has rich and distinct ordered phases depending
on the cavity photon loss, the detuning, and the pumping
strength. At the same time, we also stressed that, whenever
the phase symmetry is broken, the pairing gap is opened
at least in principle by a similar mechanism to the Mollow
triplet in resonance fluorescence. This claim is important
because it means that there exist bound e-h pairs even in the
standard lasing regime, in contrast to earlier expectations [65].
Furthermore, the bound e-h pairs are expected also in the
Fermi-edge SF. In this context, our theory revealed that the e-h
BCS phase can indeed be developed after the Fermi-edge SF.
These results strongly encourage the experimental discovery
of the e-h BCS phase in the context the Fermi-edge SF because
the presence of the e-h BCS phase is still very much an open
question.

Aside from this, under the steady-state condition, we
have also presented the formalism to analyze the emission
spectrum and the gain-absorption spectrum, again based on the
generating functional approach; the fully and partially dressed
two-particle GFs have essential roles. For the emission spectra,
we then discussed the origin of the spectral structures by
introducing the energy- and momentum-resolved distributions.
The physical picture is again similar to the Mollow triplet and
the side peaks have information about the carrier distributions
in the renormalized bands. In the gain-absorption spectra, on
the other hand, we pointed out that the results are affected not
only by the distributions in the renormalized bands but also
by the phase difference between the developed order in the
system and the coherent probe field. This result is physically
not surprising because there are two relevant phases in the
gain-absorption spectra: one is the phase of the spontaneous
coherence in the system and the other is the phase of the
external probe field. However, there has been no such claim
in the past, to our knowledge. In addition, we have also noted
that the gain-absorption spectrum is one of the important ways
to verify the lasing gap.

We finally described a general framework based on the
generating functional approach that systematically gives the
coupled equations of motion for the NEGFs. As a result,
the partially dressed NEGFs are naturally introduced to
avoid the double-counting problems. This is one of the most
important advantages to take such an approach.

We have thus developed a prototypical theory to study the
relationship of the cooperative phenomena in a unified view.
However, there remain nontrivial issues on this formalism. For
example, the effect of the spontaneous emission [26,28,128] is
still unclear even though this directly determines the statistical
behavior of the SF. Pure dephasing has a possibility to
significantly modify the intensity ratio of the side peaks,
as pointed out in the cavity quantum electrodynamics using
a single quantum dot [114,132]. The e-h center-of-mass
fluctuation [133] and the mass imbalance [134] are also
important, as discussed in the ultracold atomic systems.

In this context, it will be fruitful to discuss these issues
in the future. It is also interesting to study the equilibrium-
to-nonequilibrium change of the vortex formation [135–137]
and the Andreev reflection [1,138] without the homogeneous
assumptions [Eqs. (129) and (130)] [139]. In such a case,
the recent theoretical advancements on the ultracold atomic
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systems [140] would also be helpful where, based on the NEGF
approach, the quantum kinetics is studied. We believe that our
approach stimulates a different class of studies and paves the
way to providing a bridge between the equilibrium and the
nonequilibrium physics.
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APPENDIX A: EFFECTIVE DISTRIBUTION FUNCTION

To keep the paper as self-contained as possible, we here
derive Eq. (31) from Eqs. (20) and (22) with Eq. (29) under the
steady-state condition even though the equations are equivalent
to our previous work [65,77]. For this purpose, we write
Eq. (29) as

GR
k (ν) = 1

|Dk(ν)|2
(
D∗

k(ν)(ν + ξ̃h,k + iγ ) −D∗
k(ν)Δk

−D∗
k(ν)Δ∗

k D∗
k(ν)(ν − ξ̃e,k + iγ )

)
, (A1)

where

Dk(ν) ≡ (ν − ξ̃−
eh,k + Ek + iγ )(ν − ξ̃−

eh,k − Ek + iγ ). (A2)

From Eq. (25), we then obtain

Ak(ν) = −2

|Dk(ν)|2
(

Im[D∗
k(ν)(ν + ξ̃h,k + iγ )] Im[Dk(ν)]Δk

Im[Dk(ν)]Δ∗
k Im[D∗

k(ν)(ν − ξ̃e,k + iγ )]

)

= −2

|Dk(ν)|2
(−γ {(ν + ξ̃h,k)2 + γ 2 + |Δk|2} 2γΔk(ν − ξ̃−

eh,k)
2γΔ∗

k(ν − ξ̃−
eh,k) −γ {(ν − ξ̃e,k)2 + γ 2 + |Δk|2}

)
. (A3)

We note that the diagonal element A11/22,k(ν) is equivalent to Eq. (30). In the following, we first derive the ν-integral forms of the
population inversion Nk and the polarization pk because Eq. (31) is described by the integration in terms of ν. From Eqs. (20c)
and (22b), the population inversion Nk = ne,k + nh,k − 1 is described as

Nk = − 2

γ
Im[Δkp

∗
k] +

∫
dν

2π

[
f B

e (ν)A11,k(ν) − {
1 − f B

h (−ν)
}
A22,k(ν)

]
, (A4)

where
∫

dν
2π

Aα1α2,k(ν) = δα1α2 has been used as a result of Eq. (144). In a similar manner, Eqs. (20b) and (22a) yield

pk = − Δk

2(ξ̃+
eh,k − iγ )

Nk + γ

ξ̃+
eh,k − iγ

∫
dν

2π

[{
1 − f B

h (−ν)
}
GR

12,k(ν) − f B
e (ν)

[
GR

21,k(ν)
]∗]

. (A5)

By inserting Eq. (A5) into (A4) with Eqs. (A1) and (A3), we find

Nk =
∫

dν

2π

2γ

|Dk(ν)|2
[
f B

e (ν){(ν + ξ̃h,k)2 + γ 2 − |Δk|2} + {
f B

h (−ν) − 1
}{(ν − ξ̃e,k)2 + γ 2 − |Δk|2}

]
. (A6)

As a result, by substituting Eq. (A6) into (A5), we obtain

pk = Δk

∫
dν

2π

2γ

|Dk(ν)|2
[{

f B
h (−ν) − 1

}
(ν − ξ̃e,k − iγ ) − f B

e (ν)(ν + ξ̃h,k + iγ )
]
. (A7)

In the derivation of Eqs. (A6) and (A7), the following equations have been used:

±|Δk|2Im[Dk(ν)(ξ̃+
eh,k ∓ iγ )] + {(ξ̃+

eh,k)2 + γ 2}Im[D∗
k(ν)(ν ∓ ξ̃e/h,k + iγ )] = −γ

(
E2

k + γ 2){(ν ∓ ξ̃e/h,k)2 + γ 2 − |Δk|2},
(ν + ξ̃h,k)2 + γ 2 − |Δk|2 − Dk(ν) = 2(ξ̃+

eh,k − iγ )(ν + ξ̃h,k + iγ ),

(ν − ξ̃e,k)2 + γ 2 − |Δk|2 − D∗
k(ν) = −2(ξ̃eh,k − iγ )(ν − ξ̃e,k − iγ ).

From Eq. (A3), we can write Eq. (A7) as

pk =
∫

dν

2π
f SS

eh,k(ν)A12,k(ν), (A8)

with the definition of f SS
eh,k(ν) [Eq. (32)]. From Eq. (20a) and Δk = g∗a0 + ∑

k′ U
′
k′−kpk′ , we obtain

Δk =
∑

k

U
eff,κ
k′,k pk′ , (A9)
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and, therefore, Eq. (31a) can be found by inserting Eq. (A8). By multiplying Δk by the complex conjugate of Eq. (A7), we further
find

1

γ
Im[Δkp

∗
k] = |Δk|2

∫
dν

2π

2γ

|Dk(ν)|2
{
f B

e (ν) + f B
h (−ν) − 1

}
.

As a result, by substituting this equation into Eq. (20c) with Eq. (A3), Eq. (31b) can be derived with the definitions of Eqs. (32)
and (33).

We have thus derived Eq. (31). We note that the procedure shown here is basically the same as the Appendix II in Ref. [94].

APPENDIX B: PHOTONIC FRACTION

In order to measure the photonic effect, we have defined
the photonic fraction Fph as

Fph ≡ nph

nph + neff
car

,

where nph ≡ |a0|2 is the coherent photon number and neff
car ≡

ncar − ninc
car is the effective carrier number with

ncar ≡ 1

2

∑
k

(ne,k + nh,k),

ninc
car ≡ 1

2

∑
k

(
ninc

e,k + ninc
h,k

)
.

Here, the incoherent carrier number is introduced because
the carriers can be excited even though the Fermi level does
not reach the lowest-energy level of the system due to the
broadening by γ . In other words, the carriers are excited inco-
herently even before the occurrence of the condensation. Such
carriers, therefore, should be eliminated for the evaluation of
the photonic fraction, especially in the low-density regime.

We have therefore determined ninc
car by the value right before

the condensation, namely, the solution for ne/h,k = n0
e/h,k

[Eq. (20c) with ∂t = 0 in the limit of a0 → 0 and pk → 0]:

ninc
e/h,k =

∫
dν

π

γ

(ν − ε̃e/h,k)2 + γ 2

1

1 + exp
{
β

(
ν − μB

e/h

)} ,

(B1)

with using the critical value of μB
e/h. Notice that this value is

equivalent to the carrier number excited before the Fermi level
reaches the lowest-energy level of the system. Figure 21 shows
comparisons between the results with ninc

car �= 0 and ninc
car = 0.
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FIG. 21. (Color online) Comparisons between the results with
ninc

car �= 0 and ninc
car = 0. The parameters are the same as Figs. 5(a)

and 5(b) with the detuning of 0 meV.

If ninc
car is not taken into account, the photonic fraction does not

go to  0.5 even in the low-density regime for the polariton
BEC.

APPENDIX C: CONTOUR EVOLUTION OPERATOR

The contour evolution operator defined in Eq. (54) has the
properties of

Û(ττ ) = 1,

Û(τ3τ2)Û(τ2τ1) = Û(τ3τ1), (C1)

Û−1(τ2τ1) = Û †(τ2τ1) = Û(τ1τ2),

and, if τ2 is later than τ1 on the closed-time contour, the
temporal differentiation of Eq. (54) yields

i∂τ2 Û(τ2τ1) = Ĥ (τ2)Û(τ2τ1),
(C2)

−i∂τ2 Û(τ1τ2) = Û(τ1τ2)Ĥ (τ2).

These features are well known in a similar manner to the
real-time evolution operator [124]. We also note that ŜC(τ2τ1)
defined in Eq. (77) has the same properties when we replace
Û → ŜC and Ĥ (τ ) → Ĥ I

A(τ ) in Eqs. (C1) and (C2).

APPENDIX D: REAL-TIME MATRIX REPRESENTATIONS

To study the real-time dynamics of the physical quantities, it
is convenient to write the two-time NEGFs XC(12) as X̄kl(12)
when τ1 and τ2 are on the contour of Ck and Cl , respectively
[104,141]. The times in X̄kl(12) are now the standard real time
j = {αj ,kj ,tj }, and each component of X̄kl(12) corresponds to(

X̄11(12) X̄12(12)
X̄21(12) X̄22(12)

)
≡

(
Xc(12) X<(12)
X>(12) Xc̄(12)

)
. (D1)

In the case of GC(12), for example, the definitions are
summarized in Table VII. The GFs in the so-called RAK basis
is then obtained by the transformation [104]

Xkl(12) = Lkk′σ
(3)
k′m′X̄m′l′(12)L−1

l′l , (D2)

TABLE VII. The single-particle GFs in the real-time matrix
representation. T and T̄ are the chronological and antichronological
time ordering operators, respectively.

Causal GF Gc(12) −i〈T [ĉα1,k1 (t1)ĉ†α2,k2
(t2)]〉

Anticausal GF Gc̄(12) −i〈T̄ [ĉα1,k1 (t1)ĉ†α2,k2
(t2)]〉

Lesser GF G<(12) +i〈ĉ†α2,k2
(t2)ĉα1,k1 (t1)〉

Greater GF G>(12) −i〈ĉα1,k1 (t1)ĉ†α2,k2
(t2)〉
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TABLE VIII. The inverse of the bare GFs in the RAK basis.

G−1
0 (12) (i∂t1 − ξz1 )δz1z2δ(t1t2)

D−1
0 (12) (i∂t1σ

(3)
z1z2

− ξph,k1δz1z2 )δ(t1t2)

where the summation over the repeated contour indices is
assumed with the definitions of

L ≡ 1√
2

(
1 −1
1 1

)
, L−1 = 1√

2

(
1 1

−1 1

)
, (D3)

and (
X11(12) X12(12)

X21(12) X22(12)

)
≡

(
XR(12) XK(12)

0 XA(12)

)
. (D4)

Here, XR, XA, and XK are called retarded, advanced, and
Keldysh GFs, respectively. The two-time NEGFs can thus be
transformed into the 2 × 2 matrix due to the contour indices.

In the right-hand side of Eqs. (D1) and (D4), however, each
component of XZ (12) can further be regarded as a 2 × 2 matrix
due to the indices of α1 and α2, called the Nambu space. We
describe this element of the matrix as

XZ (12) = δk1 k2X
Z
α1α2,k1

(t1t2), (D5)

where we have used Eq. (130). This means that XC(12)
is practically equivalent to a 4 × 4 matrix in the real-time
representation, sometimes called the Nambu-Keldysh matrix.

In addition to the real-time representation of the two-time
NEGFs, we describe the single-time NEGF XC(1) as X̄k(1)
when τ1 is on the contour Ck . We then define Xk(1) in the
RAK basis as

Xk(1) ≡ Lkk′σ
(3)
k′l′X̄l′(1), (D6)

which allows us to describe aC(1) by a four-component vector

aC(1) −→
√

2

⎛
⎜⎜⎝

ak1 (t1)
a∗

−k1
(t1)

0
0

⎞
⎟⎟⎠ , (D7)

through Eq. (43). However, it is obvious that only the first
component is independent in Eq. (D7), which means that a0(t)
is directly related to the dynamics of aC(1).

Finally, we remark that the inverse of the bare NEGFs
summarized in Table V can also be described in the RAK
basis. Straightforward transformations using Eqs. (D1) and
(D2) yield

G−1
0,kl(12) = δklG

−1
0 (12),

(D8)
D−1

0,kl(12) = δklD
−1
0 (12),

where G−1
0 (12) and D−1

0 (12) are defined in Table VIII. The
temporal differentiations included in G−1

0 (12) and D−1
0 (12)

enable us to describe the dynamics of the relevant physical
quantities, as seen in Sec. VI.

APPENDIX E: WIGNER REPRESENTATIONS

In this Appendix, we briefly explain the Wigner represen-
tation [104,131] for an arbitrary two-time function f (ti tj ). By
introducing the relative time tij ≡ ti − tj and the average time

Tij ≡ (ti + tj )/2, the Wigner representation can be defined by
the Fourier transformation with respect to the relative time

f (Tij ; ν) ≡
∫ ∞

−∞
dtij exp(iνtij )f (ti tj ), (E1)

which is simply described as f (ti tj )
W−→ f (Tij ; ν) in this

paper. The inverse transformation evidently becomes

f (ti tj ) =
∫ ∞

−∞

dν

2π
exp(−iνtij )f (Tij ,ν). (E2)

It is then obvious that any functions under the equal-time
condition can be rewritten by the ν integration as

f (ti tj )|ti=tj =
∫ ∞

−∞

dν

2π
f (Tij ,ν), (E3)

which is useful to describe the physical quantities through
the equal-time GFs [Eqs. (137) and (138)]. Moreover, in the
Wigner representation, it is well known that the convolution of
two functions is transformed into the Moyal product denoted
by �:∫ ∞

−∞
dtkf (ti tk)h(tktj )

W−→ f (Tij ; ν) � h(Tij ; ν)

≡ f (Tij ; ν) exp

{
i

2
(

↼

∂ν

⇀

∂Tij
− ↼

∂Tij

⇀

∂ν)

}
h(Tij ; ν)

= f (Tij ; ν)h(Tij ; ν)

+ i

2
f (Tij ; ν)(

↼

∂ν

⇀

∂Tij
− ↼

∂Tij

⇀

∂ν)h(Tij ; ν) + . . . , (E4)

whereas the temporal differentiations turn into

∂ti f (ti tj )
W−→

{
1

2
∂Tij

− iν

}
f (Tij ; ν),

(E5)

∂tj f (ti tj )
W−→

{
1

2
∂Tij

+ iν

}
f (Tij ; ν)

because ∂ti = 1
2∂Tij

+ ∂tij and ∂tj = 1
2∂Tij

− ∂tij . In particular,
the approximation of taking the first two terms in the last line
of Eq. (E4) is called the gradient approximation.

These features of the Wigner representation are used to
derive Eq. (153) in Sec. VI C 3, for example, giving

G−1
0 ⊗ X

W−→
{

i

2

∂

∂T12
+ ν − ξz1

}
Xz1z2 (T12; ν),

X ⊗ G−1
0

W−→
{

− i

2

∂

∂T12
+ ν − ξz2

}
Xz1z2 (T12; ν), (E6)

X ⊗ Y
W−→ Xz1z3 (T12; ν) � Yz3z2 (T12; ν).

APPENDIX F: SELF-ENERGIES IN THE RAK BASIS

We here derive the total self-energy [Eq. (145)] as ΣC =
ΣH

C + Σel
C + ΣMF

C + Σ
ph
C + Σ

γ

C . In the following, we there-
fore describe the respective contributions of ΣH

C , Σel
C , ΣMF

C ,
Σ

ph
C , and Σ

γ

C shown in Fig. 14 under the HF approximation in
Fig. 20.
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1. Contributions from ΣH
C and Σ

ph
C

We first focus on the contributions from ΣH
C (12) and

Σ
ph
C . In the case for Σ

ph
C , by inserting Eq. (131) into

(103), one readily finds that the contribution from Σ
ph
C (12)

becomes zero. In the case for ΣH
C (12), on the other hand, by

substituting the definition of U ′
C (Table IV) into Eq. (94), we

obtain

ΣH
C (12) = −iδC(τ1τ2)

∑
z3,z4

U ′(z1z4z3z2)GC(τ1τ1; z3z4).

Under the assumption of Eq. (130), we then obtain

ΣH
C (12) = −iδC(τ1τ2)U ′

k2−k1
δk2,k1

×
∑
α3,k3

GC(τ1τ1; α3α3; k3k3),

where we have used the definition of U ′ in Table III. As a
result, the contribution from ΣH

C (12) also becomes zero due to
Eq. (6).

2. Contribution from Σ el
C

We next discuss the contribution from Σel
C (12). By inserting

Eq. (131) into (102), we find

Σel
C (12) = iδC(τ1τ2)

∑
z3,z4

U ′(z1z4z2z3)GC(τ1τ1; z3z4),

with the definition of U ′
C in Table IV. We then obtain

Σel
C (12) = iδk1 k2δC(τ1τ2)

∑
k′

U ′
k′−k1

GC(τ1τ1; α1α2; k′k′),

where Eq. (130) has been used with the definition of the
definition of U ′ in Table III. Based on Appendix D, this
equation can be rewritten in the RAK basis [Eq. (D4)]
as

Σel
ij (12) = iδk1 k2δ(t1t2)δij

∑
k′

U ′
k′−k1

G<(t1t1; α1α2; k′k′).

In the 2 × 2 matrix form, by applying the Wigner transforma-
tion, we therefore obtain ΣK

el (T12; k1k2) = 0 and

ΣR
el (T12; k1k2) = ΣA

el (T12; k1k2)

= −δk1 k2

∑
k′

U ′
k′−k1

(
n1,k′(T12) pk′(T12)
p∗

k′(T12) n2,k′(T12)

)
,

(F1)

where Eq. (137) has been used.

3. Contribution from ΣMF
C

In the case for ΣMF
C , by inserting the definitions of ḡC and

gC (Tables VI and IV) into Eq. (95), we obtain

ΣMF
C (12) = −σ (1)

α1α2
δC(τ1τ2)gα1aα1,k1−k2,C(τ1),

where Eqs. (49) and (60) have been used. The real-time
representation in the RAK basis then becomes

ΣMF
ij (12) = −σ (1)

α1α2
δij δ(t1t2)gα1aα1,k1−k2 (t1).

The Wigner transformation therefore yields ΣK
MF(T12; k1k2) =

0 and

ΣR
MF(T12; k1k2) = ΣA

MF(T12; k1k2)

= −δk1 k2

(
0 g∗a0(T12)

ga∗
0 (T12) 0

)
, (F2)

where we have used Eqs. (43) and (129).

4. Contribution from Σ
γ

C

Finally, we describe the contribution from Σ
γ

C (12). By
using the definition of ςC (Tables III and IV), we can write
Eq. (108) as

Σ
γ

C (12) =
∑
k3,k′

3

ςα1 k1ςα2 k2B0,C(τ1τ2; α1α2; k3k′
3),

where B0,C(12) is the bare NEGF of the pumping bath
determined by Eq. (73) with B−1

0,C in Table V. In the RAK
basis, it follows that

ΣZ
γ (12) =

∑
k3,k′

3

ςα1 k1ςα2 k2B
Z
0 (t1t2; α1α2; k3k′

3) (F3)

forZ ∈ {R,A,K}. We therefore require the bare NEGF BZ
0 (12)

to obtain the self-energy. For this purpose, we introduce the
contour interaction picture with respect to ĤR [Eq. (7)],

ÔR(τ ) ≡ ÛR(τ0τ )ÔS(τ )ÛR(ττ0),

in a similar manner to Eq. (53). Here, ÛR(τ2τ1) is defined by
replacing Ĥ → ĤR in Eq. (54). B0,C(12) can then be described
as

B0,C(12) = −i〈TC[b̂R(1)b̂R†(2)]〉. (F4)

One can easily check this is true because i∂τ1 b̂
R(1) = ξB

z1
b̂R(1).

In the RAK basis, Eq. (F4) reads as

BR
0 (12) = −iδz1z2θ (t12) exp

( − iξB
z1
t12

)
, (F5a)

BA
0 (12) = iδz1z2θ (−t12) exp

( − iξB
z1
t12

)
, (F5b)

BK
0 (12) = −iδz1z2

[
1 − 2

〈
b̂†z1

b̂z1

〉]
exp

( − iξB
z1
t12

)
, (F5c)

where t12 = t1 − t2 is the relative time. Under the assumption
of Eq. (128), the expectation value 〈b̂†z1 b̂z1〉 becomes

〈b̂†z1
b̂z1〉 = 1

1 + exp
{
β

(
εB
α1,k1

− μB
α1

)} .

Here, β = 1/T and μB
α1

is the inverse temperature and the
chemical potential of the pumping bath, respectively. By
inserting Eq. (F5) into (F3) and applying Eqs. (9a) and (10a),
we find

ΣR/A
γ (12) = ∓iγ δz1z2δ(t12), (F6a)

ΣK
γ (12) = −i2γ δz1z2F

B
α1

(t12), (F6b)

where we have introduced F B
α1

(t12) ≡ ∫
dν
2π

F B
α1

(ν)e−iνt12 with
the definition of Eqs. (148) and (149). We note that, in the
derivation of Eq. (F6), only the contribution of k1 = k2 is taken
into account to satisfy Eq. (130). The Wigner transformation
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of Eq. (F6) then yields

ΣR/A
γ (k1k2) = δk1 k2

(∓iγ 0
0 ∓iγ

)
, (F7a)

ΣK
γ (ν; k1k2) = −i2γ δk1 k2

(
F B

1 (ν) 0
0 F B

2 (ν)

)
. (F7b)

We have thus described the contributions from ΣH
C , Σel

C ,
ΣMF

C , Σ
ph
C , and Σ

γ

C in the RAK basis. The self-energy of
Eq. (145) can easily be derived as a summation of these
contributions.

APPENDIX G: FORMALISM FOR THE SPECTRAL
PROPERTIES

In the main text, we have shown that the photon GF and
the fully dressed two-particle GF are required to calculate
the emission spectrum [Eq. (37)] and the gain-absorption
spectrum [Eq. (40)], respectively. In this appendix, within

the assumptions and approximations described in Sec. VI A,
we show the way to estimate the emission spectrum and the
gain-absorption spectrum, based on the generating functional
approach (Sec. V). We note that the steady state is assumed in
this Appendix G for simplicity.

1. Evaluation of the photon GF

We first describe how to estimate the photon GF. From
Eqs. (84) and (90), the Dyson equation for the fully dressed
photon GF [Eq. (116)] can be described as

D−1
C (11′) = D̃−1

0,C(11′) − ΠC(11′)

= D−1
0,C(11′) − Σκ

C (11′) − ΠC(11′), (G1)

when D−1
C is introduced in the same manner as Eq. (96). Under

the steady-state assumption, the Wigner transformation of the
real-time matrix (Appendices E and D) for Eq. (G1) yields the
4 × 4 matrix equation in the RAK basis

(
DR

q (ν) DK
q (ν)

0 DA
q (ν)

)−1

=
(

[DR
q (ν)]−1 −[DR

q (ν)]−1DK
q (ν)[DA

q (ν)]−1

0 [DA
q (ν)]−1

)

=
(

D−1
0,q(ν) − ΣR

κ,q(ν) − ΠR
q (ν) −ΣK

κ,q(ν) − ΠK
q (ν)

0 D−1
0,q(ν) − ΣA

κ,q(ν) − ΠA
q (ν)

)
, (G2)

where the 2 × 2 matrix form of Eq. (D5) has been applied to ΣZ
κ (12) and ΠZ (12), ΣZ

κ,q(ν) corresponds to the Wigner

representation of Eqs. (133) and (134) with k1 = k′
1 = q, and D−1

0,q(ν) is obtained from Eqs. (D8) and (E5) as

D−1
0,q(ν) =

(
ν − ξph,q 0

0 −ν − ξph,q

)
. (G3)

Note that the Wigner representation under the steady-state assumption is just the Fourier transformation with respect to the
relative time. The 2 × 2 matrices of DZ

q (ν) are then given by

DR/A
q (ν) =

(
ν − ξph,q ± iκ − Π

R/A
11,q (ν) −Π

R/A
12,q (ν)

−Π
R/A
21,q (ν) −ν − ξph,q ∓ iκ − Π

R/A
22,q (ν)

)−1

, (G4a)

DK
q (ν) = DR

q (ν)

(−i2κ + ΠK
11,q(ν) ΠK

12,q(ν)

ΠK
21,q(ν) −i2κ + ΠK

22,q(ν)

)
DA

q (ν). (G4b)

The self-energy function ΠZ
α1α2,q(ν) is thus required to obtain DZ

q (ν), which is related to the partially dressed two-particle GF
as seen in Eq. (117). To evaluate ΠZ

α1α2,q(ν), we insert the definitions of gC and ḡC (Tables IV and VI) into Eq. (117) as

ΠC(12) = ig(z1; z′
3z3)K̃0,C(τ1τ2; z3z

′
3z4z

′
4)σ (1)

z5z2
gC(z5; z′

4z4), (G5)

where K̃0,C(τ1τ2; z3z
′
3z4z

′
4) ≡ K̃0,C(τ1τ1τ2τ2; z3z

′
3z4z

′
4) for notational simplicity. The real-time matrix in the RAK basis then

becomes

Πij (12) = ig(z1; z′
3z3)K̃0,ij (t1t2; z3z

′
3z4z

′
4)σ (1)

z5z2
gC(z5; z′

4z4), (G6)

where i and j indicate the ij component of the matrix as defined in Eq. (D4). As a result, with the definition of g(z1; z2z3) in
Table III, the Wigner transformation of Eq. (G6) gives ΠZ

α1α2,q(ν) for Z ∈ {R,A,K} as

ΠZ
q (ν) = i

∑
k1,k2

( |g|2K̃Z
0,11,q(ν; k1k2) g2K̃Z

0,12,q(ν; k1k2)

[g∗]2K̃Z
0,21,q(ν; k1k2) |g|2K̃Z

0,22,q(ν; k1k2)

)
, (G7)

where we have introduced a notation K̃Z
0,q(12) = K̃Z

0,α1α2,q(t1t2; k1k2) ≡ K̃Z
0 (t1t2; α1ᾱ1ᾱ2α2; k1 + q/2,k1 − q/2,k2 − q/2,k2 +

q/2) and ᾱ1/2 denotes the inverse of α1/2; ᾱ1 = 1 for α1 = 2, for example. Equation (G7) can be inserted into Eq. (G4) but the
partially dressed two-particle GF K̃Z

0,α1α2,q(ν; k1k2) is further required to discuss the emission spectrum.
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2. Evaluation of the two-particle GFs

It is now obvious that the two kinds of the two-particle
GFs, namely, the partially dressed one K̃Z

0,α1α2,q(ν; k1k2)
and the fully dressed one KZ

α1α2,q(ν; k1k2), are essential
to study the emission spectrum [Eq. (G7)] and the gain-
absorption spectrum [Eq. (40)]. For this purpose, the BSEs
[Fig. 18; Eqs. (120) and (121)] are now available together
with Eq. (122). With the self-energies shown in Fig. 14 under
the HF approximation (Fig. 20), the integration kernel IC

reduces to

IC(11′22′) = iU ′
C(12′1′2). (G8)

Here, the contribution from the Hartree term [Fig. 14(a)]
is neglected for simplicity because the self-energy becomes
zero due to Eq. (6) in the relevant Dyson equation; see also
Appendix F 1. As a result, substitution of U ′

C [Fig. 12(c)] into
Fig. 18(b) becomes equivalent to the ladder approximation and
we find

K̃0,C(11′22′) = −GC(12′)GC(21′) + GC(13)GC(3′1′)iU ′
C(34′3′4)K̃0,C(44′22′). (G9)

In order to obtain the applicable form to Eqs. (G7) and (40), we set τ ′
1/2 = τ1/2 with replacing α′

1 → ᾱ1, α2 → ᾱ2, α′
2 → α2,

k1 → k1 + q/2, k′
1 → k1 − q/2, k2 → k2 − q/2, and k′

2 → k2 + q/2. Equation (G9) then reads as

K̃0,q,C(12) = −K0,q,C(12) +
∫
C
d3

∫
C
d3′δk1 k3Gα′

3ᾱ1,k1−q/2,C(τ3τ1)Gα1α3,k1+q/2,C(τ1τ3)

× δC(τ3τ
′
3)iU ′

k3−k′
3
K̃0,C(τ ′

3τ2; α3α
′
3ᾱ2α2; k′

3 + q/2,k′
3 − q/2,k2 − q/2,k2 + q/2), (G10)

where the definition of U ′
C has been used (Tables III and IV) and K0,q,C(12) is defined as

K0,q,C(12) = K0,α1α2,q,C(τ1τ2; k1k2) ≡ δk1 k2Gᾱ2ᾱ1,k1−q/2,C(τ2τ1)Gα1α2,k1+q/2,C(τ1τ2). (G11)

To proceed further, we only take α′
3 = ᾱ3 into account in Eq. (G10) for simplicity. As a result, we obtain

K̃0,q,C(12) = −K0,q,C(12) +
∫
C
d3

∫
C
d3′K0,q,C(13){δα3α

′
3
δC(τ3τ

′
3)iU ′

k′
3−k3

}K̃0,q,C(3′2). (G12)

In the RAK basis, the Wigner transformation of Eq. (G12) gives the 4 × 4 matrix form [Eq. (D4)] as

K̃0,q(ν; k1k2) = −K0,q(ν; k1k2) +
∑
k3,k′

3

K0,q(ν; k1k3)T0(ν; k3k′
3)K̃0,q(ν; k′

3k2)

= −K0,q(ν; k1k2) −
∑
k3,k′

3

K0,q(ν; k1k3)T (ν; k3k′
3)K0,q(ν; k′

3k2), (G13)

where T0(ν; k1k2) ≡ iU ′
k1−k2

I4×4 and In×n is the identity matrix of size n. In the second line, T (ν; k1k2) corresponds to the
so-called T matrix [130,142,143] written by

T (ν; k1k2) = T0(ν; k1k2) +
∑
k3,k′

3

T0(ν; k1k3)K0,q(ν; k3k′
3)T (ν; k′

3k2). (G14)

We note that an approximate solution can be obtained for Eq. (G14) if T0(ν; k1k2) depends weakly on the frequency and
momentum [142]

T (ν; k1k2) 
⎡
⎣I4×4 −

∑
k3

T0(ν; k1k3)K0,q(ν; k3k3)

⎤
⎦

−1

T0(ν; k1k2) (G15)

because T0(ν; k′
3k2) can be approximated by T0(ν; k1k2) in Eq. (G14). This approximation becomes exact for the contact potential

U ′
q = U . By inserting Eq. (G15) into (G13), we finally obtain

K̃0,q(ν) ≡
∑
k1,k2

K̃0,q(ν; k1k2) = −
∑

k1

K0,q(ν; k1k1)

⎡
⎣I4×4 −

∑
k3

T0(ν; k1k3)

⎤
⎦

−1

, (G16)

which is again in the 4 × 4 matrix form. Here, K0,q(ν; k1k1) is given from Eq. (G11) by

K
R/A
0,α1α2,q(ν; k1k2) = δk1 k2

2

[
GK

ᾱ2ᾱ1,k1−q/2 ∗ G
R/A
α1α2,k1+q/2 + G

A/R
ᾱ2ᾱ1,k1−q/2 ∗ GK

α1α2,k1+q/2

]
, (G17a)

KK
0,α1α2,q(ν; k1k2) = δk1 k2

2

[
GK

ᾱ2ᾱ1,k1−q/2 ∗ GK
α1α2,k1+q/2 + GR

ᾱ2ᾱ1,k1−q/2 ∗ GA
α1α2,k1+q/2 + GA

ᾱ2ᾱ1,k1−q/2 ∗ GR
α1α2,k1+q/2

]
, (G17b)

115129-36



GENERATING FUNCTIONAL APPROACH FOR . . . PHYSICAL REVIEW B 91, 115129 (2015)

when we write [f ∗ g](ν) ≡ ∫
dν ′
2π

f (ν ′ − ν)g(ν ′). GZ
α1α2,k

(ν)
in Eq. (G17) is obtained by using the steady-state solution;
see also Appendix H. As a result, ΠZ

q (ν) [Eq. (G7)] can be
calculated through Eqs. (G16) and (G17). The formulation for
the emission spectrum is thus completed.

In contrast, for the gain-absorption spectrum, we need the
fully dressed two-particle GF [Eq. (40)] that can be calculated
through Eq. (120) once Eq. (G16) is obtained. The procedure
is quite similar to the way to derive Eq. (G13) from (G9). We
therefore do not repeat the derivation but show only the result
as

[
KR

q (ν)
]−1 = [

K̃R
0,q(ν)

]−1 − Ξq(ν), (G18)

where KR
q (ν) ≡ ∑

k1 k2
KR

q (ν; k1k2) is the 2 × 2 matrix in the
Nambu space. Ξq(ν) is defined as

Ξα1α2,q(ν) ≡ gα1gᾱ2D̃
R
0,α1α2,q(ν). (G19)

Here, g1 = g∗ and g2 = g as in the caption of Table III and
D̃R

0,q(ν) is the retarded part of the partially dressed photon GF:

D̃R
0,q(ν) =

(
ν − ξph,q + iκ 0

0 −ν − ξph,q − iκ

)−1

, (G20)

which is equivalent to Eq. (G4a) in the limit of ΠR
α1α2,q(ν) →

0. KR
q (ν) is thus obtained from Eq. (G18) by using K̃R

0,q(ν)
[Eq. (G16)] and D̃R

0,q(ν) [Eq. (G20)]. As a consequence, the
gain-absorption spectrum can be calculated by inserting the
result into Eq. (40), where the same notation has been applied
to KZ

α1α2,q(t1t2; k1k2) as introduced for K̃Z
0,α1α2,q(t1t2; k1k2) just

below Eq. (G7).

3. Several remarks on the causality

In Sec. IV and Appendices G 1 and G 2, we have described
our formalism to study the emission spectrum and the gain-
absorption spectrum. We have then discussed their properties
with several numerical results. However, we have to mention
that DZ

α1α2,q(ν) sometimes has the pole(s) in the upper half
of the complex ν plane and the causality of the photon GFs
is violated even though such a situation has been avoided in
the presented results. This means that the formalism for the
photon GFs has at least one problem because the causality
of the GFs must be satisfied in general. We therefore discuss
several possibilities to cause the violation of the causality, here.

For this purpose, let us summarize the general procedures
that have been used in our approach to evaluate the photon
GFs, which are divided into four steps as follows:

(1) It is assumed that the system is spatially homogeneous
and there is a steady state.

(2) Only certain kinds of diagrams are taken into account as
approximations and then the steady-state formalism is derived.

(3) Numerical solutions are determined, based on the
steady-state formalism. We note that there are situations
where we can find more than one set of solutions including
unstable states. For example, a0 = pk = 0 is always one of
such solutions.

(4) The photon GFs are evaluated by using the obtained
steady-state solutions. However, note that further approxima-
tions are used to obtain the photon GFs. The contribution from
the Hartree term is neglected in Eq. (G8) and only α′

3 = ᾱ3 is
taken into account in Eq. (G10) for simplicity.

In this context, artificial results can be caused by taking the
assumptions at step 1, by using the approximations at step 2,
by selecting one set of solutions at step 3, and by applying the
approximations for the photon GFs at step 4. The photon GFs
will satisfy the causality if all steps work well. Conversely,
at least one of the steps has a problem when the causality is
violated.

In some situations, the violated causality indicates the
instability of the solution [75], but we stress that this is not
always the case. The evaluation of the causality depends on
the approximations at step 4 even when the same steady-state
solutions are used. In other words, the violated causality for
the photon GFs does not directly mean that the steady-state
solution is unstable. In fact, in some situations, we can find that
the time-evolution of the system is settled in the steady-state
solution even though the causality of the photon GFs is
violated. One major reason might be that the photon GFs do
not play any role to determine the steady-state solution due
to the approximation ΛC(12; 3)  0 [Eq. (131); Fig. 20]. In
this context, ΛC(12; 3)  ḡC(12; 3) [Eq. (127); Fig. 19] is left
as future work, in which the photon GFs will be determined
self-consistently. This will also be essential when studying the
effect of the spontaneous emission.

APPENDIX H: SINGLE-PARTICLE GF IN THE
STEADY STATE

We here derive the single-particle GF under the steady-
state assumption, which is required in the calculation of
KZ

0,q(ν; k1k2) [Eq. (G17)], for example. In a similar manner to
Eqs. (G1)–(G4), the Dyson equation of Eq. (110) reads as

[
G

R/A
k (ν)

]−1 = G−1
0,k(ν) − Σ

R/A
k (ν), (H1a)

GK
k (ν) = [

GR
k (ν)

]−1
ΣK

k (ν)
[
GA

k (ν)
]−1

, (H1b)

where G−1
0,k(ν) corresponds to Eq. (161) in the limit of ∂t =

0. By using the self-energy of Eq. (145) with k1 = k2 = k,
Eq. (H1) yields

G
R/A
k (ν) =

(
ν − ξ̃e,k ± iγ Δk

Δ∗
k ν + ξ̃h,k ± iγ

)−1

, (H2a)

GK
k (ν)=−i2γGR

k (ν)

(
1−2f B

e (ν) 0
0 2f B

h (−ν)−1

)
GA

k (ν)

(H2b)

in the e-h picture of Table I. This means that the single-particle
GF GZ

α1α2,k
(ν) can be obtained when the steady-state solutions

of a0, pk, ne/h,k, and μ are calculated through Eqs. (20)–(24)
with Eq. (23).
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A. Forchel, and Y. Yamamoto, J. Phys. Soc. Jpn. 82, 084709
(2013).

115129-38

http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/PhysRevLett.93.130403
http://dx.doi.org/10.1103/PhysRevLett.93.130403
http://dx.doi.org/10.1103/PhysRevLett.93.130403
http://dx.doi.org/10.1103/PhysRevLett.93.130403
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevLett.96.230403
http://dx.doi.org/10.1103/PhysRevLett.96.230403
http://dx.doi.org/10.1103/PhysRevLett.96.230403
http://dx.doi.org/10.1103/PhysRevLett.96.230403
http://dx.doi.org/10.1103/PhysRevLett.93.130402
http://dx.doi.org/10.1103/PhysRevLett.93.130402
http://dx.doi.org/10.1103/PhysRevLett.93.130402
http://dx.doi.org/10.1103/PhysRevLett.93.130402
http://dx.doi.org/10.1103/PhysRevLett.94.170402
http://dx.doi.org/10.1103/PhysRevLett.94.170402
http://dx.doi.org/10.1103/PhysRevLett.94.170402
http://dx.doi.org/10.1103/PhysRevLett.94.170402
http://dx.doi.org/10.1103/PhysRevLett.96.097005
http://dx.doi.org/10.1103/PhysRevLett.96.097005
http://dx.doi.org/10.1103/PhysRevLett.96.097005
http://dx.doi.org/10.1103/PhysRevLett.96.097005
http://dx.doi.org/10.1103/PhysRevLett.96.230404
http://dx.doi.org/10.1103/PhysRevLett.96.230404
http://dx.doi.org/10.1103/PhysRevLett.96.230404
http://dx.doi.org/10.1103/PhysRevLett.96.230404
http://dx.doi.org/10.1103/PhysRevLett.107.177007
http://dx.doi.org/10.1103/PhysRevLett.107.177007
http://dx.doi.org/10.1103/PhysRevLett.107.177007
http://dx.doi.org/10.1103/PhysRevLett.107.177007
http://dx.doi.org/10.1103/PhysRevLett.106.205303
http://dx.doi.org/10.1103/PhysRevLett.106.205303
http://dx.doi.org/10.1103/PhysRevLett.106.205303
http://dx.doi.org/10.1103/PhysRevLett.106.205303
http://dx.doi.org/10.1103/PhysRevLett.109.187002
http://dx.doi.org/10.1103/PhysRevLett.109.187002
http://dx.doi.org/10.1103/PhysRevLett.109.187002
http://dx.doi.org/10.1103/PhysRevLett.109.187002
http://dx.doi.org/10.1103/PhysRevLett.111.057002
http://dx.doi.org/10.1103/PhysRevLett.111.057002
http://dx.doi.org/10.1103/PhysRevLett.111.057002
http://dx.doi.org/10.1103/PhysRevLett.111.057002
http://dx.doi.org/10.1051/jphys:019820043070106900
http://dx.doi.org/10.1051/jphys:019820043070106900
http://dx.doi.org/10.1051/jphys:019820043070106900
http://dx.doi.org/10.1051/jphys:019820043070106900
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1007/BF00683774
http://dx.doi.org/10.1088/0953-8984/16/35/003
http://dx.doi.org/10.1088/0953-8984/16/35/003
http://dx.doi.org/10.1088/0953-8984/16/35/003
http://dx.doi.org/10.1088/0953-8984/16/35/003
http://dx.doi.org/10.1103/PhysRevLett.107.256403
http://dx.doi.org/10.1103/PhysRevLett.107.256403
http://dx.doi.org/10.1103/PhysRevLett.107.256403
http://dx.doi.org/10.1103/PhysRevLett.107.256403
http://dx.doi.org/10.1103/PhysRevB.86.115314
http://dx.doi.org/10.1103/PhysRevB.86.115314
http://dx.doi.org/10.1103/PhysRevB.86.115314
http://dx.doi.org/10.1103/PhysRevB.86.115314
http://dx.doi.org/10.1038/ncomms1335
http://dx.doi.org/10.1038/ncomms1335
http://dx.doi.org/10.1038/ncomms1335
http://dx.doi.org/10.1038/ncomms1335
http://dx.doi.org/10.1103/PhysRevB.85.195206
http://dx.doi.org/10.1103/PhysRevB.85.195206
http://dx.doi.org/10.1103/PhysRevB.85.195206
http://dx.doi.org/10.1103/PhysRevB.85.195206
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1038/285070a0
http://dx.doi.org/10.1038/285070a0
http://dx.doi.org/10.1038/285070a0
http://dx.doi.org/10.1038/285070a0
http://dx.doi.org/10.1103/PhysRevLett.96.237401
http://dx.doi.org/10.1103/PhysRevLett.96.237401
http://dx.doi.org/10.1103/PhysRevLett.96.237401
http://dx.doi.org/10.1103/PhysRevLett.96.237401
http://dx.doi.org/10.1038/nphys2207
http://dx.doi.org/10.1038/nphys2207
http://dx.doi.org/10.1038/nphys2207
http://dx.doi.org/10.1038/nphys2207
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevA.4.302
http://dx.doi.org/10.1103/PhysRevA.4.302
http://dx.doi.org/10.1103/PhysRevA.4.302
http://dx.doi.org/10.1103/PhysRevA.4.302
http://dx.doi.org/10.1103/PhysRevA.4.854
http://dx.doi.org/10.1103/PhysRevA.4.854
http://dx.doi.org/10.1103/PhysRevA.4.854
http://dx.doi.org/10.1103/PhysRevA.11.1507
http://dx.doi.org/10.1103/PhysRevA.11.1507
http://dx.doi.org/10.1103/PhysRevA.11.1507
http://dx.doi.org/10.1103/PhysRevA.11.1507
http://dx.doi.org/10.1103/PhysRevA.12.587
http://dx.doi.org/10.1103/PhysRevA.12.587
http://dx.doi.org/10.1103/PhysRevA.12.587
http://dx.doi.org/10.1103/PhysRevA.19.1192
http://dx.doi.org/10.1103/PhysRevA.19.1192
http://dx.doi.org/10.1103/PhysRevA.19.1192
http://dx.doi.org/10.1103/PhysRevA.19.1192
http://dx.doi.org/10.1103/PhysRev.112.1940
http://dx.doi.org/10.1103/PhysRev.112.1940
http://dx.doi.org/10.1103/PhysRev.112.1940
http://dx.doi.org/10.1103/PhysRev.112.1940
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1103/PhysRevLett.6.106
http://dx.doi.org/10.1103/PhysRevLett.6.106
http://dx.doi.org/10.1103/PhysRevLett.6.106
http://dx.doi.org/10.1103/PhysRevLett.6.106
http://dx.doi.org/10.1103/PhysRevLett.30.309
http://dx.doi.org/10.1103/PhysRevLett.30.309
http://dx.doi.org/10.1103/PhysRevLett.30.309
http://dx.doi.org/10.1103/PhysRevLett.30.309
http://dx.doi.org/10.1103/PhysRevLett.42.224
http://dx.doi.org/10.1103/PhysRevLett.42.224
http://dx.doi.org/10.1103/PhysRevLett.42.224
http://dx.doi.org/10.1103/PhysRevLett.42.224
http://dx.doi.org/10.1126/science.1176695
http://dx.doi.org/10.1126/science.1176695
http://dx.doi.org/10.1126/science.1176695
http://dx.doi.org/10.1126/science.1176695
http://dx.doi.org/10.1103/PhysRevB.64.195209
http://dx.doi.org/10.1103/PhysRevB.64.195209
http://dx.doi.org/10.1103/PhysRevB.64.195209
http://dx.doi.org/10.1103/PhysRevB.64.195209
http://dx.doi.org/10.1134/1.2086126
http://dx.doi.org/10.1134/1.2086126
http://dx.doi.org/10.1134/1.2086126
http://dx.doi.org/10.1134/1.2086126
http://dx.doi.org/10.1088/0034-4885/72/7/076501
http://dx.doi.org/10.1088/0034-4885/72/7/076501
http://dx.doi.org/10.1088/0034-4885/72/7/076501
http://dx.doi.org/10.1088/0034-4885/72/7/076501
http://dx.doi.org/10.1103/PhysRevB.84.115206
http://dx.doi.org/10.1103/PhysRevB.84.115206
http://dx.doi.org/10.1103/PhysRevB.84.115206
http://dx.doi.org/10.1103/PhysRevB.84.115206
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1103/PhysRevLett.69.3314
http://dx.doi.org/10.1063/1.122248
http://dx.doi.org/10.1063/1.122248
http://dx.doi.org/10.1063/1.122248
http://dx.doi.org/10.1063/1.122248
http://dx.doi.org/10.1103/RevModPhys.71.1591
http://dx.doi.org/10.1103/RevModPhys.71.1591
http://dx.doi.org/10.1103/RevModPhys.71.1591
http://dx.doi.org/10.1103/RevModPhys.71.1591
http://dx.doi.org/10.1126/science.1074464
http://dx.doi.org/10.1126/science.1074464
http://dx.doi.org/10.1126/science.1074464
http://dx.doi.org/10.1126/science.1074464
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1088/0022-3727/45/31/313001
http://dx.doi.org/10.1088/0022-3727/45/31/313001
http://dx.doi.org/10.1088/0022-3727/45/31/313001
http://dx.doi.org/10.1088/0022-3727/45/31/313001
http://dx.doi.org/10.7566/JPSJ.82.084709
http://dx.doi.org/10.7566/JPSJ.82.084709
http://dx.doi.org/10.7566/JPSJ.82.084709
http://dx.doi.org/10.7566/JPSJ.82.084709


GENERATING FUNCTIONAL APPROACH FOR . . . PHYSICAL REVIEW B 91, 115129 (2015)

[55] N. Ishida, T. Byrnes, T. Horikiri, F. Nori, and Y. Yamamoto,
Phys. Rev. B 90, 241304 (2014).

[56] A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev.
A 53, 4250 (1996).

[57] L. S. Dang, D. Heger, R. André, F. Bœuf, and R. Romestain,
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