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Dilute magnetic topological semiconductors
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Replacing semiconductors with topological insulators, we propose the problem of dilute magnetic topological
semiconductors. Performing the renormalization group analysis for an effective field theory, where doped
magnetic impurities give rise to a spatially modulated random axion term, we find a novel insulator-metal
transition from either a topological or band insulating phase to an inhomogeneously distributed Weyl metallic
state with such insulating islands, where extremely broad distributions of ferromagnetic clusters combined with
strong spin-orbit interactions are responsible for the emergence of randomly distributed Weyl metallic islands.
Since electromagnetic properties in a Weyl metal are described by axion electrodynamics, the role of random
axion electrodynamics in transport phenomena casts an interesting problem beyond the physics of percolation in
conventional disorder-driven metal-insulator transitions.
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I. INTRODUCTION

The role of localized magnetic moments in metal-insulator
transitions [1] lies at the heart of modern condensed matter
physics, for example, the mechanism of high-Tc superconduc-
tivity [2], the nature of non-Fermi-liquid physics near heavy-
fermion quantum criticality [3], and the problem of metal-
insulator transitions in doped semiconductors [4–6]. Dilute
magnetic semiconductors had been investigated for more than
twenty years [7], where such spin-polarized electric currents
have been realized but at low temperatures much below room
temperature, prohibiting us from device applications. How-
ever, interactions between doped magnetic ions and a small
number of charge carriers raised interesting and fundamental
physics problems, for example, the nature of the RKKY
(Ruderman-Kittel-Kasuya-Yosida) interaction [8] away from
good metals, the mechanism of ferromagnetic ordering in
randomly distributed magnetic ions, and anomalous transport
properties in the presence of scattering with random magnetic
impurities.

In this study, we propose the problem of dilute magnetic
topological semiconductors, replacing nontopological semi-
conductors with topological semiconductors [9,10]. Recently,
it has been reported that the evolution of average mag-
netic correlations from ferromagnetic to antiferromagnetic in
FexBi 2Te 3 gives rise to changes in transport properties of
magnetoresistivity and Hall effect, identified with topological
“phase transitions” driven by dynamics of doped magnetic
impurities, where the paramagnetic topological “semicon-
ductor” of Bi2Te 3 turns into a normal semiconductor with
ferromagnetic-cluster glassy-like behaviors around x ∼ 0.025,
and it further evolves into a topological “semiconductor”
with valence-bond glassy-like behaviors, which spans over
the region between x ∼ 0.03 up to x ∼ 0.1 [11]. Although
these experiments could not reach the semiconducting regime,
interactions between randomly distributed magnetic ions and
itinerant electrons with topological properties cast a novel
physics problem beyond the problem of dilute magnetic
semiconductors, that is, interplay between the evolution of
magnetic correlations in localized magnetic moments and
anomalous transport phenomena in itinerant electrons with
topological properties.

Performing the renormalization group analysis for an
effective field theory to describe the first occurring “phase
transition” within the “ferromagnetic” regime, we find that the
variance of the distribution for randomly quenched effective
magnetic fields due to ferromagnetic clusters goes toward
an infinite fixed point as the concentration of magnetic ions
increases. Recalling that time reversal symmetry breaking
in this strong spin-orbit coupled system gives rise to the
Weyl metallic state [12–15], the infinite variance fixed point
implies the emergence of randomly distributed Weyl metallic
islands which coexist with topological semiconducting phases
inhomogeneously, where local breaking of time reversal
symmetry due to ferromagnetic clusters with large effective
magnetic fields is responsible. See Fig. 1. Based on this
physical picture, we propose a schematic phase diagram of
Fig. 2 in (λso,�,T ), where λso is the spin-orbit coupling
constant, � is the variance of the distribution for randomly
quenched effective magnetic fields given by ferromagnetic
clusters, and T is temperature. First of all, we find an unstable
fixed point with (λc

so,�c) at T = 0, where λc
so corresponds

to the quantum critical point of a topological phase transition
between a topological semiconductor (λso → ∞,� = 0) and a
normal semiconductor (λso = 0,� = 0) [16], and �c identifies
a novel disordered quantum critical point between one fixed
point of (λso,� = 0) and the other of (λc

so,� → ∞) at T = 0.
Although the nature of this infinite variance fixed point is
not fully clarified within our perturbative renormalization
group analysis, we conjecture to identify such a fixed
point with the inhomogeneously distributed Weyl metallic
state which coexists with insulating islands, as discussed
before. The appearance of inhomogeneously distributed Weyl
metallic islands suggests a novel disorder-driven insulator-
metal transition, regarded to be counterintuitive since the
metallic state results from increasing the strength of magnetic
disorders. Frankly speaking, it is not clear at all whether
or not the finite variance fixed point corresponds to this
insulator-metal transition exactly because a percolation-type
transition must be involved in order to have a genuine metallic
state, where Weyl metallic islands should be connected to
each other. However, this metal-insulator transition is beyond
the percolation physics [17] since electromagnetic properties
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FIG. 1. (Color online) Band structure of the Weyl metallic state.
Each band structure corresponds to H = 0, H < m(|k|), H �
m(|k|), and H � m(|k|) = 0, respectively, where H = H ẑ is an
effective magnetic field, which originates from ferromagnetic clusters
(J�r ), conjectured to appear from RKKY interactions. The last two
cases are identified with a Weyl metallic phase.

in a Weyl metal are described not by conventional Maxwell
dynamics but by axion electrodynamics [10,18–20]. See
Appendix B for axion electrodynamics in a Weyl metallic
phase. The role of random axion electrodynamics in transport
phenomena of the disordered metallic state implies that the
present metal-insulator transition does not fall into the class
of either Anderson-type [5] or Mott-type [1] metal-insulator
transitions [6], regarded as a novel class of metal-insulator
transitions.

The problem of dilute magnetic topological semiconductors
differs from that of randomly doped magnetic impurities on
the surface state of a topological insulator. One may speculate
that half-quantized Hall conductance appears with Anderson
localization if doped magnetic ions exhibit ferromagnetic
ordering. On the other hand, an anomalous metallic phase
can emerge to fall into the universality class of the quantum
Hall plateau-plateau transition in the paramagnetic phase
although an actual transition occurs between the quantum
Hall plateau and the gapless surface state, where Anderson
localization may not exist due to the presence of time reversal
symmetry on average [21]. Although self-consistency must
be incorporated to determine both the magnetic structure and
Anderson localization at the same time, this surface-state
problem should be distinguished from the problem of dilute
magnetic topological semiconductors in the respect that axion
electrodynamics does not appear. Randomly arising axion
electrodynamics is the characteristic feature of dilute magnetic
topological semiconductors.

II. MODEL HAMILTONIAN

We start from an effective-model free energy [20]

F = −T

∫ ∞

−∞
dIr r ′P (Ir r ′) ln

∫
DψkτDSrτ exp

[
−
∫ 1/T

0
dτ

×
∫

d3k
(2π )3

ψ†
σα(k,τ )

{
(∂τ − μ)Iσσ ′ ⊗ Iαα′ + vk · σ σσ ′

FIG. 2. (Color online) A schematic phase diagram based on
the renormalization group analysis for an effective field theory
Eq. (3). The y axis represents a spin-orbit coupling constant λso

or a mass parameter m, and the x axis denotes a variance of the
distribution for randomly quenched effective magnetic fields �,
given by ferromagnetic clusters. T is temperature. Arrows mean
renormalization group flows. There exist three stable fixed points,
where (λso = 0,� = 0) and (λso → ∞,� = 0) correspond to a band
insulating phase (BI) and a topological semiconducting state (TS),
respectively, while the infinite variance fixed point of (λc

so,� → ∞)
is interpreted to be an inhomogeneously distributed Weyl metallic
phase (disordered WM) which coexists with randomly distributed
insulating states. Two unstable fixed points imply two kinds of
phase transitions. (λc

so,� = 0) is a quantum critical point between
the topological insulating and normal semiconducting phases in the
absence of magnetic impurities. (λc

so,�c) identifies a novel quantum
critical point, conjectured to be associated with an insulator-metal
transition, where the metallic state is not a conventional diffusive
Fermi-liquid phase but quite an unconventional inhomogeneous Weyl
metallic state. However, it is not clear at all whether or not this critical
point coincides with this novel metal-insulator transition since a
percolation-type transition must be involved in order to have a genuine
metallic state, where Weyl metallic islands should be connected to
each other. An important point is that electromagnetic properties of a
Weyl metal are described by axion electrodynamics, where they are
unknown transport properties in this disordered metallic state and at
the disordered quantum critical point.

⊗τ z
αα′ + m(|k|)Iσσ ′ ⊗ τ x

αα′

}
ψσ ′α′ (k,τ ) −

∫ 1/T

0
dτ

×
∫

d3rJψ†
σα(r,τ )(σ σσ ′ ⊗ Iαα′ )ψσ ′α′ (r,τ ) · S(r,τ )

−
∫ 1/T

0
dτ

∫
d3r

∫
d3r ′Ir r ′ S(r,τ ) · S(r ′,τ ) − SB

]
.

(1)

Here, ψσα(k,τ ) represents a four-component Dirac spinor,
where σ and α are spin and chiral indexes, respectively.
σ σσ ′ and τ αα′ are Pauli matrices acting on spin and “orbital”
spaces. The relativistic dispersion is represented in the chiral
basis, where each eigenvalue of τ z

αα′ expresses either + or
− chirality, respectively. The mass term can be formulated
as m(|k|) = m − ρ|k|2, where sgn(m)sgn(ρ) > 0 corresponds
to a topological insulating state while sgn(m)sgn(ρ) < 0
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corresponds to a normal band insulating phase. The topological insulating state identified with positivity of the mass of Dirac
electrons corresponds to the case that the spin-orbit coupling constant is larger than its critical value. On the other hand, when the
spin-orbit coupling constant is smaller than its critical value, the sample resides in a band insulating phase, where the sign of the
mass is negative. μ is a chemical potential, controlled by doping. Magnetic impurities S(r,τ ) experience RKKY interactions [22],
denoted by Ir r ′ . Since they are doped at random positions, we take the coupling constant as a random variable, described by
the Gaussian distribution function P (Ir r ′). Such magnetic impurities also interact with conduction electrons, described by the
Kondo-type interaction J . SB is a Berry phase term in the spin coherent-state representation [23].

Hinted from the recent experiment [11], we take into account randomly distributed ferromagnetic “cluster” ordering.
Introducing a neutral fermion field to describe an impurity spin as S(r,τ ) = 1

2f †
σ (r,τ )σ σσ ′fσ ′(r,τ ) with a single-occupancy

constraint f †
σ (r,τ )fσ (r,τ ) = 1, and performing the standard decomposition [2] in this effective model, we construct

FMF[�r ,λr ; μ,T ]

= −T

∫ ∞

−∞
dIr r ′P (Ir r ′) ln

∫
Dψσα(r,τ )Dfσ (r,τ ) exp

[
−
∫ 1/T

0
dτ

∫
d3k

(2π )3
ψ†

σα(k,τ )
{
(∂τ − μ)Iσσ ′ ⊗ Iαα′

+ vk · σ σσ ′ ⊗ τ z
αα′ + m(|k|)Iσσ ′ ⊗ τ x

αα′
}
ψσ ′α′ (k,τ ) −

∫ 1/T

0
dτ

∫
d3rJψ†

σα(r,τ )(σ σσ ′ ⊗ Iαα′ )ψσ ′α′(r,τ ) · �r

−
∫ 1/T

0
dτ

∫
d3r

∫
d3r ′f †

σ (r,τ ){(∂τ + λr )δσσ ′δ(3)(r − r ′)

+ Ir r ′(�r ′ · σ )σσ ′ }fσ ′(r ′,τ ) − 1

T

∫
d3r

∫
d3r ′{λrδ

(3)(r − r ′) − Ir r ′�r · �r ′ }
]

, (2)

where �r is a ferromagnetic order parameter and λr is a
Lagrange multiplier field to impose the single-occupancy
constraint, given by a functional of Ir r ′ in the self-consistent
mean-field analysis.

This magnetic evolution gives rise to the variation
in transport properties as discussed in the introduction.
In particular, normal metallic transport properties
in magnetoresistivity and Hall effect appear from
topological semiconducting transport behaviors in
the ferromagnetic-on-average region before the
antiferromagnetic-on-average region. According to the
above physical picture, randomly frozen magnetic clusters
described by �r generate effective magnetic fields to
itinerant electrons. As a result, the “local” spectrum
of itinerant electrons becomes modified into Er (k) =
−μ ±

√
v2(k2

x + k2
y) + [J |�r | ±√m2(|k|) + v2k2

z ]2. This
local spectrum implies that the gap of a topological
semiconductor vanishes at position r in the case of
J |�r | > |m(|k|)|, splitting the Dirac spectrum into a pair of
Weyl points locally. See Fig. 1. Then, a Weyl metallic island
arises from a topological semiconducting island at position
r , regarded as being an insulator-metal “transition” driven
by random magnetic moments. Inhomogeneously distributed
topological semiconductor and Weyl metal islands are the

characteristic feature of the dilute magnetic topological semi-
conductor in the ferromagnetic regime.

III. RENORMALIZATION GROUP ANALYSIS

In order to understand the nature of such inhomogeneous
mixtures, we construct an effective field theory based on the
above physical picture. It is straightforward to show that
randomly quenched effective magnetic fields (J�r ) corre-
spond to random chiral gauge fields (c), rewriting the effective
Hamiltonian of the ferromagnetic regime into the standard
representation of the Dirac theory with the introduction of
Dirac gamma matrices as follows, S = ∫ d4xψ̄(iγ μ∂μ − m +
γ μγ 5cμ)ψ , where the distribution function of cμ is assumed to
be Gaussian with its variance �, meaning that the distribution
of effective magnetic moments of ferromagnetic clusters is
Gaussian [24]. See Appendix A. Applying the replica trick
and performing the Gaussian integral for random chiral gauge
fields, we find that effective nonlocal-in-time “interactions” of
chiral currents arise between different replicas [5]. Rewriting
the bare action in terms of renormalized fields and renormal-
ized coupling constants with the introduction of counterterms,
i.e., SB = SR + SCT, we construct an effective field theory for
renormalization group analysis:

SR =
∫ β

0
dτ

∫
dd−1r

{
ψ̄a

R(r,τ )(iγ τ ∂τ + ivRγ · ∇ − mR)ψa
R(r,τ )

+ �R

2

∫ β

0
dτ ′ψ̄a

R(r,τ )γ μγ 5ψa
R(r,τ )ψ̄a′

R (r,τ ′)γμγ 5ψa′
R (r,τ ′)

}
,

SCT =
∫ β

0
dτ

∫
dd−1r

{
ψ̄a

R(r,τ )(δω
ψiγ τ ∂τ + δk

ψivRγ · ∇ − δmmR)ψa
R(r,τ )

+ δ�

�R

2

∫ β

0
dτ ′ψ̄a

R(r,τ )γ μγ 5ψa
R(r,τ )ψ̄a′

R (r,τ ′)γμγ 5ψa′
R (r,τ ′)

}
. (3)
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Here, ψa
R(r,τ ) is a renormalized electron field with a replica

index a = 1, . . . ,R, and vR , mR , �R are renormalized velocity,
renormalized mass, renormalized variance, respectively. δω

ψ ,
δk
ψ , δm, and δ� are introduced to absorb infinities resulting from

quantum corrections. These renormalized field and parameters
are related with the bare field and parameters as follows:

ψa
B(r,τ ) = Zω

ψ

1
2 ψa

R(r,τ ), vB = Zk
ψZω

ψ
−1

vR,

mB = ZmZω
ψ

−1
mR, �B = μεZ�Zω

ψ
−2

�R, (4)

where renormalization constants are given by

Zω
ψ = 1 + δω

ψ, Zk
ψ = 1 + δk

ψ,

Zm = 1 + δm, Z� = 1 + δ�. (5)

Here, μ is a scale of momentum, distinguished from the
chemical potential before and ε = d − 3.

Before going further, we would like to clarify that the
present study focuses on insulating phases as the first step
while the previous experiment [11] has been performed in the
metallic region. In this respect it needs some care to apply our
renormalization group analysis to the experiment directly. We
come back to this point below.

Performing the standard procedure for the renormalization
group analysis, we find renormalization group equations,
where both vertex and self-energy corrections are introduced
self-consistently. See Fig. 3, where all quantum corrections
are shown as Feynman diagrams up to the one-loop order
for vertex corrections and the two-loop order for self-energy

pp p − q

q(q0 = 0)

γμγ5 γμγ
5

p p − q p − q − l p − q p

q(q0 = 0)

l(l0 = 0)

γμγ5 γνγ5 γνγ
5 γμγ

5

p p − q p − q − l p − l

q(q0 = 0) l(l0 = 0)

γμγ5

p

γνγ5 γμγ
5 γνγ

5

l(l0 = 0) l + q(q0 = 0)

p p − l

p − q p − l − q p

p + q

γμγ5 γνγ5

γνγ
5γμγ

5

l(l0 = 0) q + l(q0 = 0)

γμγ5 γνγ5

γμγ
5 γνγ

5

p p − l

p p + l p − q

p + q

p p + q

p p − q

q(q0 = 0)

l(l0 = 0)

p − l p + q − l

γμγ5 γμγ
5γνγ5

γνγ
5

FIG. 3. Feynman diagrams up to the one-loop order for vertex corrections and the two-loop order for self-energy corrections. First of all,
we point out that quantum corrections including fermion loops vanish in the replica limit of NR → 0. Three types of quantum corrections
contribute to the vertex renormalization. It turns out that the 1/ε divergence in the ladder diagram of the particle-hole channel is canceled
by that of the particle-particle channel, where the diagram with a vertex correction does not cause the divergence. As a result, the vertex
renormalization constant remains to be Z� = 1. The Fock diagram results in the 1/ε divergence for the fermion self-energy in the one-loop
order, and both the rainbow diagram and the crossed diagram with a vertex correction also cause that in the two-loop order. The wave-function
renormalization constant Zω

ψ is given by these three contributions. In particular, the role of the rainbow diagram turns out to be essential,
meaning that we cannot reach the disorder-driven novel metallic fixed point without it, where the sign of bm changes from negative to positive
in the renormalization group equation for the mass parameter.

corrections. All details are shown in Appendixes C, D, E,
and F. Here, we point out that the renormalization constant
of the “interaction” vertex remains to be Z� = 1, where the
divergence of the particle-hole ladder diagram is canceled
by that of the particle-particle channel while other vertex
corrections do not give rise to divergences. On the other hand,
the Fock diagram in the one-loop order and both the rainbow
diagram and the crossed diagram with a vertex correction in
the two-loop order for self-energy corrections contribute to
the wave-function renormalization constant while others do
not cause divergences. In particular, the role of the rainbow
diagram turns out to be crucial in the emergence of a novel
metallic fixed point of �R → ∞ and mR → 0, identified with
a disordered Weyl metallic phase. As a result, we find

d ln �R

d ln μ
= 1 − a��R − b��2

R,

d ln mR

d ln μ
= −1 − am�R + bm�2

R, (6)

where positive numerical constants are given by a� = 2
π

,
b� = 29

4π2 , am = 3
π

, and bm = 3
2π2 . We emphasize that the

chemical potential lies between the band gap. The renor-
malization group flow of these equations is shown in Fig. 4,
which confirms our proposed phase diagram (Fig. 2). First, we
focus on the quantum critical point of the topological phase
transition, identified with mR = 0. Then, it is easy to see that
there exists an unstable disorder fixed point �R = �c, which
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FIG. 4. (Color online) Renormalization group flow as the solution of the coupled renormalization group equations (6). A characteristic
feature is the emergence of a novel stable fixed point (mR = 0,�R → ∞), identified with an inhomogeneously distributed Weyl metallic
phase which coexists with insulating islands (right). This metallic fixed point originates from random fluctuations of chiral currents due to
effective random magnetic fields of ferromagnetic clusters. There exists a quantum phase transition of the second order between the Dirac
semimetallic state (mR = 0,�R = 0) and the disordered Weyl metallic phase (mR = 0,�R → ∞), identified with a disorder-driven quantum
critical point (mR = 0,�R = �c) (left). On the other hand, it would be the first-order quantum phase transition between an insulating phase of
either (mR → ∞,�R = 0) (topological insulator) or (mR → −∞,�R = 0) (normal semiconductor) and the disordered Weyl metal state. See
the text for more details.

separates two stable fixed points of �R = 0 and �R → ∞. This
means that the Dirac semimetallic state, arising at the critical
point, remains to be stable in the case of weak randomness,
expected since the density of states vanishes. However, it
is quite interesting that antiscreening appears for random
fluctuations in chiral currents in contrast with those in charge
currents. Recall that the electric charge is screened to decrease
at low energies [2]. Second, we start from an insulating phase,
increasing the variance of random chiral gauge fields. Then,
we reach a novel stable fixed point of (mR → 0,�R → ∞),
separated from two insulating fixed points of (mR → ∞,

�R → 0) (topological insulator) and (mR → −∞,�R → 0)
(band insulator). The appearance of this fixed point is quite
surprising since the mass parameter renormalizes to vanish,
which originates from random fluctuations of chiral currents.
Although metallicity can be enhanced by the interplay between
disorders and interactions [25], the present metallicity results
from the interplay between randomness and topology of a band
structure in the approach of an effective field theory.

One may understand the emergence of this novel metallic
fixed point as follows. First of all, �R → ∞ is difficult
to be compatible with mR → ±∞ since �R → ∞ implies
that most regions become Weyl metallic with �R � mR ,
giving rise to gap closing inevitably. The only consistent
way for the existence of (mR → ±∞,�R → ∞) is that the
mass parameter increases faster than the variance of effective
magnetic fields. Actually, we find that the mass gap increases
faster than the variance if we neglect the renormalization
given by the rainbow diagram. This means that the Weyl
metallic island does not occur and the insulating phase survives
although the variance goes toward an infinite fixed point.
We believe that this does not make any sense because we

fail to figure out the nature of a quantum phase transition
between two insulating phases given by (mR → ∞,�R = 0)
and (mR → ∞,�R → ∞), focusing on the semiconducting
(either topological or normal) side. Suppose that the sample
lies deep inside in the band or topological insulating region,
i.e., either m → −∞ or m → ∞, respectively. It is certainly
true that there exists a quantum critical point to distinguish
�R → 0 from �R → ∞, which resides in the weak-coupling
regime, thus justified within our perturbative renormalization
group analysis. Then, we have two stable fixed points along the
line of either m → −∞ or m → ∞. What does the quantum
critical point mean? Remember that we are in an insulating
phase. It is difficult to imagine the existence of such a quantum
critical point in this situation. If we believe in the existence
of the quantum critical point, certainly justified within our
renormalization group analysis, we conclude that the infinite
randomness fixed point or a strong-coupling variance fixed
point beyond the perturbative regime at least should exist.
Incorporating the contribution of the rainbow diagram, we
observe that the sign of bm in the renormalization group
equation for the mass parameter changes from negative to
positive, giving rise to the disorder-driven metallic fixed point.
We interpret this infinite variance fixed point with zero mass
gap as an inhomogeneously distributed Weyl metallic state,
where transport properties are described by axion electro-
dynamics, which should be distinguished from the diffusive
Fermi-liquid state [5]. The nature of the quantum phase transi-
tion between (mR → ±∞,�R = 0) and (mR = 0,�R → ∞)
is expected to be the first order, where an insulating phase
persists just before the disordered Weyl metallic state. How-
ever, we cannot exclude the possibility of an additional
phase transition associated with percolation, which may be
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responsible for a genuine insulator-metal transition beyond
the present description.

We speculate what would happen when the chemical
potential lies above the band gap, resulting in a Fermi surface.
First of all, the presence of the Fermi surface changes the
engineering dimension of the variance �R from +1 to −1,
making it relevant. Keeping the physics of antiscreening,
we write down the renormalization group equation for the
“interaction” vertex

d ln �R

d ln μ
= −1 − c�R,

where c is a positive numerical constant. This allows the
�R → ∞ fixed point only in the low-energy limit. Considering
the emergence of randomly distributed Weyl metallic islands
in the case of zero chemical potential, we expect that the Dirac
point is separated into a pair of Weyl points locally due to local
time reversal symmetry breaking if the critical point of mR = 0
is taken into account for example, and thus the single Fermi
surface with degeneracy in the Dirac spectrum splits into a
pair of chiral Fermi surfaces locally, which encloses each Weyl
point with definite chirality. The nature of a pair of chiral Fermi
surfaces turns out to differ from a normal Fermi surface in the
respect that both the Berry curvature, which originates from the
Weyl point identified with a magnetic monopole in momentum
space, and chiral anomaly, which means that this pair of
Weyl points are not independent but connected to each other,
change electromagnetic properties seriously, described by the
axion electrodynamics [12,15,19,20], as discussed before. The
emergence of a randomly distributed pair of chiral Fermi
surfaces is an essential feature when the chemical potential
lies above the band gap, regarded to be an extended physical
picture of the case of zero chemical potential.

IV. DISCUSSION AND SUMMARY

A. Role of the time component of the random chiral gauge field

One may criticize that the effective field theory [Eq. (3)]
contains an additional ingredient, compared with our “mi-
croscopic” lattice model [Eq. (2)], which corresponds to
the time component of the random chiral gauge field. It
plays the role of a random chiral chemical potential, given
by μ5 = μ+ − μ−, where ± denotes an index of chirality.
Actually, we repeated performing our renormalization group
analysis in the absence of the random chiral chemical potential.
The one-loop self-energy correction given in the first diagram
of Fig. 3 is modified as follows:

�(1)|c0=0 = −�R

4π

1

ε
(−3p0γ

0 + 3m) + O(1).

Recall �(1)|c0 �=0 = −�R

4π
1
ε
(−2p0γ

0 + 4m) + O(1) in
Appendix D1b, where the time component of the random
chiral gauge field is introduced. This modification does
not change our renormalization group result, where some
coefficients are modified in the following way:

a� → 3
2a�, am → 3

4am.

The two-loop rainbow self-energy correction (the second
diagram of Fig. 3) can be obtained as

�(2),r |c0=0 = �2
R

16π2

1

ε
(2p0γ

0 + 6m) + O(1),

compared with �(2),r = �2
R

16π2
1
ε
(3p0γ

0 + 10m) + O(1) of
Appendix D1b. On the other hand, it is not easy to evaluate
the two-loop crossed self-energy diagram (the third diagram of
Fig. 3), where loop momenta are highly entangled. Although
we cannot give a definite solution for this correction, we spec-
ulate that this correction is not essential since the coefficient
of the 1/ε divergent term is expected to be much smaller
than that of the two-loop rainbow self-energy correction.

Recall �(2),c = �2
R

128π2 (34p0γ
0 + 8pmγ m + 2m) + O(1) when

the time component of the chiral gauge field is introduced. In
this respect we conclude that our renormalization group result
will not be modified regardless of whether the time component
of the random chiral gauge field is introduced or not.

Physically speaking, the time component of the random
chiral gauge field allows random electric bulk currents between
a pair of Weyl points in a puddle of a Weyl metallic state since
there exists a difference of the chemical potential, usually
referred to as chiral magnetic effect [27]. Although it is not
easy to give any definite intuitive claims, we are expecting that
the presence of such random electric bulk currents within the
Weyl metallic puddle makes the system unstable, which may
cause the chiral chemical potential to vanish.

B. Large-N extension of the effective field theory

One may doubt the existence of the infinite randomness
fixed point since it lies well outside the regime of validity
of our renormalization group analysis. Moreover, whenever
the renormalization group equations [Eq. (6)] are valid, the
renormalized mass mR is highly relevant; from Fig. 4 it seems
that this behavior changes only for �R � 1, again, well beyond
the range where Eq. (6) applies. In this respect one may claim
that in reality mR is relevant for all �R .

A standard way to lead such a strong-coupling fixed point
toward a weak-coupling one is to extend the spin degeneracy of
electrons from σ = ↑,↓ to σ = 1, . . . ,N , referred to as multi-
flavors. Here, we consider the following type of a multiflavor
model, Sdis ∝∑N

α,β=1 �(ψ̄a
αψa

β )(ψ̄b
βψb

α ), where both gamma
matrices and space-time integrals are omitted for simplicity.
Based on this large-N generalization and following exactly
the same procedure as the above, we evaluate self-energy
corrections, where vertex corrections turn out not to appear
as in the case of the finite-N model. As a result, we obtain

d ln �R

d ln μ
= 1 − 2N�R

π
− 3N2�2

R

π2
,

d ln mR

d ln μ
= −1 − 3N�R

π
+ 7N2�2

R

2π2
.

Compare these renormalization group equations with Eq. (6).
It is straightforward to see that the quantum critical point

is shifted from �c
1 = 2π(

√
33−2)

29 
 0.81 of Eq. (6) to �c
N =

1
N

2π
3 . More importantly, the large-N generalization causes

the �∗ value, at which the sign of the renormalization group
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equation for the mass parameter is altered or the relevance
of the mass parameter turns into irrelevance, to lie in the
weak-coupling regime, i.e., from �∗

1 = 3π+π
√

15
3 
 7.20 of

Eq. (6) to �∗
N = 1

N
3π+π

√
23

7 
 3.50
N

. As a result, our perturbative
renormalization group analysis can access the regime which
shows the nature of the infinite randomness fixed point. It is
noticeable that the large-N model does not take into account
the crossed diagram for the self-energy correction while our
previous calculations contain the crossed diagram, where its
contribution is small.

We do not claim that this large-N generalized model is
physical. However, we would like to point out that there must
be an extended model which leads the strong-coupling fixed
point to be within the weak-coupling regime.

C. Experimental signatures

Although we expect that the present infinite variance fixed
point should exhibit the strong inhomogeneity, its thermo-
dynamic nature looks very complicated, where randomly
distributed ferromagnetic clusters would interact with each
other beyond our present description. Then, quantum Griffiths
phenomena [26] are expected to appear, implying that the
nontrivial power-law exponent of the spin susceptibility at low
temperatures should show nonuniversal continuous evolutions
within the ferromagnetic-on-average region. Such quantum
Griffiths effects may be incorporated, resorting to a power-
law distribution function instead of the Gaussian distribution
function for random chiral gauge fluctuations.

We believe that this infinite randomness fixed point can
be verified by atomic force microscopy. Although the local
electronic spectrum will not show strong inhomogeneity
around zero bias in the metallic regime, it should be observed
deep inside the spectrum around −μ, where μ is the chemical
potential. In a certain region a gap feature appears while such
a gap does not exist in the vicinity of the same energy scale
at a different position, where a Weyl metallic island exists.
See Fig. 5.

FIG. 5. (Color online) A schematic picture for the local density
of states probed by atomic force microscopy Consider the case when
the chemical potential lies above the band gap, which corresponds
to a metallic state. Recalling that the infinite variance fixed point
is identified with inhomogeneous mixtures between a normal Fermi
surface with degeneracy in a Dirac spectrum and a pair of chiral Fermi
surfaces without degeneracy in a pair of Weyl spectrum, we predict
that a gap feature appears in a certain region which corresponds to the
region of small ferromagnetic clusters while a V-shaped pseudogap
feature results at a different position which coincides with the region
of large ferromagnetic clusters exceeding the band gap.

An important unsolved question is how to evaluate transport
coefficients at this infinite variance fixed point. As discussed
before, both Berry curvature and axion electrodynamics play
a central role in electromagnetic properties of Weyl metallic
islands. Recalling that each Weyl point can be identified with
a magnetic monopole in momentum space, inhomogeneous
mixtures of topological semiconductors and Weyl metals are
interpreted as randomly distributed monopole-antimonopole
pairs of momentum space. This physical picture leads us to
speculate that effects of such random monopole-antimonopole
pairs may be canceled on transport coefficients, giving rise to
normal “metallic” behaviors in magnetoresistivity and Hall
effect. However, this speculation focuses on only the aspect of
Berry curvature, missing the role of axion electrodynamics in
transport coefficients. It is the problem of dilute magnetic topo-
logical semiconductors to develop how to calculate transport
coefficients at this infinite variance fixed point beyond the spec-
ulation, incorporating both effects of Berry curvature and axion
electrodynamics.

D. Summary

In summary, we proposed the problem of dilute magnetic
topological semiconductors, the novel physics of which be-
yond that of dilute magnetic semiconductors is the emergence
of randomly distributed Weyl metallic islands. Performing the
renormalization group analysis for an effective Dirac theory
with random chiral gauge fluctuations, expected to encode
the information of randomly quenched magnetic moments,
we find that the variance of random chiral gauge fields
reaches an infinite fixed point as long as average magnetic
correlations remain to be ferromagnetic, which enforces the
mass gap to vanish. As a result, we find a disorder-driven
novel metallic phase and an associated insulator-metal phase
transition beyond either the Anderson or the Mott metal-
insulator transition, where this metallic state appears to be
identified with the infinite variance fixed point. Recalling that
quantum Griffiths phenomena may arise in the vicinity of
this infinite variance fixed point, we predicted continuous
nonuniversal changes in the temperature exponent of the
uniform spin susceptibility. In addition, we claimed that this
picture of inhomogeneous mixtures can be verified by atomic
force microscopy. However, a difficult fundamental problem
remains, that is, how to understand transport coefficients
near this infinite variance fixed point, where random axion
electrodynamics arises to govern electromagnetic properties,
identified with the problem of dilute magnetic topological
semiconductors.
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We show all technical details for our renormalization group analysis. In Appendix A we discuss our effective field theory,
referred to as a random chiral-gauge-field model. In Appendix B we prove that axion electrodynamics works in a Weyl metallic
state instead of normal Maxwell dynamics. In Appendix C we construct a replicated field theory for our renormalization group
analysis, where random chiral-current fluctuations play a central role. In Appendix D we perform the perturbative renormalization
group analysis up to the one-loop order for vertex corrections and the two-loop order for self-energy corrections, respectively.
In Appendix E we evaluate renormalization constants, and find renormalization group equations in Appendix F. We believe that
this supplementary material will be helpful even to beginners for the weak-coupling renormalization group approach.

APPENDIX A: FROM EFFECTIVE MAGNETIC FIELDS TO CHIRAL GAUGE FIELDS

The kinetic-energy sector for dynamics of bulk electrons can be rewritten as the standard representation of the Dirac theory
in the following way:

S[ψ†,ψ] =
∫ β

0
dτ

∫
d3k

(2π )3
ψ†

σα(k,τ )
{
∂τ Iσσ ′ ⊗ Iαα′ + vF k · σ σσ ′ ⊗ τ z

αα′ + m(|k|)Iσσ ′ ⊗ τ x
αα′
}
ψσ ′α′(k,τ )

=
∫ β

0
dτ

∫
d3xψ†(x,τ )

{
∂τ

(
I2×2 0

0 I2×2

)
+ vF (−ı�) ·

(
σ 0
0 −σ

)
+ m

(
0 I2×2

I2×2 0

)}
ψ(x,τ )

=
∫ β

0
dτ

∫
d3xψ†(x,τ )

(
0 I2×2

I2×2 0

){
∂τ

(
I2×2 0

0 I2×2

)
+ vF ı� ·

(
0 σ

−σ 0

)
+ mI4×4

}
ψ(x,τ )

=
∫

d4xψ̄(x){ıγ 0∂τ + vF ı� · γ + m}ψ(x),

where Dirac gamma matrices are given by γ 0 = ( 0 −ı

−ı 0 ) and γ k = ( 0 −σ k

σ k 0 ).
Next, we consider an effective Zeeman coupling term, Heff = H0 − J� · S ≡ H0 + Hint, where H0 is a free Dirac Hamiltonian

and � is an effective magnetic moment given by a ferromagnetic cluster with the Kondo coupling J . S = 1
2ψ†(I ⊗ σ )ψ represents

a spin of itinerant electrons of the bulk sample. Then, it is easy to show that an effective magnetic field is equal to a chiral gauge
field in this Dirac theory, given by

Hint = ψ† (− 1
2J� · (I ⊗ σ )

)
ψ = ψ†β

(− 1
2J� · βI ⊗ σ

)
ψ = ψ̄

(
1
2J� · γ γ 5

)
ψ ≡ ψ̄(C · γ γ 5)ψ.

In the last equality we used the identity of βI ⊗ σ = (0 1
1 0)(

σ 0
0 σ) = (0 σ

σ 0) = −γ γ 5. Generally, we introduce a time component

of the chiral gauge field and represent the Zeeman coupling term as Hint = ψ̄(Cμγ μγ 5)ψ .
We reach the following expression for an effective field theory in the ferromagnetic-on-average regime:

S[ψ̄,ψ] =
∫

d4xψ̄(x)(ıγ μ∂μ + m)ψ(x) +
∫

d4xψ̄(x)Cμγ μγ 5ψ(x) ≡ S0[ψ̄,ψ] + Sint[ψ̄,ψ ; Cμ]. (A1)

Then, an effective free energy becomes

F = −T

∫
DCμ(x)P [Cμ(x)] ln

∫
D(ψ̄(x),ψ(x)) exp(−S0[ψ̄,ψ] − Sint[ψ̄,ψ ; Cμ]), (A2)

where P [Cμ(x)] = N e− ∫ d3 x [Cμ(x)]2

2� is the distribution function for chiral gauge fields with their variance �, originating
from randomly quenched ferromagnetic clusters. The coefficient N is determined from the normalization condition of

N
∫

DCμe− ∫ d3 x [Cμ(x)]2

2� = 1.

APPENDIX B: AXION ELECTRODYNAMICS IN THE WEYL METALLIC PHASE

We start from QED4 (quantum electrodynamics in one time and three spatial dimensions) with the topological-in-origin E · B
term,

ZQED4
=
∫

Dψ(x) exp

[
−
∫ β

0
dτ

∫
d3r
{
ψ̄(x)(iγ μ[∂μ + ieAμ] + m)ψ(x) − 1

4
FμνF

μν + θ (r)
e2

16π2
εμνρδFμνFρδ

}]
, (B1)

where ψ(x) with x = (r,τ ) is a four-component Dirac spinor and the coefficient θ (r) is spatially modulated. Resorting to the
anomaly equation

∂μ(ψ̄γ μγ 5ψ) = − e2

16π2
εμνρδFμνFρδ, (B2)
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one may rewrite the above expression as follows:

ZWM =
∫

Dψ(x) exp

[
−
∫ β

0
dτ

∫
d3r
{
ψ̄(x)(iγ μ[∂μ + ieAμ] + m + cμγ μγ 5)ψ(x) − 1

4
FμνF

μν

}]
, (B3)

where the chiral gauge field cμ = (cτ ,c) is given by cτ = 0 and c = ∇rθ (r). In the previous section we have shown that
topological insulators under magnetic fields can be described by Eq. (A1), identical to Eq. (B3). Effective magnetic fields are
identified with ∇rθ (r).

It is straightforward to integrate over gapped fermion excitations, resulting in an effective field theory for electromagnetic
fields:

Laxion = −1

4
FμνF

μν + θ (r,t)
e2

16π2
εμνρδFμνFρδ, (B4)

where time dependence in θ (r,t) has been introduced for generality. Applying the least-action principle to Eq. (B4), we reach
Maxwell equations to describe the axion electrodynamics:

∇ · D = 4πρ + 2α(∇P3 · B), ∇ × H − 1

c

∂ D
∂t

= 4π

c
j − 2α

(
(∇P3 × E) + 1

c
(∂tP3)B

)
,

∇ × E + 1

c

∂ B
∂t

= 0, ∇ · B = 0, (B5)

where we follow the standard cgs notation with P3(r,t) ∝ θ (r,t) and the fine-structure constant α [18].

APPENDIX C: EFFECTIVE FIELD THEORY FOR RENORMALIZATION GROUP ANALYSIS IN THE REPLICA TRICK

A physical observable is defined as follows:

〈O(ψ̄,ψ)〉 =
∫

DCμP [Cμ]

∫
D(ψ̄,ψ)O(ψ̄,ψ)e−S0[ψ̄,ψ]e−Sint[ψ̄,ψ ;Cμ]∫

D(ψ̄,ψ)e−S0[ψ̄,ψ]e−Sint[ψ̄,ψ ;Cμ]
, (C1)

which can be formulated from

〈O(ψ̄,ψ)〉 =
∫

DCμP [Cμ]
δ

δJ

∣∣∣∣
J=0

ln Z[Cμ,J ], Z[Cμ,J ] =
∫

D(ψ̄,ψ)e−S0[ψ̄,ψ]e−Sint[ψ̄,ψ ;Cμ]+∫ d4xJO(ψ̄,ψ), (C2)

where J is a source coupled to an operator O(ψ̄,ψ) locally. Since the averaging procedure for disorder is not straightforward
within this formulation, we take the replica trick of ln Z = limR→0

ZR−1
R

, where the replicated partition function is given by

ZR = ∫ D(ψ̄a,ψa) exp [−∑R
a=1 S[ψ̄a,ψa; Cμ] + ∫ d4xJ

∑R
a=1 O(ψ̄a,ψa)] with a replica index “a”. Then, the above expression

is reformulated as follows:

〈O(ψ̄,ψ ; Cμ)〉 = lim
R→0

1

R

∫
DCμP [Cμ]

δ

δJ

∣∣∣∣
J=0

(ZR − 1)

= lim
R→0

1

R

∫
DCμP [Cμ]

∫
D(ψ̄a,ψa)

R∑
a=1

O(ψ̄a,ψa)e−∑R
a=1 S[ψ̄a ,ψa ;Cμ]

= lim
R→0

1

R

R∑
a=1

∫
DCμe− ∫ d3 x [Cμ(x)]2

2�

∫
D(ψ̄a,ψa)O(ψ̄a,ψa)e−∑R

a=1 S0[ψ̄a,ψa ]e−∑R
a=1

∫ β

0 τ
∫

d3 xψ̄a (x)Cμγ μγ 5ψa (x)

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄a,ψa)O(ψ̄a,ψa)e−∑R

a=1 S0[ψ̄aψa ]e
∑R

b,c=1

∫ β

0 dτ
∫ β

0 dτ ′ ∫ d3 x �
2 (ψ̄b

τ γ
μγ 5ψb

τ )(ψ̄c
τ ′γ μγ 5ψc

τ ′ )

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄,ψ)O(ψ̄a,ψa)e−∑R

a=1 S0[ψ̄a,ψa ]−∑R
a,b=1 Sdis[ψ̄a,ψa,ψ̄b,ψb], (C3)

where the average for disorder has been performed first to result in Sdis[ψ̄b,ψb,ψ̄c,ψc] ≡ ∫ β

0 dτ
∫ β

0 dτ ′∫
d3x �

2 [ψ̄b
τ (x)γ μγ 5ψb

τ (x)][ψ̄c
τ ′(x)γμγ 5ψc

τ ′(x)]. We point out the positive sign, arising from lowering the index from γ μ

to γμ. Averaging for random chiral gauge fluctuations gives rise to effective interactions between chiral currents with all replicas,
where effective all-time interactions allow momentum exchange only (not energy exchange).

An effective field theory is given by

SB =
∫

ddxψ̄a
B (ıγ 0∂0 + vBıγ k∂k + mB)ψa

B +
∫

dτ

∫
dτ ′
∫

dd−1x
�B

2
[ψ̄B

b(γ μγ 5)ψb
B]τ (ψ̄B

c
γμγ 5ψc

B)τ ′ (C4)
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in the replica trick, where Einstein convention has been used. B (R) stands for “bare” (“renormalized”). Performing the
dimensional analysis, where space and time coordinates have −1 in mass dimension, we observe dim[ψ] = d−1

2 , dim[m] = 1,
and dim[�] = 3 − d. In this respect we perform the renormalization group analysis in d = 3 + ε dimensions, where ε is a
small parameter. In the end of the calculation the dimension is analytically continued to the physical dimension (d = 4), setting
ε = 1.

Taking into account quantum corrections, divergences are generated, which can be absorbed by renormalization constants,
redefining fields and parameters. Rewriting the effective field theory in terms of renormalized fields and parameters, we
obtain

SB=
∫

ddx
(
Zω

ψψ̄a
Rıγ 0∂0ψ

a
R+Zk

ψvRψ̄a
Rıγ k∂kψ

a
R + ZmmRψ̄a

Rψa
R

)+ ∫ dτ

∫
dτ ′
∫

dd−1xZ�

�R

2

(
ψ̄b

Rγ μγ 5ψb
R

)
τ

(
ψ̄c

Rγμγ 5ψc
R

)
τ ′

with ψa
B = (Zω

ψ )1/2ψa
R , mB = Zm(Zω

ψ )−1mR , vB = Zk
ψ (Zω

ψ )−1vR , and �B = Z�(Zω
ψ )−2�R , where Zω

ψ is a wave-function
renormalization constant, Zm, mass renormalization, Zk

ψ , velocity renormalization, and Z� , vertex renormalization.
It is more customary to rewrite this field theory, separating the renormalized part from counterterms that absorb divergences,

in the following way:

SB = SR + SCT,

SR =
∫

ddxψ̄a
R(ıγ 0∂0 + vRıγ k∂k + mR)ψa

R +
∫

dτ

∫
dτ ′
∫

dd−1x
�R

2

(
ψ̄b

Rγ μγ 5ψb
R

)
τ

(
ψ̄c

Rγμγ 5ψc
R

)
τ ′ , (C5)

SCT =
∫

ddxδψψ̄a
R

(
δω
ψıγ 0∂0 + δk

ψvRıγ k∂k + δmmR

)
ψa

R +
∫

dτ

∫
dτ ′
∫

dd−1xδ�

�R

2

(
ψ̄b

Rγ μγ 5ψb
R

)
τ

(
ψ̄c

Rγμγ 5ψc
R

)
τ ′ ,

where Zω
ψ = 1 + δω

ψ , Zk
ψ = 1 + δk

ψ , Zm = 1 + δm, and Z� = 1 + δ� .

APPENDIX D: EVALUATION OF FEYNMAN DIAGRAMS

1. Self-energy corrections

a. Feynman diagrams

Within the replica trick, we are allowed to perform the perturbative analysis. The Green’s function of G(x,y) =
T
Ld

∑
p,q e−ıp·x+ıq·yG(p,q) with G(p,q) = 〈ψ(p),ψ̄(q)

〉
is evaluated as follows:

G(p,q)

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄,ψ)ψa(p)ψ̄a(q)e−∑R

α=1 S0[ψ̄αψα]e
∑R

b,c=1

∫ β

0 dτ
∫ β

0 dτ ′ ∫ dd x �R
2 (ψ̄b

τ γ
μγ 5ψb

τ )(ψ̄c ′
τ γμγ 5ψc

τ ′ )

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄,ψ)e−∑R

α=1 S0[ψ̄α,ψα]

⎡
⎣ψa(p)ψ̄a(q) − �

2

R∑
b,c=1

∑
pi

ψa(p)ψ̄a(q)ψ̄b(p1)γ μγ 5ψb(p2)ψ̄c(p3)γμγ 5ψc(p4)

×δ(3)( p1 − p2 + p3 − p4)δp0
1 ,p

0
2
δp0

3 ,p
0
4
+
(

−�R

2

)2 ∑
b,c,d,e

∑
pi ,qi

ψa(p)ψ̄a(q)ψ̄b(p1)γ μγ 5ψb(p2)ψ̄c(p3)γμγ 5ψc(p4)

×ψ̄d (q1)γ νγ 5ψd (q2)ψ̄e(q3)γνγ
5ψe(q4)δ(3)( p1 − p2 + p3 − p4)δp0

1 ,p
0
2
δp0

3 ,p
0
4
δ(3)(q1 − q2 + q3 − q4)δq0

1 ,q0
2
δq0

3 ,q0
4
+ O

(
�3

R

)⎤⎦

= lim
R→0

1

R

R∑
a=1

〈ψa(p)ψ̄a(q)〉0 + lim
R→0

1

R

R∑
a,b,c=1

(
−�R

2

)∑
pi

〈ψa(p)ψ̄a(q)ψ̄b(p1)γ μγ 5ψb(p2)ψ̄c(p3)γμγ 5ψc(p4)〉0δ
(4)(pi)

+ lim
R→0

1

R

∑
a,b,c

d,e

(
−�R

2

)2 ∑
pi ,qi

〈ψa(p)ψ̄a(q)ψ̄b(p1)γ μγ 5ψb(p2)ψ̄c(p3)γμγ 5ψc(p4)ψ̄d (q1)γ νγ 5ψd (q2)ψ̄e(q3)γνγ
5ψe(q4)〉0

×δ(4)(pi)δ
(4)(qi) + O

(
�3

R

)
,

where we introduced a shorthand notation of δ(4)(pi) = δ(3)( p1 − p2 + p3 − p4)δp0
1 ,p

0
2
δp0

3 ,p
0
4

with the four-vector notation of
x = (τ,x) and p = (ωn, p). The first term is just the bare propagator. From now on, we omit momentum arguments and
summations for the moment in order to focus on replica indices.
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FIG. 6. All possible quantum corrections in the first order without the replica limit.

First-order corrections are given by (Fig. 6)

lim
R→0

1

R

R∑
a,b,c=1

〈
ψa

i ψ̄a
j ψ̄b

k(γ μγ 5)klψ
b
l ψ̄c

m(γμγ 5)mnψ
c
n

〉
0

= lim
R→0

1

R

R∑
a,b,c=1

[ 〈
ψa

i ψ̄a
j

〉
0

〈
ψb

l ψ̄b
k

〉
0

〈
ψc

nψ̄
c
m

〉
0 (γ μγ 5)kl(γμγ 5)mn + 〈ψa

i ψ̄a
j

〉
0

〈
ψc

nψ̄
b
k

〉
0

〈
ψb

l ψ̄c
m

〉
0 (γ μγ 5)kl(γμγ 5)mn

−2
〈
ψa

i ψ̄b
k

〉
0

〈
ψb

l ψ̄a
j

〉
0

〈
ψc

nψ̄
c
m

〉
0 (γ μγ 5)kl(γμγ 5)mn + 2

〈
ψb

l ψ̄a
j

〉
0

〈
ψc

nψ̄
b
k

〉
0

〈
ψa

i ψ̄c
m

〉
0 (γ μγ 5)kl(γμγ 5)mn

]
= lim

R→0

1

R

R∑
a,b,c=1

[
Ga

ijG
b
lkG

c
nm(γ μγ 5)kl(γμγ 5)mnδaaδbbδcc + Ga

ijG
c
nkG

b
lm(γ μγ 5)kl(γμγ 5)mnδaaδcbδbc

−2Ga
ikG

b
ljG

c
nm(γ μγ 5)kl(γμγ 5)mnδabδbaδcc + 2Gb

ljG
c
nkG

a
im(γ μγ 5)kl(γμγ 5)mnδbaδcbδac

]
= lim

R→0

1

R

⎡
⎣ R∑

a,b,c=1

Gatr[Gbγ μγ 5]tr[Gcγμγ 5]δaaδbbδcc +
R∑

a,b,c=1

Gatr[Gc(γ μγ 5)Gb(γμγ 5)]δaaδcbδbc

−2
R∑

a,b,c=1

Ga(γ μγ 5)Gbtr[Gc(γμγ 5)]δabδbaδcc + 2
R∑

a,b,c=1

Ga(γμγ 5)Gc(γ μγ 5)Gbδbaδcbδac

⎤
⎦,

where “2” results from identical contributions and − comes from the odd number of fermion loops (one loop). Since all Green’s
functions with different replica indices are identical, the first term is proportional to R3, the second, R2, the third, R2, and the
fourth, R. Taking the replica limit of limR→0

1
R

, only the fourth term survives. As a result, we find

G(1) = G(p)

(
−�

2

)∑
q

γ μγ 5G(p − q)γμγ 5G(p) = G(p)�(1)G(p) (D1)

in the one-loop order (Fig. 7). Here, we point out that Feynman diagrams whose internal propagators are not connected to external
lines (the third diagram in Fig. 6) always vanish in the replica limit. In other words, contributions with fermion loops vanish
identically in the replica limit.

pp p − q

q(q0 = 0)

γµγ5 γµγ
5

FIG. 7. The Fock correction, which contributes to
the wave-function renormalization constant only in the
first order.
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aa b b

c c

d d

e e

aa ccddb b

e e

a b b a

d

d

e

e

a b b e e a

c

c

d

d

a b b d d e e cc a a b b dd cc e e a

c c

FIG. 8. All possible second-order self-energy diagrams without the replica limit, omitting vacuum and one-particle reducible diagrams.

Omitting vacuum and one-particle reducible diagrams, we have self-energy corrections in the second order:

lim
R→0

1

R

∑
a,b,c,d,e

[〈ψaψ̄aψ̄bγ μγ 5ψbψ̄cγμγ 5ψcψ̄dγ νγ 5ψbψ̄cγνγ
5ψc〉0]1PI

= lim
R→0

1

R

∑
a,b,c,d,e

[8GaGbγ μγ 5GbGatr[Gcγ νγ 5Gdγμγ 5]tr[Geγνγ
5]δabδbaδcdδdcδee − 4Gaγ μγ 5Gbγ νγ 5Gdγμγ 5

×Gctr[Geγνγ
5]δabδbdδdcδcaδee − 4Gaγ μγ 5Gbtr[Gcγ νγ 5Gdγνγ

5Geγμγ 5]δabδbaδcdδdeδec + (−1)16Gaγ μγ 5Gbγνγ
5

×Getr[Gcγ νγ 5Gdγμγ 5]δabδbeδeaδcdδdc + 8Gaγ μγ 5Gbγ νγ 5Gdγνγ
5Geγμγ 5Gcδabδbdδdeδecδca

+ 8Gaγ μγ 5Gbγ νγ 5Gdγμγ 5Gcγνγ
5Geδabδbdδdcδceδea].

See Fig. 8. The first term is proportional to R3, the second, third, and fourth, R2, the fifth and last, R. As a result, only the fifth
and last terms survive in the replica limit. Therefore, the relevant self-energy correction is given by (Fig. 9)

G(2),r (p) = G(p)

(
−�R

2

)2∑
q,l

γ μγ 5G(p − q)γ νγ 5G(p − q − l)γνγ
5G(p − q)γμγ 5G(p) = G(p)�(2),rG(p),

G(2),c(p) = G(p)

(
−�R

2

)2∑
q,l

γ μγ 5G(p − q)γ νγ 5G(p − q − l)γμγ 5G(p − l)γνγ
5G(p) = G(p)�(2),cG(p),

�(2),r =
(

−�R

2

)2∑
q,l

γ μγ 5G(p − q)γ νγ 5G(p − q − l)γνγ
5G(p − q)γμγ 5, (D2)

�(2),c =
(

−�R

2

)2∑
q,l

γ μγ 5G(p − q)γ νγ 5G(p − q − l)γμγ 5G(p − l)γνγ
5. (D3)

p p − q p − q − l p − q p

q(q0 = 0)

l(l0 = 0)

γμγ5 γνγ5 γνγ
5 γμγ

5

p p − q p − q − l p − l

q(q0 = 0) l(l0 = 0)

γμγ5

p

γνγ5 γμγ
5 γνγ

5

FIG. 9. Relevant second-order self-energy corrections in the replica limit.
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b. Evaluation of relevant Feynman diagrams

The first-order Fock diagram (Fig. 7) is

�(1) = −�R

2

∫
ddq

(2π )d
2πδ(q0)γ μγ 5 /p − /q − m

(p − q)2 − m2
γ μγ 5 = −�R

2

∫
dd−1q

(2π )d−1

γ μ(p0γ
0 + pkγ

k − qkγ
k + m)γμ

−p2
0 − ( p − q)2 − m2

= �R

2

∫
dd−1q

(2π )d−1

(2 − d)qkγ
k − 2p0γ

0 + 4m

q2 + p2
0 + m2

= �R

2

⎡
⎣−2p0γ

0 + 4m

(4π )
d−1

2

�
(
1 − d−1

2

)
�(1)

1(
p2

0 + m2
)1= d−1

2

⎤
⎦

= �R

2(4π )
(−2p0γ

0 + 4m)

(
−2

ε
− γ − ln

(
p2

0 + m2
)+ ln 4π + O(ε)

)
.

Then, a relevant part for renormalization is

�(1) = −�R

4π

1

ε
(−2p0γ

0 + 4m) + O(1). (D4)

The second-order rainbow diagram (the first diagram in Fig. 9) is

�(2),r =
(

−�R

2

)2 ∫
ddq

(2π )d
2πδ(q0)

∫
ddl

(2π )d
2πδ(l0)γ μγ 5 /p − /q − m

(p − q)2 − m2
γ νγ 5 /p − /q − /l − m

(p − q − l)2 − m2
γνγ

5 /p − /q − m

(p − q)2 − m2
γμγ 5

= �2
R

4

∫
dd−1q

(2π )d−1

∫
dd−1l

(2π )d−1
γ μ p0γ

0 + pkγ
k − qkγ

k + m

−p2
0 − ( p − q)2 − m2

γ ν p0γ
0 + plγ

l − qlγ
l − llγ

l − m

−p2
0 − ( p − q − l)2 − m2

γν

×p0γ
0 + pmγ m − qmγ m + m

−p2
0 − ( p − q)2 − m2

γμ

= −�2
R

4

∫
dd−1q

(2π )d−1
γ μ p0γ

0 + pkγ
k − qkγ

k + m

( p − q)2 + p2
0 + m2

γ ν

[ ∫
dd−1l

(2π )d−1

p0γ
0 + plγ

l − qlγ
l − llγ

l − m

( p − q − l)2 + p2
0 + m2

]
γν

×p0γ
0 + pmγ m − qmγ m + m

( p − q)2 + p2
0 + m2

γμ

= −�2
R

4

∫
dd−1q

(2π )d−1
γ μ −qkγ

k + p0γ
0 + m

q2 + p2
0 + m2

γ ν

[ ∫
dd−1l

(2π )d−1

−llγ
l + p0γ

0 − m

l2 + p2
0 + m2

]
γν

−qmγ m + p0γ
0 + m

q2 + p2
0 + m2

γμ

= −�2
R

4

∫
dd−1q

(2π )d−1
γ μ −qkγ

k + p0γ
0 + m

q2 + p2
0 + m2

⎡
⎣ 1

(4π )
d−1

2

�
(
1 − d−1

2

)
�(1)

γ ν(p0γ
0 − m)γν(

p2
0 + m2

)1− d−1
2

⎤
⎦−qmγ m + p0γ

0 + m

q2 + p2
0 + m2

γμ

= −�2
R

4

�
(

3−d
2

)
(4π )

d−1
2
(
p2

0 + m2
) 3−d

2

∫
dd−1q

(2π )d−1

γ μ(−qkγ
k + p0γ

0 + m)(−2p0γ
0 − 4m)(−qmγ m + p0γ

0 + m)γμ(
q2 + p2

0 + m2
)2 .

Rearranging the numerator as follows,

N = γ μ(−qkγ
k + p0γ

0 + m)(−2p0γ
0 − 4m)(−qmγ m + p0γ

0 + m)γμ

= −qkqmγ μγ k(2p0γ
0 + 4m)γ mγμ − γ μ(p0γ

0 + m)(2p0γ
0 + 4m)(p0γ

0 + m)γμ

= −qkqmγ μγ k(2p0γ
0 + 4m)γ mγμ + (−4p3

0γ
0 + 32mp2

0 + 20m2p0γ
0 − 16m3

)
= −qkqmγ μγ k(2p0γ

0 + 4m)γ mγμ + f (p)

with f (p) = −4p3
0γ

0 + 32mp2
0 + 20m2p0γ

0 − 16m3, we obtain

�(2),r = −�2
R

4

�
(

3−d
2

)
(4π )

d−1
2
(
p2

0 + m2
) 3−d

2

∫
dd−1q

(2π )d−1

−qkqmγ μγ k(2p0γ
0 + 4m)γ mγμ + f (p)(

q2 + p2
0 + m2

)2

= −�2
R

4

�
(

3−d
2

)
(4π )

d−1
2
(
p2

0 + m2
) 3−d

2

⎡
⎣− γ μγ k(2p0γ

0 + 4m)γkγμ

2(4π )
d−1

2

�
(
2 − d−1

2 − 1
)

�(2)
(
p2

0 + m2
)2− d−1

2 −1
+ f (p)

(4π )
d−1

2

�
(
2 − d−1

2

)
�(2)

(
p2

0 + m2
)2− d−1

2

⎤
⎦

115125-13



KYOUNG-MIN KIM, YONG-SOO JHO, AND KI-SEOK KIM PHYSICAL REVIEW B 91, 115125 (2015)

= −�2
R

4

�
(

3−d
2

)
(4π )

d−1
2
(
p2

0 + m2
) 3−d

2

⎡
⎣−2(d − 2)(d − 1)p0γ

0 + 4d(d − 1)m

2(4π )
d−1

2

�
(

3−d
2

)
(
p2

0 + m2
) 3−d

2

+ f (p)

(4π )
d−1

2

�
(

5−d
2

)
(
p2

0 + m2
) 5−d

2

⎤
⎦

= �2
R

4(4π )2

(
−2

ε
− γ + ln (4π ) − ln

(
p2

0 + m2
)+ O(ε)

)2

[(1 + ε)(2 + ε)p0γ
0 + 2(3 + ε)(2 + ε)m]

− �2

4(4π )2

(
−2

ε
− γ + ln (4π ) − ln

(
p2

0 + m2)+ O(ε)

)2 (
−ε

2

)−4p3
0γ

0 + 32mp2
0 + 20m2p0γ

0 − 16m3

p2
0 + m2

.

We note that the second term vanishes when we use the on-shell condition, given by p0γ
0 + m = 0 and p2

0 = m2. As a result,
we obtain

�(2),r = �2
R

16π2

1

ε
(3p0γ

0 + 10m) + O(1) + O(ε−2). (D5)

The second-order crossed diagram (the second diagram in Fig. 9) is

�(2),c =
(

−�R

2

)2 ∫
ddq

(2π )d
2πδ(q0)

∫
ddl

(2π )d
2πδ(l0)γ μγ 5 /p − /q − m

(p − q)2 − m2
γ νγ 5 /p − /q − /l − m

(p − q − l)2 − m2
γμγ 5 /p − /l − m

(p − l)2 − m2
γ νγ 5

= �2
R

4

∫
dd−1q

(2π )d−1

∫
dd−1l

(2π )d−1
γ μ p0γ

0 + pkγ
k − qkγ

k + m

−p2
0 − ( p − q)2 − m2

γ ν p0γ
0 + plγ

l − qlγ
l − llγ

l − m

−p2
0 − ( p − q − l)2 − m2

γμ

×p0γ
0 + pmγ m − lmγ m + m

−p2
0 − ( p − l)2 − m2

γν

= −�2
R

4

∫
dd−1l

(2π )d−1

∫
dd−1q

(2π )d−1
γ μ −qkγ

k + p0γ
0 + m

q2 + p2
0 + m2

γ ν −qlγ
l − llγ

l − plγ
l + p0γ

0 − m

(q + l + p)2 + p2
0 + m2

γμ

−lmγ m + p0γ
0 + m

l2 + p2
0 + m2

γν

= −�2
R

4

∫
dd−1l

(2π )d−1

[∫
dd−1q

(2π )d−1

N

D

] −lmγ m + p0γ
0 + m

l2 + p2
0 + m2

γν,

where the denominator D−1 and the numerator N are given by

D−1 =
∫ 1

0
dx[q2 + x(1 − x)(l + p)2 + p2

0 + m2]−2 =
∫ 1

0
dx[q2 + �(l,p)]−2

and

N = γ μ[−qkγ
k + x(lk + pk)γ k + p0γ

0 + m]γ ν[−qlγ
l − (1 − x)(ll + pl)γ

l + p0γ
0 − m]γμ

= qkqlγ
μγ kγ νγ lγμ + γ μ[x(lk + pk)γ k + p0γ

0 + m]γ ν[−(1 − x)(ll + pl)γ
l + p0γ

0 + m]γμ

= qkql[−2γ lγ νγ k + (4 − d)γ kγ νγ l] + f (l,p),

respectively. Performing the momentum integral with these expressions, we obtain∫
dd−1q

(2π )d−1

N

D
=
∫ 1

0
dx

∫
dd−1q

(2π )d−1

qkql[−2γ lγ νγ k + (4 − d)γ kγ νγ l] + f (l,p)

[q2 + �(l,p)]2

=
∫ 1

0
dx

[
1

(4π )
d−1

2

(2 − d)γ lγ νγl

2

�
(
1 − d−1

2

)
�(2)

1

�(l,p)1− d−1
2

+ f (l,p)

(4π )
d−1

2

�
(
2 − d−1

2

)
�(2)

1

�(l,p)2− d−1
2

]

=
∫ 1

0
dx

[
(2 − d)(3 − d)γ ν

2(4π )
d−1

2

�
(

3−d
2

)
�(l,p)

3−d
2

+ f (l,p)

(4π )
d−1

2

�
(

5−d
2

)
�(l,p)

5−d
2

]
.

Then, we have

�(2),c = −�2
R

4

∫
dd−1l

(2π )d−1

∫ 1

0
dx

[
(2 − d)(3 − d)γ ν

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

+ f (l,p)

(4π )
d−1

2

�
(

5−d
2

)
�

5−d
2

]
−lmγ m + p0γ

0 + m

l2 + p2
0 + m2

γν

= −�2
R

4

∫ 1

0
dx

[
(2 − d)(3 − d)

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

∫
dd−1l

(2π )d−1

−(2 − d)lmγ m − 2p0γ
0 + 4m

l2 + p2
0 + m2

+ �
(

5−d
2

)
(4π )

d−1
2

∫
dd−1l

(2π )d−1

f (l,p)

�
5−d

2

−lmγ m + p0γ
0 + m

l2 + p2
0 + m2

γν

]
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= −�2
R

4

∫ 1

0
dx

[
(2 − d)(3 − d)

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

∫
dd−1l

(2π )d−1

−(2 − d)lmγ m − 2p0γ
0 + 4m

l2 + p2
0 + m2

+ �
(

5−d
2

)
(4π )

d−1
2

∫
dd−1l

(2π )d−1

×γ μ[x(lk + pk)γ k + p0γ
0 + m]γ ν[−(1 − x)(ll + pl)γ l + p0γ

0 + m]γμ

�
5−d

2

−lmγ m + p0γ
0 + m

l2 + p2
0 + m2

γν

]

= −�2
R

4

∫ 1

0
dx

[
(2 − d)(3 − d)

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

∫
dd−1l

(2π )d−1

−(2 − d)lmγ m − 2p0γ
0 + 4m

l2 + p2
0 + m2

+ �
(

5−d
2

)
(4π )

d−1
2

∫
dd−1l

(2π )d−1

N

D

]
,

where

D−1 = [x(1 − x)(l + p)2 + p2
0 + m2

] 5−d
2
[
l2 + p2

0 + m2
]−1

=
∫ 1

0
dy

[x(1 − x)]
5−d

2 y
5−d

2 −1

(
y
{
(l + p)2 + [x(1 − x)]−1

(
p2

0 + m2
)}+ (1 − y)

(
l2 + p2

0 + m2
)) 7−d

2

�
(

5−d
2 + 1

)
�
(

5−d
2

)
= �

(
7−d

2

)
�
(

5−d
2

) ∫ 1

0
dy

[x(1 − x)]
5−d

2 y
3−d

2

(
l2 + 2y p · l + y p2 + {[x(1 − x)]−1 + 1 − y}(p2

0 + m2
)) 7−d

2

= �
(

7−d
2

)
�
(

5−d
2

) ∫ 1

0
dy

[x(1 − x)]
5−d

2 y
3−d

2

(l2 + y(1 − y) p2 − {[x(1 − x)]−1 + 1 − y} p2)
7−d

2

= �
(

7−d
2

)
�
(

5−d
2

) ∫ 1

0
dy

[x(1 − x)]
5−d

2 y
3−d

2

[l2 + �(p)]
7−d

2

for the fourth equality, l → l − y p and −p2
0 = p2 + m2, and

N = γ μ{x[lk + (1 − y)pk]γ k + p0γ
0 + m}γ ν{−(1 − x)[ll + (1 − y)pl]γ

l + p0γ
0 − m}γμ(−lmγ m + ypmγ m + p0γ

0 + m)γν

= [−x(1 − x)lkllγ
μγ kγ νγ lγμ + xlkγ

μγ kγ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμ + γ μ[x(1 − y) + pkγ
k

+p0γ
0 + m]γ ν[−(1 − x)llγ

l]γμ + γ μ[x(1 − y)pkγ
k + p0γ

0 + m]γ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμ]

×[−lmγ m + ypmγ m + p0γ
0 + m]γν]

= −x(1 − x)lkllγ
μγ kγ νγ lγμ(ypmγ m + p0γ

0 + m)γν − xlklmγ μγ kγ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμγ mγν

+(1 − x)ll lmγ μ[x(1 − y)pkγ
k + p0γ

0 + m]γ νγ lγμγ mγν + γ μ[x(1 − y)pkγ
k + p0γ

0 + m]

×γ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμ(ypmγ m + p0γ
0 + m)γν

= lkll[−x(1 − x)γ μγ kγ νγ lγμ(ypmγ m + p0γ
0 + m)γν − xγ μγ kγ ν[−(1 − x)(1 − y)pmγ m + p0γ

0 − m]γμγ lγν

+(1 − x)γ μ[x(1 − y)pmγ m + p0γ
0 + m]γ νγ kγμγ lγν] + γ μ[x(1 − y)pkγ

k + p0γ
0 + m]

×γ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμ(ypmγ m + p0γ
0 + m)γν

= lkll · f (p) + g(p).

As a result, the above expression becomes more simplified in the following way:

�(2),c = −�2
R

4

∫ 1

0
dx

(2 − d)(3 − d)

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

∫
dd−1l

(2π )d−1

−(2 − d)lmγ m − 2p0γ
0 + 4m

l2 + p2
0 + m2

−�2
R

4

�
(

5−d
2

)
(4π )

d−1
2

∫ 1

0
dx

∫
dd−1l

(2π )d−1

�
(

7−d
2

)
�
(

5−d
2

) ∫ 1

0
dy

y
3−d

2

[x(1 − x)]
5−d

2

lkll · f (p) + g(p)

[l2 + �(p)]
7−d

2

.

The first line is easy to perform integrals. It seems to have a double pole, but the presence of (2 − d)(3 − d) in the numerator
gives only 1

ε
as a leading term as follows:

−�2
R

4

∫ 1

0
dx

(2 − d)(3 − d)

2(4π )
d−1

2

�
(

3−d
2

)
�

3−d
2

−2p0γ
0 + 4m

(4π )
d−1

2

�
(

3−d
2

)
(
p2

0 + m2
) 3−d

2

= −�2
R

8

(1 + ε)ε

(4π )2

(
−2

ε
− γ − ln � + ln 4π + O(ε)

)(
−2

ε
− γ − ln

(
p2

0 + m2
)+ ln 4π + O(ε)

)
(−2p0γ

0 + 4m)

= − �2

32π2

1

ε
(−2p0γ

0 + 4m) + O(1).
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The evaluation of the second line is quite complicated especially because of the contribution from Dirac algebra in the anomalous
dimension and potential appearance of poles by the integration for Feynman parameters of (x,y). We need to analyze both f (p)
and g(p) carefully, separating them from each other:

−�2
R

4

∫ 1

0
dxdy

y
3−d

2

[x(1 − x)]
5−d

2

[
�(3 − d)

2(4π )d−1

gkl · f (p)

�(p)3−d
+ �(4 − d)

(4π )d−1

g(p)

�(p)4−d

]
.

First, let us analyze the second term with g(p). At a glance, it does not have a pole. However, it is possible to diverge if the x

integral contains the contribution of
∫ 1

0 dx[x
d−3

2 (1 − x)
d−5

2 ] = �( d−1
2 )�( d−3

2 )
�(d−2) , for example. We rearrange g(p) and 1

�(p) as follows:

g(p) = γ μ[x(1 − y)pkγ
k + p0γ

0 + m]γ ν[−(1 − x)(1 − y)plγ
l + p0γ

0 − m]γμ(ypmγ m + p0γ
0 + m)γν

= x(1 − x)y(1 − y)2 × (· · · ) + x(1 − x)(1 − y)2 × (· · · ) + · · · + 1 × (· · · ),

1

�(p)
= 1

( p)4−d

(
1

x(1−x) + (1 − y)2
)4−d

= ( p)d−4[x(1 − x) − [x(1 − x)]2(1 − y)2 + [x(1 − x)]3(1 − y)4 + · · · ],

where (· · · ) indicates quantities which depend on p but not on x and y. We note that the expansion of �(p) is justified because
of 0 < x,y < 1, which cannot be done in a reciprocal way, i.e, [ 1

(1−y)2 − 1
x(1−x)(1−y)4 + · · · ]. Then, we obtain∫ 1

0
dxdyx

d−5
2 (1 − x)

d−5
2 y

3−d
2

g(p)

�(p)4−d

= ( p)d−4
∫ 1

0
dxdy[x(1 − x)]

d−5
2 y

3−d
2 [x(1 − x)y(1t − y)2 × (· · · ) + · · · + 1 × (· · · )]{x(1 − x) − [x(1 − x)]2(1 − y)2 + · · · }

= ( p)d−4
∫ 1

0
dxdy

[
x

d−3
2 (1 − x)

d−3
2 y

3−d
2 × (· · · ) + · · · ]

= ( p)d−4

[
�
(

d−1
2

)
�
(

d−1
2

)
�(d − 1)

�
(

5−d
2

)
�(1)

�
(

7−d
2

) + · · ·
]

d→3−−→ finite,

where we used the formula of B(x,y) = ∫ 1
0 dt[tx−1(1 − t)y−1] = �(x)�(y)

�(x+y) . The leading term is already finite, which leads us to
conclude that the second term gives only a finite value.

Next, let us focus on the first term. The first term contains �(3 − d), which gives rise to a divergence as d → 3. Also, it may
cause a divergence in the x integral by the same reason as before. In this respect it is more plausible to show a divergent behavior.
Performing the Dirac algebra repeatedly,

gkl · f (p) = −x(1 − x)γ μγ kγ νγkγμ(ypmγ m + p0γ
0 + m)γν − xγ μγ kγ ν[−(1 − x)(1 − y)pmγ m + p0γ

0 − m]γμγkγν

+ (1 − x)γ μ[x(1 − y)pmγ m + p0γ
0 + m]γ νγ kγμγkγν

= −x(1 − x)[−2γkγ
νγ k + (4 − d)γ kγ νγk](ypmγ m + p0γ

0 + m)γν + [x(1 − x)(1 − y)pm[−2γ mγ νγ k

+ (4 − d)γ kγ νγ m] − xp0[−2γ 0γ νγ k + (4 − d)γ kγ νγ 0] + xm[4gkν + (d − 4)γ kγ ν]]γkγν

+ [x(1 − x)(1 − y)pm[−2γ kγ νγ m + (4 − d)γ mγ νγ k] + (1 − x)p0[−2γ kγ νγ 0 + (4 − d)γ 0γ νγ k]

+ (1 − x)m[4gνk + (d − 4)γ νγ k]]γkγν

= −x(1 − x)ypmγ k
[
4gm

k + (d − 4)γkγ
m
]

(2 − d) − x(1 − x)p0γ
k
[
4g0

k + (d − 4)γkγ
0
]

(2 − d)

− x(1 − x)mγ kγk(2 − d)2 − 2x(1 − x)(1 − y)pmγ m(d − 1)d + x(1 − x)(1 − y)pmγ k[4gm
k + (d − 4)γ mγk]

× (4 − d) + 2xp0γ
0(d − 1)d − xp0γ

k
[
4g0

k + (d − 4)γ 0γk

]
(4 − d) + 4xm(d − 1) + xm(d − 4)(2 − d)(d − 1)

− 2x(1 − x)(1 − y)pmγ k
[
4gm

k + (d − 4)γ mγk

]+ x(1 − x)(1 − y)pmγ m(4 − d)(d − 1)d

− 2(1 − x)p0γ
k
[
4g0

k + (d − 4)γ 0γk

]+ (1 − x)p0γ
0(4 − d)(1 − d)d + 4(1 − x)m(d − 1)

+ (1 − x)m(d − 4)(d − 1)d

= −4x(1 − x)ypmγ m(2 − d) − x(1 − x)ypmγ m(2 − d)(d − 4)(d − 1) − x(1 − x)p0γ
0(d − 4)(2 − d)(d − 1)

− x(1 − x)m(2 − d)2(d − 1) − 2x(1 − x)(1 − y)pmγ m(d − 1)d + 4x(1 − x)(1 − y)pmγ m(4 − d)

+ x(1 − x)(1 − y)pmγ m(d − 4)2(d − 3) + 2xp0γ
0(d − 1)d + xp0γ

0(4 − d)(d − 4)(d − 1) + 4xm(d − 1)
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+ xm(d − 4)(2 − d)(d − 1) − 8x(1 − x)(1 − y)pmγ m − 2x(1 − x)(1 − y)pmγ m(d − 4)(3 − d)

+ x(1 − x)(1 − y)pmγ m(4 − d)(d − 1)d + 2(1 − x)p0γ
0(d − 4)(d − 1) + (1 − x)p0γ

0(4 − d)(d − 1)d

+ 4(1 − x)m(d − 1) + (1 − x)m(d − 4)(d − 1)d

= pmγ m[x(1 − x)(1 − y)[−2d(d − 1) + 4(4 − d) + (d − 4)2(d − 3) − 8 + 2(d − 4)(d − 3) − (d − 4)(d − 1)d]

+ x(1 − x)y[4(d − 2) + (d − 4)(d − 2)(d − 1)]] + p0γ
0[x(1 − x)[(d − 4)(d − 2)(d − 1)]

+ (1 − x)[2(d − 4)(d − 1) − (d − 4)(d − 1)d] + x[2d(d − 1) − (d − 4)2(d − 1)]]

+m[x(1 − x)[−(d − 2)2(d − 1)] + (1 − x)[4(d − 1) + d(d − 4)(d − 1)] + x[4(d − 1) − (d − 4)(d − 2)(d − 1)]]

= pmγ m[x(1 − x)(1 − y)[−6d2 + 28d − 16] + x(1 − x)y[d3 − 7d2 + 18d − 16]]

+p0γ
0[x(1 − x)[d3 − 7d2 + 14d − 8] + (1 − x)[−d3 + 7d2 − 14d + 8] + x[−d3 + 11d2 − 26d + 16]]

+m[x(1 − x)[−d3 + 5d2 − 8d + 4] + (1 − x)[d3 − 5d2 + 8d − 4] + x[−d3 + 7d2 − 10d + 4]],

we simplify the above expression as follows:

−�2
R

4

∫ 1

0
dxdy

y
3−d

2

[x(1 − x)]
5−d

2

[
�(3 − d)

2(4π )d−1

gkl · f (p)

�(p)3−d

]

= − �2
R

8(4π )d−1

∫ 1

0
dxdy

y
3−d

2

[x(1 − x)]
5−d

2

�(3 − d)

�(p)3−d
(pmγ m[x(1 − x)(1 − y)[−6d2 + 28d − 16] + x(1 − x)y[d3 − 7d2

+ 18d − 16]] + p0γ
0[x(1 − x)[d3 − 7d2 + 14d − 8] + (1 − x)[−d3 + 7d2 − 14d + 8] + x[−d3 + 11d2 − 26d + 16]]

+m[x(1 − x)[−d3 + 5d2 − 8d + 4] + (1 − x)[d3 − 5d2 + 8d − 4] + x[−d3 + 7d2 − 10d + 4]]).

There appears a simple pole already due to �(3 − d), but another pole can be made by the x integration. The y integration turns
out not to cause a divergence. Since we are interested in contributions with a simple pole, we are allowed to take two kinds of
terms only: One has a double pole with ε in a numerator and the other contains a simple pole only. Performing integrals carefully,
we find

− �2
R

8(4π )d−1

�(3 − d)

�(p)3−d

⎛
⎝pmγ m

⎡
⎣ �

(
d−1

2

)2
�(d − 1)

�
(

5−d
2

)
�(2)

�
(

9−d
2

) [−6d2 + 28d − 16] + �
(

d−1
2

)2
�(d − 1)

�
(

7−d
2

)
�
(

9−d
2

) [d3 − 7d2 + 18d − 16]

⎤
⎦

+p0γ
0

⎡
⎣ �

(
d−1

2

)2
�(d − 1)

�
(

5−d
2

)
�
(

7−d
2

) [d3 − 7d2 + 14d − 8] + �
(

d−3
2

)
�
(

d−1
2

)
�(d − 2)

�
(

5−d
2

)
�
(

7−d
2

) [−d3 + 7d2 − 14d + 8]

+ �
(

d−3
2

)
�
(

d−1
2

)
�(d − 2)

�
(

5−d
2

)
�
(

7−d
2

) [−d3 + 11d2 − 26d + 16]

⎤
⎦+ m

⎡
⎣ �

(
d−1

2

)2
�(d − 1)

�
(

5−d
2

)
�
(

7−d
2

) [−d3 + 5d2 − 8d + 4]

+ �
(

d−3
2

)
�
(

d−1
2

)
�(d − 2)

�
(

5−d
2

)
�
(

7−d
2

) [d3 − 5d2 + 8d − 4] + �
(

d−3
2

)
�
(

d−1
2

)
�(d − 2)

�
(

5−d
2

)
�
(

7−d
2

) [−d3 + 7d2 − 10d + 4]

⎤
⎦
⎞
⎠

= − �2
R

128π2

(
−1

ε
+ · · ·

)(
pmγ m[8 + O(ε)] + p0γ

0

[
−2 + O(ε) + �

(
ε

2

)
(12 + 14ε)

]

+m

[
− 2 + O(ε) + �

(
ε

2

)
(12 + 10ε)

])

= − �2
R

128π2

1

ε
(−8pmγ m − 26p0γ

0 − 18m) + O(ε−2) + O(1).

As a result, the self-energy correction from the crossed diagram is given by

�(2),c = − �2
R

32π2

1

ε
(−2p0γ

0 + 4m) − �2
R

128π2

1

ε
(−8pmγ m − 26p0γ

0 − 18m) + O(ε−2) + O(1)

= − �2
R

128π2

1

ε
(−34p0γ

0 − 8pmγ m − 2m) + O(ε−2) + O(1). (D6)
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It is important to notice that the sign of the self-energy correction in the two-loop order differs from that of the Fock diagram in
the one-loop order, which turns out to play a central role in the renormalization group equation for the mass parameter.

2. Vertex corrections

a. Feynman diagrams

The vertex renormalization can be found from the four-point function of G(x,x ′,y,y ′) = T 2

L2d

∑
p,p′,q,q ′

e−ıp·x+ıp′ ·x ′−ıq·y+ıq ′ ·y ′
G(p,p′,q,q ′) with G(p,p′,q,q ′) = 〈T [ψ(p) ¯ψ(p′)ψ(q) ¯ψ(q ′)]〉. Performing the perturbative analysis up

to the �2
R order, we obtain

G(p,p′,q,q ′)

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄,ψ)ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′)e−∑R

α=1 S0[ψ̄α ,ψα ]e
∑R

b,c=1

∫ β

0 dτ
∫ β

0 dτ ′ ∫ dd x �R
2 (ψ̄b

τ γ
μγ 5ψb

τ )(ψ̄c ′
τ γ

μγ 5ψc
τ ′ )

= lim
R→0

1

R

R∑
a=1

∫
D(ψ̄,ψ)e−∑R

α=1 S0[ψ̄αψα]

[
ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′) +

R∑
b,c=1

∑
pi

(
−�R

2

)
ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′)

×[ψ̄b(p1)γ μγ 5ψb(p2)][ψ̄c(p3)γ μγ 5ψc(p4)]δ(3)( p1 − p2 + p3 − p4)δp0
1 ,p

0
2
δp0

3 ,p
0
4
+

R∑
b,c,d,e=1

∑
pi ,qi

(
−�R

2

)2

ψa(p)ψ̄a(p′)

×ψa(q)ψ̄a(q ′)[ψ̄b(p1)γ μγ 5ψb(p2)][ψ̄c(p3)γ μγ 5ψc(p4)][ψ̄d (q1)γ μγ 5ψd (q2)][ψ̄e(q3)γ μγ 5ψe(q4)]δ(3)( p1 − p2 + p3

− p4)δp0
1 ,p

0
2
δp0

3 ,p
0
4
δ(3)(q1 − q2 + q3 − q4)δq0

1 ,q0
2
δq0

3 ,q0
4
+ O

(
�3

R

)]

= lim
R→0

1

R

R∑
a=1

〈ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′)〉0 + lim
R→0

1

R

R∑
a,b,c=1

(
−�R

2

)∑
pi

〈ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′)ψ̄b(p1)γ μγ 5

×ψb(p2)ψ̄c(p3)γ μγ 5ψc(p4)〉0δ
(4)(pi) + lim

R→0

1

R

R∑
a,b,c,d,e=1

(
−�R

2

)2 ∑
pi ,qi

〈ψa(p)ψ̄a(p′)ψa(q)ψ̄a(q ′)ψ̄b(p1)γ μγ 5

×ψb(p2)ψ̄c(p3)γ μγ 5ψc(p4)ψ̄d (q1)γ μγ 5ψd (q2)ψ̄e(q3)γ μγ 5ψe(q4)〉0δ
(4)(pi)δ

(4)(qi) + O
(
�3

R

)
,

a

a

a

a

a a

a a

a

a a b b a

c c

a

a

a a

a a

a a

b

b

c

c
b b c c

b

b

c

c

b

b

c

c

FIG. 10. All possible first-order corrections for the four-point function without the replica limit.
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where we introduced a shorthand notation of δ(4)(pi) = δ(3)( p1 − p2 + p3 − p4)δp0
1 ,p

0
2
δp0

3 ,p
0
4
. All possible first-order contributions

are given by (Fig. 10)

lim
R→0

1

R

R∑
a,b,c=1

〈
ψa

i ψ̄a
j ψa

k ψ̄a
l ψ̄b

m(γ μγ 5)mnψ
b
n ψ̄c

o(γ μγ 5)opψc
p

〉
0

= lim
R→0

1

R

R∑
a,b,c=1

[
4
〈
ψa

i ψ̄a
j

〉
0

〈
ψa

k ψ̄a
l

〉
0

〈
ψb

n ψ̄b
m

〉
0

〈
ψc

pψ̄c
o

〉
0

(γ μγ 5)mn(γ μγ 5)op − 4
〈
ψa

i ψ̄a
j

〉
0

〈
ψa

k ψ̄a
l

〉
0

× 〈ψb
n ψ̄c

o

〉
0

〈
ψc

pψ̄b
m

〉
0

(γ μγ 5)mn(γ μγ 5)op − 4
〈
ψa

i ψ̄a
j

〉
0

〈
ψb

n ψ̄a
l

〉
0

〈
ψa

k ψ̄b
m

〉
0

〈
ψc

pψ̄c
o

〉
0

(γ μγ 5)mn

×(γ μγ 5)op + 4
〈
ψa

i ψ̄a
j

〉
0

〈
ψb

n ψ̄a
l

〉
0

〈
ψc

pψ̄b
m

〉
0

〈
ψa

k ψ̄c
o

〉
0 (γ μγ 5)mn(γ μγ 5)op + 4

〈
ψb

n ψ̄a
j

〉
0

〈
ψa

i ψ̄b
m

〉
0

× 〈ψc
pψ̄a

l

〉
0

〈
ψa

k ψ̄c
o

〉
0 (γ μγ 5)mn(γ μγ 5)op

]
= lim

R→0

1

R

R∑
a,b,c=1

[
2Ga

ijG
a
klG

b
nmGc

po(γ μγ 5)mn(γ μγ 5)opδaaδaaδbbδcc − 2Ga
ijG

a
klG

b
noG

c
pm(γ μγ 5)mn(γ μγ 5)opδaaδaaδbcδcb

−4Ga
ijG

b
nlG

a
kmGc

po(γ μγ 5)mn(γ μγ 5)opδaaδbaδabδcc + 4Ga
ijG

b
nlG

c
pmGa

ko(γ μγ 5)mn(γ μγ 5)opδaaδbaδcbδac

+ 4Gb
njG

a
imGc

plG
a
koδbaδabδcaδac(γ μγ 5)mn(γ μγ 5)op

]

= lim
R→0

1

R

⎡
⎣2

R∑
a,b,c=1

[Ga]2 ⊗ tr[Gbγ μγ 5]tr[Gcγμγ 5]δaaδaaδbbδcc + 2
R∑

a,b,c=1

[Ga]2 ⊗ tr[Gbγ μγ 5Gcγμγ 5]δaaδaaδbcδcb

−4Ga ⊗ Gaγ μγ 5)Gbtr[Gcγ μγ 5]δaaδbaδabδcc + 4Ga ⊗ Gaγ μγ 5Gcγ μγ 5Gbδaaδbaδcbδac

+ 4Gaγ μγ 5Gc ⊗ Gaγ μγ 5Gbδbaδabδcaδac

⎤
⎦,

where 4 results from identical contributions in the first equality and − comes from the odd number of fermion loops (one loop).
The first term is proportional to R3, the second and third, R2, the fourth and fifth, R. As a result, only the fourth and fifth terms
survive in the replica limit. But, the fourth term is just the product of a bare propagator and a propagator with a Fock self-energy.
Therefore, the four-point function and the scattering matrix element are (Fig. 11)

G(1)(p,p′; q) = 4

(
−�R

2

)
G(p)γ μγ 5G(p + q) ⊗ G(p′)γ μγ 5G(p′ − q),

M (1)(p,p; q) = 4

(
−�R

2

)
γ μγ 5 ⊗ γ μγ 5.

p

q(q0 = 0)

p p − q

p + qγμγ5

γμγ
5

FIG. 11. Tree level vertex.
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FIG. 12. Second-order vertex corrections without the replica limit.

All possible quantum corrections in the second order are given by (Fig. 12)

lim
R→0

1

R

R∑
a,b,c,d,e=1

[ 〈
ψa

i ψ̄a
j ψa

k ψ̄a
l ψ̄b

m(γ μγ 5)mnψ
b
n ψ̄c

o(γμγ 5)opψc
pψ̄d

q(γ νγ 5)qrψ
d
r ψ̄e

s(γνγ
5)stψ

e
t

〉
0

]
connected

= lim
R→0

1

R

R∑
a,b,c,d,e=1

[16Gaγ μγ 5Gb ⊗ Gaγνγ
5Getr[Gcγμγ 5Gdγ νγ 5]δabδbaδcdδdcδaeδea + 16Gaγ μγ 5Gbγ νγ 5Gd

⊗ Gaγμγ 5Gcγνγ
5Geδabδbdδdaδacδceδea + 16Gaγ μγ 5Gbγ νγ 5Gd ⊗ Gaγνγ

5Geγμγ 5Gcδabδbdδdaδaeδecδca

+ 32Gaγ μγ 5Gbγνγ
5Gdγμγ 5Gc ⊗ Gaγνγ

5Geδabδbdδdcδcaδaeδea],

where only diagrams fully connected with the external lines have been taken into account. The first term is proportional to R2

while all other terms are ∼ R. As a result, the four-point function and the scattering matrix element in the second order are given
by (Fig. 13)

G(2)(p,p′; q) =
(

−�R

2

)2∑
l

[16G(p)γ μγ 5G(p − l)γ νγ 5G(p + q) ⊗ G(p′)γμγ 5G(p′ + l)γνγ
5G(p′ − q)

+16G(p)γ μγ 5G(p − l)γ νγ 5G(p + q) ⊗ G(p′)γνγ
5G(p′ − l − q)γμγ 5G(p′ − q)

+32G(p)γ μγ 5G(p − l)γνγ
5G(p + q − l)γμγ 5G(p + q) ⊗ G(p′)γνγ

5G(p′ − q)],

M (2)(p,p; q) = 4App + 4Aph + 8Aver,

App =
(

−�R

2

)2∑
l

γ μγ 5G(p − l)γ νγ 5 ⊗ γμγ 5G(p′ + l)γνγ
5, (D7)

Aph =
(

−�R

2

)2∑
l

γ μγ 5G(p − l)γ νγ 5 ⊗ G(p′)γνγ
5G(p′ − l − q)γμγ 5, (D8)

Aver =
(

−�R

2

)2∑
l

γ μγ 5G(p − l)γνγ
5G(p + q − l)γμγ 5 ⊗ γνγ

5, (D9)

where pp and ph represent “particle-particle” and “particle-hole”, respectively, and ver means “vertex”.

p p + q

p p − q

q(q0 = 0)

l(l0 = 0)

p − l p + q − l

γμγ5 γμγ
5γνγ5

γνγ
5

l(l0 = 0) q + l(q0 = 0)

γμγ5 γνγ5

γμγ
5 γνγ

5

p p − l

p p + l p − q

p + q

l(l0 = 0) l + q(q0 = 0)

p p − l

p − q p − l − q p

p + q

γμγ5 γνγ5

γνγ
5γμγ

5

FIG. 13. Second-order vertex corrections in the replica limit.
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b. Evaluation of relevant Feynman diagrams

First, we focus on the particle-hole diagram (the first diagram in Fig. 13), given by

Aph =
(

−�R

2

)2 ∫
ddl

(2π )d
2πδ(l0)γ μγ 5 /p − /l − m

(p − l)2 − m2
γ νγ 5 ⊗ γμγ 5 /p

′ − /q − /l − m

(p′ − q − l)2 − m2
γνγ

5

= �2
R

4

∫
dd−1l

(2π )d−1
γ μ p0γ

0 + pkγ
k − lkγ

k + m

−p2
0 − ( p − l)2 − m2

γ ν ⊗ γμ

p′
0γ

0 + p′
lγ

l − q0γ
0 − qlγ

l − llγ
l + m

−(p′
0 + q0)2 − ( p′ − q − l)2 − m2

γν

= �2
R

4

∫
dd−1l

(2π )d−1

γ μ(p0γ
0 + pkγ

k − lkγ
l + m)γ ν

(l − p)2 + p2
0 + m2

⊗ γμ[(p′
0 − q0)γ 0 + p′

lγ
l − qlγ

l − llγ
l + m]γν

(l − p′ + q)2 + (p′
0 − q0)2 + m2

= �2
R

4

∫
dd−1l

(2π )d−1

N

D
,

with

D−1 =
∫ 1

0
dx[l2 + x(1 − x)( p − p′ + q)2 + xp2

0 + (1 − x)(p′
0 − q0)2 + m2]−2 =

∫ 1

0
dx[l2 + �(p,p′ − q)]−2,

N = γ μ[−lkγ
k + (1 − x)(pk − p′

k + qk)γ k + p0γ
0 + m]γ ν ⊗ γμ[−llγ

l − x(pl − p′
l + ql)γ

l + (p′
0 − q0)γ 0 + m]γν

= lkllγ
μγ kγ ν⊗γμγ lγν+γ μ[(1 − x)(pk − p′

k + qk)γ k + p0γ
0 + m]γ ν ⊗ γμ[−x(pl − p′

l + ql)γ
l + (p′

0 − q0)γ 0 + m]γν

= lkllγ
μγ kγ ν ⊗ γμγ lγν + f (p,p′ − q).

Then, we obtain

Aph = �2
R

4

∫ 1

0
dx

∫
dd−1l

(2π )d−1

lkllγ
μγ kγ ν ⊗ γμγ lγν + f (p,p′ − q)

[l2 + �]−2

= �2
R

4

∫ 1

0
dx

[
−1

(4π )d−1

γ μγ kγ ν ⊗ γμγkγν

2

�
(
1 − d−1

2

)
�(2)

1

�1− d−1
2

+ f (p,p′ − q)

(4π )d−1

�
(
2 − d−1

2

)
�(2)

1

�2− d−1
2

]

= �2
R

4

∫ 1

0
dx

[
−1

(4π )d−1

γ μγ kγ ν ⊗ γμγkγν

2

�
(

3−d
2

)
�

3−d
2

+ f (p,p′ − q)

(4π )d−1

�
(

5−d
2

)
�

5−d
2

]

= �2
R

4

∫ 1

0
dx

[
−γ μγ kγ ν ⊗ γμγkγν

2(4π )

(
−2

ε
− γ − ln �(p,p′ − q) + ln 4π + O(ε)

)
+f (p,p′ − q)

(4π )
2+ε

2

�
(

2−ε
2

)
�

2−ε
2

]
. (D10)

Next, we evaluate the particle-particle diagram (the second diagram in Fig. 13). It is almost identical with the way for the
particle-hole channel to perform the integral of the particle-particle channel. We find

App =
(

−�R

2

)2 ∫
ddl

(2π )d
2πδ(l0)γ μγ 5 /p − /l − m

(p − l)2 − m2
γ νγ 5 ⊗ γμγ 5 /p

′ + /l − m

(p′ + l)2 − m2
γνγ

5 = Aph(p′ − q → p′,l2 → −l2)

= �2
R

4

∫ 1

0
dx

[
+γ μγ kγ ν ⊗ γμγkγν

2(4π )

(
−2

ε
− γ − ln �(p,p′) + ln 4π + O(ε)

)
+f (p,p′)

(4π )
2+ε

2

�
(

2−ε
2

)
�(p,p′)

2−ε
2

]
. (D11)

Lastly, we evaluate the third diagram in Fig. 13, given by

Aver =
(

−�R

2

)2 ∫
ddl

(2π )d
2πδ(l0)γ μγ 5 /p − /l − m

(p − l)2 − m2
γ νγ 5 /p − /l + /q − m

(p − l + q)2 − m2
γμγ 5 ⊗ γνγ

5

= �2
R

4

∫
dd−1l

(2π )d−1
γ μ p0γ

0 + pkγ
k − lkγ

k + m

−p2
0 − ( p − l)2 − m2

γ ν (p0 + q0)γ 0 + (pl + ql)γ l − llγ
l − m

−(p0 + q0)2 − ( p + q − l)2 − m2
γμγ 5 ⊗ γνγ

5

= �2
R

4

∫
dd−1l

(2π )d−1

γ μ(−lkγ
k + p0γ

0 + pkγ
k + m)γ ν[(p0 + q0)γ 0 + (pl + ql)γ l − llγ

l − m]γμγ 5 ⊗ γνγ
5

[(l − p)2 + p2
0 + m2][(l − p − q)2 + (p0 + q0)2 + m2]

= �2
R

4

∫
dd−1l

(2π )d−1

N

D
,
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with

D−1 =
∫ 1

0
dx[l2 + x(1 − x)q2 + xq2

0 + 2xp0q0 + p2
0 + m2]−2 =

∫ 1

0
dx[l2 + �′(p,q)]−2

N = γ μ(−lkγ
k − xqkγ

k + p0γ
0 + m)γ ν[−llγ

l − (1 − x)qlγ
l + (p0 + q0)γ 0 − m]γμγ 5 ⊗ γνγ

5

= lkllγ
μγ kγ νγ lγμγ 5 ⊗ γνγ

5 + γ μ(−xqkγ
k + p0γ

0 + m)γ ν[(1 − x)qlγ
l + (p0 + q0)γ 0 − m]γμγ 5 ⊗ γνγ

5

= lkll[−2γ lγ νγ k + (4 − d)γ kγ νγ l]γ 5 ⊗ γνγ
5 + g(p,q).

Following a similar procedure as the above, we obtain

Aver = �2
R

4

∫ 1

0
dx

∫
dd−1l

(2π )d−1

lkll[−2γ lγ νγ k + (4 − d)γ kγ νγ l]γ 5 ⊗ γνγ
5 + g(p,q)

[l2 + �′(p,q)]2

= �2
R

4

∫ 1

0
dx

[
1

(4π )
d−1

2

[−2γ lγ νγ k + (4 − d)γ kγ νγ l]γ 5 ⊗ γνγ
5

2

�
(

3−d
2

)
�(2)

1

�′(p,q)
3−d

2

+ g(p,q)

(4π )d−1

�
(

5−d
2

)
�(2)

1

�′(p,q)
5−d

2

]

= �2
R

4

∫ 1

0
dx

[
(2 − d)

(4π )
d−1

2

γ lγ νγlγ
5 ⊗ γνγ

5

2

�
(

3−d
2

)
�(2)

1

�′(p,q)
3−d

2

+ g(p,q)

(4π )d−1

�
(

5−d
2

)
�(2)

1

�′(p,q)
5−d

2

]

= �2
R

4

∫ 1

0
dx

[
ε(ε + 1)

4π

(
−2

ε
− γ − ln �′(p,q) + ln 4π + O(ε)

)
γ νγ 5 ⊗ γνγ

5 + g(p,q)

(4π )
2+ε

2

�
(

2−ε
2

)
�′(p,q)

2−ε
2

]
. (D12)

APPENDIX E: EVALUATION OF RENORMALIZATION CONSTANTS

Combining Eq. (D4), Eq. (D5), and Eq. (D6) in the following way,

2 × �(1) + 8 × �(2),r + 8 × �(2),c + [δω
ψp0γ

0 + δk
ψpkγ

k + δmm
]

= 2 × −�R

4π

1

ε
(−2p0γ

0 + 4m) + 8 × �2
R

16π2

1

ε
(3p0γ

0 + 10m) + 8 × �2
R

128π2

1

ε
(34p0γ

0 + 8pmγ m + 2m)

+δω
ψp0γ

0 + δk
ψpkγ

k + δmm + O(1)

= p0γ
0

(
�R

π

1

ε
+ 29�2

R

8π2

1

ε
+ δω

ψ

)
+ pmγ m

(
�2

R

2π2

1

ε
+ δk

ψ

)
+ m

(
−2�R

π

1

ε
+ 41�2

R

8π2

1

ε

)
,

we find counterterms

δω
ψ = −�R

π

1

ε
− 29�2

R

8π2

1

ε
, δk

ψ = − �2
R

2π2

1

ε
, δm = 2�R

π

1

ε
− 41�2

R

8π2

1

ε
,

which give rise to renormalization constants of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zω
ψ = 1 − �R

π
ln μ − 29�2

R

8π2 ln μ 
 exp
[
−�R

π
ln μ − 29�2

R

8π2 ln μ
]

Zk
ψ = 1 − �2

R

2π2 ln μ 
 exp
[
− �2

R

2π2 ln μ
]

Zm = 1 + 2�R

π
ln μ − 41�2

R

8π2 ln μ 
 exp
[

2�R

π
ln μ − 41�2

R

8π2

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (E1)

where 1
ε

is replaced with a cutoff scale, ln μ.
Similarly, one can find the renormalization constant for vertex corrections. It turns out that the particle-hole contribution

Eq. (D10) cancels the particle-particle correction Eq. (D11) while the vertex part Eq. (D12) is finite, given by

4 × Aph + 4 × App + 8 × Aver + δ�

�R

2
(γ νγ 5 ⊗ γνγ

5) = O(1) + δ�

�R

2
(γ νγ 5 ⊗ γνγ

5).

As a result, we find Z� = 1 up to the �2
R order.

APPENDIX F: DERIVATION OF RENORMALIZATION GROUP EQUATIONS

Recall the relation between the bare and renormalized coupling constant: �B = μ3−d (Zω
ψ )−2Z��R . It is straightforward to

find the renormalization group equation for the variance parameter:

d ln �R

d ln μ
= d − 3 + 2

d ln Zω
ψ

d ln μ
− d ln Z�

d ln μ
. (F1)
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FIG. 14. (Color online) Beta functions.

Similarly, mB = μ(Zω
ψ )−1ZmmR results in

d ln mR

d ln μ
= −1 + d ln Zω

ψ

d ln μ
− d ln Zm

d ln μ
. (F2)

Substituting Eq. (E1) and Z� = 1 into Eq. (F1) and Eq. (F2), we obtain the renormalization group equations for the variance and
mass parameter (see Fig. 14)

d ln �R

d ln μ
= 1 − 2�R

π
− 29�2

R

4π2
, (F3)

d ln mR

d ln μ
= −1 − 3�R

π
+ 3�2

R

2π2
. (F4)
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