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Exact results for itinerant ferromagnetism in a t2g-orbital system on cubic and square lattices
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We study itinerant ferromagnetism in a t2g multiorbital Hubbard system in the cubic lattice, which consists
of three planar oriented orbital bands of dxy , dyz, and dzx . Electrons in each orbital band can only move
within a two-dimensional plane in the three-dimensional lattice parallel to the corresponding orbital orientation.
Electrons of different orbitals interact through the on-site multiorbital interactions including Hund’s coupling.
The strong-coupling limit is considered in which there are no doubly occupied orbitals but multiple on-site
occupations are allowed. We show that in the case in which there is one and only one hole for each orbital band in
each layer parallel to the orbital orientation, the ground state is a fully spin-polarized itinerant ferromagnetic state,
which is unique apart from the trivial spin degeneracy. When the lattice is reduced into a single two-dimensional
layer, the dzx and dyz bands become quasi-one-dimensional while the dxy band remains two-dimensional. The
ground-state ferromagnetism also appears in the strong-coupling limit as a generalization of the double-exchange
mechanism. Possible applications to the systems of SrRuO3 and LaAlO3/SrTiO3 interface are discussed.
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I. INTRODUCTION

Itinerant ferromagnetism (FM) is not only a representative
strong-correlation problem, but also a highly nonperturbative
one [1–18]. It is widely known as a long-standing problem of
condensed matter physics, and also a current research focus
in ultracold-atom physics [19–26]. The Stoner mechanism
states that polarized electron systems can save the exchange
interaction energy. Nevertheless, because of the associated
cost of kinetic energy, FM is not guaranteed even in the
presence of very strong repulsions. For example, in rigorously
one-dimensional (1D) systems, no matter how strong the
repulsive interactions are, the ground state is always a spin
singlet, which is known as the famous Lieb-Mattis theorem
[1]. In other words, electrons can remain unpolarized but
avoid each other to reduce interaction; nevertheless, their wave
functions are strongly correlated. Certainly the Lieb-Mattis
theorem in 1D only applies for spin-independent systems.
Ferromagnetism in 1D is still possible if the interaction is
spin dependent.

Because of the strong-correlation nature of itinerant FM,
exact theorems are important to provide reference points.
Nagaoka’s theorem is an early example, which applies to
the infinite U Hubbard model with a single hole in the
half-filled background [3,27,28]. The fully polarized FM
state facilitates the hole’s coherent motion, which minimizes
the kinetic energy of the hole and is therefore selected as
the ground state. Another class of FM theorems is based
on the flat-band structure on line graphs [12–14,29,30].
Because of the divergence of density of states in the flat
band, the kinetic energy cost because of spin polarization is
suppressed. Metallic FM states with a dispersive band structure
have also been proved [31,32].

Recently, a ground-state FM theorem has been proved
in both two-dimensional (2D) square and three-dimensional
(3D) cubic lattices systems with multiorbital structures [33].
The band structure behaves like decoupled orthogonal 1D
chains, while different chains are coupled at their crossing
site through multiorbital Hubbard interactions. In particular,
spins of each chain are not conserved but coupled by Hund’s

interaction. Hence, the ground-state FM ordering is genuinely
2D or 3D. Different from Nagaoka’s theorem, the result of
multiorbital FM allows a stable FM phase over a large region
of filling factors in both 2D and 3D. An important consequence
of this theorem is that the sign structure of the many-body
Hamiltonian matrix leads to the absence of the quantum
Monte Carlo (QMC) sign problem [33]. Consequently, QMC
simulations on finite-temperature thermodynamic properties
of itinerant FM have been performed [34], which yield
asymptotically exact results and shed light on the mechanism
of magnetic phase transitions in the strong-coupling limit.

In this article, we generalize Nagaoka’s theorem of itinerant
FM from the single-orbital system to multiorbital systems.
We consider the 3D cubic lattice and each site consists of
three t2g orbitals: dxy , dyz, and dzx . Each orbital has a planar
orientation, and the associated band structure is quasi-2D-like.
Electrons of different orbitals interact through the on-site
multiorbital interactions including Hund’s coupling. In the
limit of intraorbital interaction U → ∞, states with doubly
occupied orbitals are projected out. When each plane of
the cubic lattice has one and only one hole in the in-plane
orbital band, this system can be be viewed as crossing layers
of Nagaoka FM states. We prove that, in this limit, the
ground state of this system is the fully spin-polarized itinerant
ferromagnetic state, and it is nondegenerate apart from the
trivial spin degeneracy. Furthermore, when this system is
reduced to a single 2D layer system of t2g orbitals, the
dzx- and dyz-orbital bands become quasi-1D and coupled
to the quasi-2D band of dxy through Hund’s coupling. The
ground-state FM is still valid, where the quasi-1D dzx and dyz

bands are allowed to take general values of filling, while the dxy

band can possess a single hole or be fully filled. Although the
above exact results require an idealized strong-coupling limit,
the strong-correlation physics that they imply sheds important
light on the mechanism of itinerant FM in transition-metal
oxides.

The rest of this paper is organized as follows: In Sec. II, the
multiorbital Hubbard model for the t2g orbital in the 3D cubic
lattice is defined. In Sec. III, Theorem 1 of the ground-state
itinerant FM in the 3D t2g-orbital system is proved. In Sec. IV,
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Theorem 2 of the ground-state itinerant FM for the reduced
2D layered system is proved. Discussion on connections to
experiment systems is provided in Sec. V. Conclusions are
presented in Sec. VI.

II. THE MODEL HAMILTONIAN: A 3D MULTIORBITAL
HUBBARD MODEL

In this section, we define a 3D multiorbital Hubbard model
in the 3D cubic lattice, which will be shown to possess itinerant
FM ground states under conditions I and II in Sec. III.

We consider a t2g-orbital system filled with spin-1/2
electrons; i.e., each site possesses dxy , dyz, and dzx orbitals.
The Wannier wave function of the t2g orbitals is planar-like
as shown in Fig. 1. The kinetic energy of each orbital band
exhibits a 2D structure: Say, for electrons in the dxy orbital,
they can only move in the xy plane with a hopping amplitude
t‖. However, their hopping amplitude t⊥ along the transverse
direction of the z axis is very small. Usually, the in-plane
hopping t‖ is assisted by the p orbitals of oxygen anions
lying at the middle point of the bond, which leads to large
hopping amplitudes, while the transverse hopping t⊥ can only
be attributed to the direct overlap between two dxy orbitals
offset along the z axis. Since d-orbital Wannier functions are
nearly localized and the z axis is perpendicular to the orbital
plane, t‖ is negligible in realistic transition-metal oxides.
Similarly, electrons in the dyz and dzx orbitals only hop along
the yz and zx planes, respectively.

Because of the different parity eigenvalues of these three
t2g orbitals with respect to the xy, yz, and zx planes, they do
not hybridize by the nearest-neighbor hopping. If we neglect
the longer range hopping terms, the kinetic energy part can
simply be written as

HK = HK
xy + HK

yz + HK
zx , (1)

where HK
xy , HK

yz , and HK
zx are the kinetic energies of electrons

in the xy-, yz-, and zx-orbital bands, respectively. The kinetic
energy for the xy-orbital band is expressed as

HK
xy =

∑
r

t‖(d†
xy,σ (r)dxy,σ (r + a0x̂)

+ d†
xy,σ (r)dxy,σ (r + a0ŷ) + H.c.), (2)

where a0 is the lattice constant; dxy,σ (r) is the annihilation
operator in the dxy orbital on site r with the spin index σ =↑ or
↓. For convenience later, we choose t‖ positive. For the bipartite
lattice such as the cubic one, the sign of t‖ can be flipped by
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FIG. 1. (Color online) The Wannier orbital wave functions of
t2g orbitals: dxy , dyz, and dzx . For electrons in the da orbitals
(a = xy,yz,zx), they can only move along the xy, yz, or zx plane,
respectively, but not perpendicular to the orbital orientation plane.

a gauge transformation, which does not affect any physical
observable. The transverse hopping t⊥ term is neglected in
Eq. (2). Similarly, HK

yz(zx) can also be defined by permuting
the indices of orbitals and hopping directions in HK

xy , whose
expressions are not repeated here.

The interaction term is the standard multiorbital Hubbard
interaction [4,5,35,36] defined on-site as

HI = U
∑
r,a

na,↑(r)na,↓(r)

− J
∑

r,a �=b

(
	Sa(r) · 	Sb(r) − 1

4
na(r)nb(r)

)

+V
∑

r,a �=b

na(r)nb(r)

+�
∑

r,a �=b

(d†
a,↑(r)d†

a,↓(r)db,↓(r)db,↑(r) + H.c.), (3)

where a = xy,yz,zx is the orbital index; na,σ (r) is the number
of electrons occupying the a orbital at site r with spin index σ ;
na = na,↑ + na,↓; 	Sa(r) is the spin operator of the ath orbital
at site r.

Equation (3) contains all the possible terms satisfying the
spin SU(2) symmetry and the lattice cubic symmetry. The
U term is the usual intraorbital Hubbard interaction; the V

term is the interorbital Hubbard interaction; the J term is
Hund’s coupling with J > 0; and the � term describes the
singlet pairing hopping process among different orbitals. The
expressions of U , V , J , and � are presented in Appendix A fol-
lowing the standard physical meaning of two-body Coulomb
interactions.

III. FERROMAGNETISM IN THE 3D t2g-ORBITAL SYSTEM

In this section, we consider the 3D t2g-orbital systems in
the cubic lattice of size Lx × Ly × Lz. We also assume the
following two conditions:

(I) U → +∞, � is finite.
(II) For each orbital band, there is one and only one hole

in every layer parallel to the orbital plane. For example, there
is one and only one hole in every xy plane in the dxy-orbital
band, and similarly for the dyz- and dzx-orbital bands.

Condition II can be well defined because of the following
lemma whose proof is obvious.

Lemma 1. The Hamiltonian of Eqs. (2) and (3) conserves
particle number in each orbital band in each plane parallel to
the orbital orientation.

Accordingly, the Hilbert space of the system can be
factorized as the tensor product of the Hilbert space of each
orbital band in each layer as

H =
Lz⊗

lz=1

Hxy

lz

Lx⊗
lx=1

Hyz

lx

Ly⊗
ly=1

Hzx
ly

, (4)

where lz,x,y are the indices of the xy, yz, and zx planes,
respectively. Under condition I, states with doubly occupied
orbitals are projected out, and each orbital can only be occupied
at most by one particle. Further, condition II restricts one and
only one hole for each orbital band in a layer. In each given
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Hilbert space Ha
li
, each state is determined by the location of

the hole and the spin configuration at other sites. For example,
in the Hilbert space of the dxy orbital of the lzth layer, we can
label all the dxy orbitals of this layer in an arbitrary order by
the index ilz = 1, . . . ,LxLy . Then, the states in this layer can
be represented as

∣∣hxy

lz
; {σ }lz

〉 = (−)h
xy

lz

∏
ilz

′
d†

xy,σ (ilz )|0〉, (5)

where h
xy

lz
labels the location of the hole; {σ }lz repre-

sents the spin configuration;
∏′ means the ordered prod-

uct of the creation operators except the one at the loca-
tion of the hole;

∏′
ilz

d
†
xy,σ (ilz )|0〉 = d

†
xy,σ1 (1) · · · d†

xy,σh−1 (hxy

lz
−

1) ̂

d
†
xy,σh

(hxy

lz
)d†

xy,σh+1 (hxy

lz
+ 1) · · · d†

xy,σLxLy
(LxLy)|0〉 with the

“hat” means the operator below it does not appear. Then, we
can define the bases of the product Hilbert space for our entire
system as

|{h},{σ }〉 =
Lz⊗

lz=1

∣∣hxy

lz
; {σ }lz

〉 Lx⊗
lx=1

∣∣hyz

lx
; {σ }lx

〉

Ly⊗
ly=1

∣∣hzx
ly

; {σ }ly
〉
, (6)

where {h} represents the locations of all the holes in a given
state and {σ } represents the spin configuration of this state
with the labels of orbitals and layers omitted,. Because of the
spin conservation, we can decompose the Hilbert space into
different sectors HSz by the value of the z component of total
spin Sz, denoted as H = ⊕

HSz . Nevertheless, HSz cannot
be further factorized as the product space of different orbital
bands and layers.

Next, let us prove two lemmas as the preparation of the FM
Theorem 1.

Lemma 2 (nonpositivity). Under the bases |{h},{σ }〉 defined
above for the Hilbert space H with total spin Sz, the off-
diagonal matrix elements of the many-body Hamiltonian
H = Hkin + Hint [see Eqs. (2) and (3)] are nonpositive.

Proof. The off-diagonal matrix elements are contributed
by the hopping part and Hund’s interaction part. The pairing
hopping term does not exist in the limit of U → +∞ since
states with doubly occupied orbitals have been projected out.
For the hopping term, because of the sign convention of the
many-body bases defined in Eq. (6) inherited from Eq. (5), it
is easy to check that

〈{h},{σ }|Ht |{h′},{σ ′}〉 = −t or 0. (7)

This step is the same as that in the proof of the usual
Nagaoka theorem for a 2D single-orbital Hubbard model [27]:
Although there are (Lx + Ly + Lz) holes in our system, the
fermion ordering does not change under hopping because
of Lemma 1. For the xy component of Hund’s interaction
HJxy

= −J/2
∑

a �=b(S+
a S−

b + S−
a S+

b ) with S±
a = Sx

a ± iS
y
a , it

does not change the fermion ordering either, and thus, its
matrix elements read

〈{h},{σ }|HJxy
|{h′},{σ ′}〉 = −J/2 or 0, (8)
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FIG. 2. (Color online) Representative orbital configurations
along a bond 〈ij〉 with two orbitals at sites i and j initially
occupied by spins ↑ and ↓, respectively. Case (a): [dzx,↑(i); dzx,↓(j )],
case (b): [dzx,↑(i); dyz,↓(j )], case (c): [dzx,↑(i); dxy,↓(j )], case (d):
[dxy,↑(i); dxy,↓(j )]. Any two cases of (a)–(d) are nonequivalent under
the lattice symmetry transformation.

which are also nonpositive. The V term and the z component
of Hund’s interaction only contribute to the diagonal part of
the many-body matrix. Q.E.D.

Let us consider a general hole and spin configuration
satisfying conditions I and II. We pick up a bond 〈ij 〉 and
consider the da orbital of site i and the db orbital of site j .
If they are occupied by spin σ and σ ′, respectively, let us
denote this bond configuration as [da,σ (i); db,σ ′ (j )]. We have
the following lemma:

Lemma 3. The spin configuration in [da,σ (i); db,σ ′ (j )] can
be flipped to [da,σ ′ (i); db,σ (j )] by applying a series of hopping
and Hund’s interaction processes without finally affecting spin
and hole configurations in the rest of the system.

Proof. Without loss of generality, we assume the bond 〈ij 〉 is
along the z axis, and only discuss how to flip [da,↑(i); db,↓(j )]
to [da,↓(i); db,↑(j )]. Since a and b can take any of the xy,
yz, and zx, there are 9 possible orbital configurations for a
bond. Nevertheless, they can be classified into 4 nonequivalent
classes because of the lattice geometry as shown in Figs. 2(a)
to 2(d).

For later convenience, the single-hole assisted spin flipping
in the 2D single-orbital infinite U Hubbard model is reviewed
in Appendix B, which plays an important role in the proof of
the Nagaoka FM ground state and will be employed repeatedly
below.
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Class (a): Let us consider a = b = zx. The same reasoning
can also apply to the case of a = b = yz. Since two orbitals
and the bond are coplanar and there is one hole in this plane,
we can directly use the result in Appendix B to exchange their
spins [dzx,↑(i); dzx,↓(j )] → [dzx,↓(i); dzx,↑(j )].

Class (b): Let us consider a = zx and b = yz, i.e., the
configuration [dzx,↑(i); dyz,↓(j )]. The reasoning below also
applies to the case of a = yz and b = zx. Let us use another
orbital, dyz, at site i. First, we assume that it is occupied since
we can always move an electron from other neighboring sites
and return it back afterwards. If it is occupied by spin-↑,
a familiar bond configuration [dyz,↑(i); dyz,↓(j )] appears. As
already shown in class (a), their spins can be exchanged
to give an intermediate configuration [dyz,↓(i); dyz,↑(j )] for
class (b). Then, on site i, we have both dzx,↑(i) and dyz,↓(i),
whose spins can be further exchanged by the HJxy

term to
become dzx,↓(i) and dyz,↑(i). Combining these two steps of
spin exchange, the initial configuration [dzx,↑(i); dyz,↓(j )] is
flipped to [dzx,↓(i); dyz,↑(j )] and the third dyz(i) orbital remains
spin-↑ finally. If the dyz(i) orbital is occupied by spin-↓, we
can first apply Hund’s interaction to exchange spins between
the dzx(i) and dyz(i) orbitals, and then apply the process in class
(a) to further exchange the spins between two dyz orbitals on
sites i and j .

Class (c) contains four equivalent configurations a = dzx ,
b = dxy ; a = dyz, b = dxy ; a = dxy , b = dzx ; a = dxy , b =
dyz. Class (d) only contains one configuration a = b = dxy .
The proof for these two classes is similar to that of class (b)
by combining Hund’s interaction and the hole’s hopping. The
detailed proofs are given in Appendix C. Q.E.D.

Based on Lemma 3, we can have an important property of
transitivity for the many-body matrix in any sub-Hilbert space
HSz .

Lemma 4 (transitivity). Consider the Hamiltonian matrix
in the subspace HSz . For any two basis vectors, |{h},{σ }〉
and |{g},{α}〉, there always exists a series of basis vec-
tors |{h1},{σ1}〉, |{h2},{σ2}〉, . . . , |{hk},{σk}〉 connected with
nonzero matrix elements of H , such that

〈{g},{α}|H |{h′
1},{σ1}〉〈{h1},{σ1}|H |{h2},{σ2}〉

×...〈{hk},{σk}|H |{h},{σ }〉 �= 0. (9)

Proof. First, we can always apply the hopping term to
|{h},{σ }〉 to rearrange the locations of holes of each orbital
band in each layer. Then we reach an intermediate state
|{g′},{α′}〉 in which the locations of holes are the same as
that in |{g},{α}〉. Since the two states |{g},{α}〉 and |{g′},{α′}〉
have the same z component of the total spin Sz, they only differ
by their spin configurations with a permutation of spins.

Since any permutation can be generated by exchanges, it
suffices to show as below that in |{g′},{α′}〉 two opposite spins
in any two orbitals can be exchanged by consecutively applying
hoppings and Hund’s interactions without finally affecting the
configuration of the rest of the system.

If the two orbitals are on the same site, it is easy to exchange
their spins by applying Hund’s interaction with HJxy

once.
If they are located at different sites, we can always find
a path of successive bonds connecting these two sites, and
passing through nonempty sites [here are at most a number
of min(Lx,Ly,Lz) sites with all three orbitals empty]. Then,

we can have a sequence of occupied orbitals in which every
two adjacent orbitals are located on two nearest-neighbor
sites. We can exchange the two spins at two ends of this
path as follows: Following Lemma 3, we can flip different
spins at occupied orbitals on two neighboring sites. Then, by
successively applying this operation, we are able to exchange
the spins of two ends without affecting other parts of the
system. Q.E.D.

Now we are ready to prove the following theorem.
Theorem 1 (3D FM ground state). Consider the Hamiltonian

Hkin + Hint satisfying conditions I and II. The physical Hilbert
space is HSz . For any values of V and J > 0, the ground states
are spin fully polarized and are unique apart from the trivial
spin degeneracy. They can be expressed as

∣∣�Sz

G

〉 =
∑′

c{h},{σ }|{h},{σ }〉, (10)

where all the coefficients are strictly positive and
∑′ means

the summation over states in HSz .
Proof. Because of Lemma 2 of nonpositivity and Lemma 4

of transitivity, the Hamiltonian matrix within HSz satisfies the
prerequisites of the Perron-Frobenius theorem theorem. The
importance of the transitivity to the nondegenerate ground state
is also explained in Sec. III of the Supplementary Material of
Ref. [33]. Then it is straightforward to conclude that Eq. (10)
is true which is nondegenerate within each HSz .

To show that |�Sz

G 〉 in Eq. (10) is a fully spin-polarized state,
we introduce a reference state in HSz by summing over all its
bases with equal weights,

∣∣�Sz

ref

〉 =
∑′|{h},{σ }〉. (11)

Since |�Sz

ref〉 is symmetric under exchanging spins of any two
orbitals, it is a fully spin-polarized state with the total spin
S = Ntot/2 and its z component Sz. Apparently, 〈�Sz

G |�Sz

ref〉 �=
0. Since |�Sz

G 〉 is the unique ground state in HSz , these two
nonorthogonal states must share the same good quantum
numbers of S and Sz. Q.E.D.

Because of the spin SU(2) symmetry, all ground states |�Sz

G 〉
in different HSz with −Ntot/2 � Sz � Ntot/2 are degenerate,
and form a set of spin multiplets with the maximal total spin
S = Ntot/2.

Remark. Theorem 1 is true for both the periodic and open
boundary conditions.

Based on Theorem 1, we have the following two corollaries
with their proofs presented in Appendix D.

Corollary 1. Under condition I and a modified condition II:
There is one and only one doubly occupied orbital for each
orbital band in each layer; we have that the Hamiltonian of
Eqs. (2) and (3) also possesses the fully spin-polarized FM
ground state which is unique up to the trivial spin degeneracy.

Corollary 2. If there is one and only one particle in each
orbital band in each layer, we also have that the ground state is
fully spin polarized and unique up to the trivial spin degeneracy
for any values of J > 0 and V .

IV. FERROMAGNETISM IN THE 2D t2g-ORBITAL LAYER

In this section, we will consider the same multiorbital
Hubbard Hamiltonian of Eqs. (2) and (3) but in a single layer
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along the xy plane. The dxy-orbital band remains 2D, while
the dzx and dyz orbitals form crossed 1D bands with dispersion
perpendicular to each other. The FM ground state of this system
will be discussed when both 1D and 2D bands present.

When only the two quasi-1D bands are considered, the FM
ground state has been proved in Ref. [33] under condition I
and the following two conditions:

(III) Open boundary condition or periodic (antiperiodic)
boundary condition with odd (even) number of particles in
each row or column.

(IV) Arbitrary filling with at least one hole and one particle
in each row and each column.

To describe the dzx and dyz bands with general fillings,
let us first recapture the many-body bases constructed for the
quasi-1D system in Ref. [33] and rewrite them in terms of
dzx and dyz bands. By Lemma 1, for any generic filling, we
can always specify a partition of particle numbers into rows
X = {ri = 1, . . . ,Ly} and columns Y = {ci = 1, . . . ,Lx} as
NX = {Nri

},NY = {Nci
}, where Nri

and Nci
are the particle

numbers of dzx and dyz orbitals conserved in the ri th row and
the ci th column, respectively. We can order electrons in each
row from the leftmost particle to the rightmost one, followed
by the ordering in each column from the top to bottom. The
corresponding many-body basis can be set up as

|R,S〉NX ,NY =
Lx∏
j=1

d†
yz,cj

Ly∏
j=1

d†
zx,rj

|0〉

= d†
yz,cLx

· · · d†
yz,c2

d†
yz,c1

d†
zx,rLy

· · · d†
zx,r2

d†
zx,r1

|0〉,
(12)

where j denotes the index of columns and rows; R =
{rrj

i ; rcj

i | all i ′s and j ′s} represents the coordinates of occupied
sites; S = {αrj

i ; β
cj

i | all i ′s and j ′s} represents their the
spin configurations. The operator d

†
zx,rj

(d†
yz,cj

) creates a
whole line of Nrj

(Ncj
) dzx (dyz) electrons in the row rj

(column cj ) ordered from left to right (from top to bottom),
d
†
zx,rj

= ∏
ri∈rowrj

d
†
zx(r1)d†

zx(r2) · · · d†
zx(rNrj

), and d
†
yz,cj

can
be similarly defined.

Now, let us consider the additional quasi-2D dxy band with
one and only one hole. The basis for this layer of dxy orbital
|hxy,{σ }〉 is defined following Eq. (5) but without the layer
index. Then, the basis for the Hilbert space of this 2D system
H2D can be constructed by the direct product of the basis for
the 1D bands and that for the 2D band,

|R,S〉NX ,NY ⊗ |hxy,{σ }〉. (13)

Again, because of the conservation of the z component of
the total spin, this Hilbert space can be decomposed as H2D =⊕

HSz

2D . Following the same steps in Ref. [33] and in Sec. III, it
is straightforward to show that for the basis defined in Eq. (13),
and under condition III for 1D bands, the off-diagonal matrix
elements of the many-body Hamiltonian are nonpositive.

Below, we further show the transitivity of the Hamiltonian
matrix in the sub-Hilbert space HSz

2D under condition IV
for dzx and dyz bands. Since the locations of electrons can
be easily adjusted by applying hopping terms, it suffices
to show the transitivity between two bases only differ
by spin configurations |u〉 = |R,S〉NX ,NY ⊗ |hxy,{σ }〉 and

|v〉 = |R,S ′〉NX ,NY ⊗ |hxy,{σ ′}〉. Again, we only need to show
that for the state of |u〉, we can exchange any two different spins
by applying hopping and Hund’s interaction terms. If these two
electrons are both in quasi-1D bands dzx and dyz, this situation
has been proved in Ref. [33]. If these two electrons are both
in the dxy band, it is reduced to the usual case of the Nagaoka
system.

Now let us consider the case of one electron in the quasi-
1D bands, without loss of generality, in the dzx-orbital band
with spin-↑, and another electron in the dxy band with spin-↓.
We denote their locations as rzx and rxy , respectively. Let us
identify the site rc which is in the same row of the dzx electron
and in the same column of the dxy electron, and consider the
dyz orbital at this site. We assume that there is an electron of the
dyz orbital at rc. If not, because of condition IV, we can always
move a dyz electron of that column to rc by hopping. And
the configuration in this column can be restored by reversing
the hopping afterward. If the electron of the dyz orbital at rc

has spin-↑, it can first be moved to rxy by hoppings. Then, it
can exchange the spins with the dxy electron at rxy by Hund’s
interaction. After reversing the hopping, this dyz electron can
be moved back to rc but with spin-↓. Further, it can be moved to
rzx to exchange the spins with the dzx electron and be moved
back to rc again with its original spin-↑ recovered. The net
effect is the exchange of spin configurations between the dxy

and dzx electrons without affecting other configurations. The
case of the dyz electron at rc with spin-↓ can be similarly
proved.

So far, we have shown both the nonpositivity of off-diagonal
matrix elements and the transitivity of the Hamiltonian matrix
in the sub-Hilbert space HSz

2D . Then, following the same
reasoning in the proof of Theorem 1, it is straightforward
to have the following theorem

Theorem 2 (2D FM ground state). Consider the case in
which there is one and only one hole in the dxy band. Under
conditions I, III, and IV, for any values of V and J > 0, the
ground states are fully spin polarized which is unique apart
from the trivial spin degeneracy.

Next, we consider the situation in which the dxy band is half
filled, i.e., there is no hole. In this case, the dxy band by itself
is not ferromagnetic. Because of the coupling to the quasi-1D
band, we have the following theorem.

Corollary 3. If the dxy band is half filled, under the same
conditions in Theorem 2, for any values of V and J > 0, the
ground states are fully spin polarized which is unique apart
from the trivial spin degeneracy.

Proof. We first define the basis for the local moments for
the half-filled dxy band, which can be ordered in an arbitrary
way as

|{σ }〉 =
∏

i

d†
xy,σ (i)|0〉, (14)

where 〈σ 〉 is an arbitrary spin distribution. Then for the
combined system, the basis is defined as

|R,S〉NX ,NY ⊗ |{σ }〉. (15)

Again because of spin conservation, the Hilbert space in this
case H′

2D can be further decomposed into the direct sum of
different sectors of Sz

′s as H′
2D = ⊕HSz ′

2D .
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Similarly to Theorem 2, the off-diagonal elements of
the Hamiltonian matrix are nonpositive. We next show the
transitivity of the Hamiltonian matrix in each physical sub-
Hilbert space HSz ′

2D . Again, we only need to show that for
any state in HSz ′

2D , opposite spins of any two electrons can
be exchanged by applying hopping and Hund’s interaction
without affecting other parts of the system. The proof is very
similar to that of Theorem 2. Nevertheless, a new situation
needs to be addressed: both electrons are in the dxy band with
spin-↑ and spin-↓, respectively. Their locations are denoted as
r and r′, respectively. Then we can choose an electron in the dzx

band, and, without loss of generality, assume its spin-↑. Then
according to the proof of Theorem 2, we can first flip the pair
of electrons dzx,↑ and dxy,↓(r′), then their spins become dzx,↓
and dxy,↑(r′). Next, we consider the pair of dzx,↓ and dxy,↑(r)
and exchange their spins. The net result is the exchange of the
spins of two dxy electrons.

With both results of nonpositivity and transitivity, it is also
straightforward to arrive at Corollary 3 by similar proof of
Theorem 1. Q.E.D.

V. DISCUSSION ON EXPERIMENTS

Although Theorems 1 and 2 are under ideal conditions and
limits, they do have close connections to realistic systems
of transition-metal oxides. For the multiorbital Hubbard
Hamiltonian of Eqs. (2) and (3), they are actually a good
approximation of the t2g-orbital systems of transition-metal
oxides in 3D. For example, the itinerant FM SrRuO3 belongs to
this class of materials [37–39], which is a t2g-active material of
4d electrons in a cubic lattice. Even though typical interaction
strength in the 4d electron systems are intermediately strong, it
already exhibits the FM phase with Tc = 165 K. Furthermore,
the magnetic moment of this system is observed as 1.6μB

per site with the electron filling in SrRuO3 as four electrons
per site. Therefore, the FM ground state stated in Theorem 1
would possibly persist to the intermediate interaction regime
and with finite electron or hole density away from half filling.
Nevertheless, the magnetization would be no longer fully
polarized but partially polarized to save the kinetic energy
cost.

Another important system is the LaAlO3/SrTiO3 inter-
face between two component insulators. This interface is
experimentally found metallic and ferromagnetic with large
magnetization [40,41]. This is a t2g-orbital active material
with 3d electrons in 2D layered systems, whose dzx and dyz

are quasi-1D orbital bands while its dxy orbital forms the
quasi-2D band. For 3d electrons, the interaction strength is
stronger than that of 4d materials. The RKKY, itinerant, and
double-exchange mechanisms were proposed to explain the
FM in this system [42–44]. Here, we have shown that the
ground-state itinerant FM is fully spin polarized and robust
for general densities in the dzx and dyz bands under strong
intraorbital interactions.

VI. CONCLUSIONS

In summary, we have investigated the Nagaoka-type itiner-
ant FM in t2g-orbital systems in a 3D cubic lattice. The hole
motion in each orbital band is constrained in the plane parallel

to the orbital orientation. Effectively, this system behaves
as crossing planes of 2D Nagaoka FM coupled by on-site
interorbital Hund’s coupling. Consequently, 3D itinerant FM
ground states are developed, which are proved fully polarized
and unique apart from the trivial spin multiplet degeneracy.
Also, we have considered the 2D layer of t2g-orbital systems:
the quasi-1D bands are itinerant with arbitrary generic fillings
and the quasi-2D band can have a single hole or be half filled.
Its ground state is shown remaining the fully spin-polarized
itinerant FM. The theorems established in this article can be
helpful for further understanding the mechanism of FM in
SrRuO3 and the transition-metal oxides interface.
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APPENDIX A: EXPRESSIONS AND PHYSICAL MEANING
OF U , V , J , AND �

The expressions of U , V , J , and � in Eq. (3) are standard
two-body Coulomb integrals under the t2g-orbital basis. We
assume the bare Coulomb interaction as V (r1 − r2), and
express the Wannier t2g-orbital wave functions φa(r) with
a = xy,yz, and zx, respectively. Then U , V , J , and � can
be represented [45,46] as

U =
∫

dr1dr2φ
∗
a (r1)φ∗

a (r2)V (r1 − r2)φa(r2)φa(r1),

V =
∫

dr1dr2φ
∗
a (r1)φ∗

b (r2)V (r1 − r2)

×{φb(r2)φa(r1) − φa(r2)φb(r1)}, (A1)

J = 2
∫

dr1dr2φ
∗
a (r1)φ∗

b (r2)V (r1 − r2)φa(r2)φb(r1),

� =
∫

dr1dr2φ
∗
a (r1)φ∗

a (r2)V (r1 − r2)φb(r2)φb(r1),

where a �= b and no summation over repeated indices is
assumed.

Let us explain the physical meanings of U , V , J , and
� by considering a single-site problem filled with only two
fermions. In total there are 15 states, which can be classified
as 3 sets of spin triplets and 6 spin singlets. The three sets of
spin triplet states can be expressed as

d
†
a,↑d

†
b,↑|0〉, d

†
a,↓d

†
b,↓|0〉,

× 1√
2
{d†

a,↑d
†
b,↓ + d

†
a,↓d

†
b,↑}|0〉 (A2)

with a �= b, and their energy is V . The 6 spin singlets
can be further classified as the orbital angular momentum
(OAM) singlet, doublet, and triplet as follows. The splitting
between the OAM doublet and triplet states is because of
the cubic symmetry, which is a two-particle analogy to
the single-particle version of the t2g and eg level splitting.

115122-6



EXACT RESULTS FOR ITINERANT FERROMAGNETISM IN . . . PHYSICAL REVIEW B 91, 115122 (2015)

The orbital angular momentum singlet state is expressed as

1√
3
{d†

xy,↑d
†
xy,↓ + d

†
yz,↑d

†
yz,↓ + d

†
zx,↑d

†
zx,↓}|0〉, (A3)

whose energy is U + 2�. The orbital angular momentum
doublet states have the energy U − �, and they are expressed
as

1√
6
{d†

yz,↑d
†
yz,↓ + d

†
zx,↑d

†
zx,↓ − 2d

†
xy,↑d

†
xy,↓}|0〉,

× 1√
2
{d†

yz,↑d
†
yz,↓ − d

†
zx,↑d

†
zx,↓}|0〉. (A4)

The orbital angular momentum triplet states have energy J +
V , whose wave functions are expressed as

1√
2
{d†

yz,↑d
†
zx,↓ − d

†
yz,↓d

†
zx,↑}|0〉,

1√
2
{d†

zx,↑d
†
xy,↓ − d

†
zx,↓d

†
xy,↑}|0〉, (A5)

1√
2
{d†

xy,↑d
†
yz,↓ − d

†
xy,↓d

†
yz,↑}|0〉.

Clearly, the energy difference between the interorbital singlet
and triplet states is J as comes from Hund’s coupling.

APPENDIX B: SPIN FLIPPING IN A SINGLE-ORBITAL 2D
HUBBARD MODEL IN THE SQUARE LATTICE

To keep this paper self-contained, we review an important
step showing the transitivity in the single-orbital Nagaoka
system [31]. We only consider the case of the 2D Hubbard
model in the square lattice with U = +∞ with a single
hole [3]. The Hamiltonian can be written as

H = t
∑
〈ij〉

P {c†i cj + H.c.}P, (B1)

where P is the projection operator projecting out the doubly
occupied state.

Consider a bond 〈ij 〉 with its two sites i and j occupied
by spins σ and σ ′ in orbitals da and db, respectively. This
configuration is denoted as [da,σ (i),db,σ ′ (j )]. As shown below,
the spins in this configuration can be exchanged to be
[da,σ ′ (i),db,σ (j )] by applying a series of hoppings in Eq. (B1)
without affecting hole and spin configurations of other sites.

Obviously, we only need to consider the case of sz �= s ′
z.

Spin flipping can be realized by the following motion of the
single hole. We can choose a plaquette unit containing the
bond 〈ij 〉. If here is a hole in this plaquette, without loss of
generality, we can assume that here are two spin-↑’s and one
spin-↓ in the rest 3 sites of this plaquette. They can form in
total 12 possible combinatorial configurations. As shown in
Fig. 3, they can be connected to each other by simply applying
hole hoppings clockwise in the plaquette for at most three
rounds. Therefore, it is possible to exchange the spins on the
bond 〈ij 〉 without affecting other sites.

If this plaquette does not contain a hole, we can first apply
the hopping process to move the hole to this plaquette. During
this process, we require that the hole should not pass sites
i and j , which is possible because even when we remove

1 2 3 4

5

6

78910

11

12

FIG. 3. (Color online) The 12 configurations with three electrons
(2 spin-↑ and 1 spin-↓) and a single hole in a square plaquette. The
hole’s motion builds up transitivity among all these states. From
Ref. [3].

all the bonds connecting i and j , the remaining part of the
lattice is still connected. Following the conclusion above,
we can flip the spin configuration on the bond 〈ij 〉 without
affecting other sites. Afterwards, we can restore the rest of the
spin configuration by reversing the hole’s motion along the
same path on which it was brought to the plaquette before.
Finally, the spin configuration on 〈ij 〉 becomes flipped, i.e.,
[da,σ (i),db,σ ′ (j )] → [da,σ ′ (i),db,σ (j )]. Meanwhile, the hole
returns to its original location and spin configurations on other
sites are restored.

APPENDIX C: EXCHANGING SPINS IN CLASSES
(c) AND (d)

In this section, we complete the proof of Lemma 3 for the
orbital configurations of classes (c) and (d) below.

Proof. Class (c): We consider the case of a = zx and b =
xy, i.e., the configuration [dzx,↑(i); dxy,↓(j )]. The reasoning
below also applies to the other 3 situations of a = yz, b = xy;
a = xy, b = zx; and a = xy, b = yz. Here, the spin exchange
between dzx,↑(i) and dxy,↓(j ) can be aided by the dzx(j )
orbital. Following the reasoning in the main text, dzx(j ) can
always be assumed occupied. If it has spin-↑, on site j , we
have dzx,↑(j ) and dxy,↓(j ), whose spins can be exchanged
by Hund’s interaction to be dzx,↓(j ) and dxy,↑(j ). Then
bond 〈ij 〉 has a new spin configuration [dzx,↑(i); dzx,↓(j )],
which can be flipped as shown in class (a). As a result,
the initial configuration of [dzx,↑(i); dxy,↓(j )] is flipped to
[dzx,↓(i); dxy,↑(j )] without affecting dzx,↑(j ). Similarly, if the
dzx(j ) orbital is occupied by spin-↓, we can first apply the
process in class (a) to flip the spin configuration of dzx orbitals
on sites i and j , and then apply Hund’s interaction to flip spins
on the dzx(j ) and dxy(j ) orbitals.

Class (d): We consider the case in which both orbitals on
〈ij 〉 are transverse, i.e., the configuration [dxy,↑(i); dxy,↓(j )].
This time we check the dzx(i) orbital, and first assume it
is occupied. If its configuration is dzx,↑(i), then along the
bond 〈ij 〉 we have [dzx,↑(i); dxy,↓(j )], which can be flipped to
[dzx,↓(i); dxy,↑(j )] following the steps in class (c). Then on site
i, the spin configuration is changed to [dzx,↓(i); dxy,↑(i)], which
can be flipped to [dzx,↑(i); dxy,↓(i)] by Hund’s interaction. As a
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result, the initial configuration of [dxy,↑(i); dxy,↓(j )] is flipped
to [dxy,↓(i); dxy,↑(j )] and dzx,↑(i) is maintained. If dzx(i) is
occupied by spin-↓, we can first apply Hund’s interaction on
site i and then apply the steps presented in class (c). Finally,
if the dzx(i) orbital is empty, we can move this hole to a
neighboring site, and perform the above process, and then
move the hole back.

APPENDIX D: THE PROOFS OF COROLLARIES 1 AND 2

In this part, we prove the two corollaries in Sec. III.
Proof of Corollary 1. We perform a particle-hole trans-

formation, i.e., da,σ → d
†
a,σ . Under this transformation, the

hopping Hamiltonian Eq. (2) remains the same except for
the reversed sign of t‖. Nevertheless, for the bipartite lattice,
the sign of t‖ can be reversed by a gauge transformation, which
will not change the physics. The physical quantities transform
as follows:

na,σ → 1 − na,σ , 	Sa → −	Sa. (D1)

It is easy to check that for the interaction part Hint, U , V ,
J , and � remain the same apart from a constant and a term
proportional to electron density. In the case of fixing particle
numbers, the difference is just a constant which does not affect
real physics. Under this transformation, the doubly occupied
orbitals are mapped to holes. According to Theorem 1, the
ground states are FM states with the total spin S = Ntot/2 −
Lx − Ly − Lz and are unique up to spin degeneracy.

Proof of Corollary 2. We order the dxy electrons layer by
layer and define

|{rxy},{σ }xy〉 =
Lz∏

lz=1

d†
xy,σ

(
rxy

lz
,lz

)|0〉, (D2)

where rxy is the in-plane location of the electron in the lzth
layer. Similar bases can also be defined for dyz and dzx electrons
as |{ryz},{σ }yz〉 and |{rzx},{σ }zx〉, respectively. The many-body

bases for the entire system can be defined as

|{r},{σ }〉 = |{exy},{σ }xy〉 ⊗ |{eyz},{σ }yz〉
⊗ |{ezx},{σ }zx〉, (D3)

where {r} and {σ } represent the distributions of electron
coordinates and spins in each orbital band in each layer.

We also need to perform a gauge transformation to flip the
sign of t‖ to be negative. Then in this case, the off-diagonal
matrix elements of hopping are negative because hopping
does not change the ordering of electrons in the definition
of Eq. (D3). Because each orbital band of each layer only
contains one electron, only J and V terms contribute. Again
the off-diagonal matrix elements arise from J , which are also
negative.

Next, we show the transitivity. Since we can also move
the positions of electrons freely, we only need to consider
two bases with the same electron locations but different spin
configurations, denoted as |{r},{σ }〉 and |{r},{σ ′}〉. Then, it
suffices to show that for any two electrons in |{r},{σ }〉, we
can flip their spin configuration. If these two electrons live
in different orbitals, say, dxy and dyz, then the planes of their
motions cross and share a common line parallel to the y axis.
We can move these two electrons to any site of this line, and
then apply Hund’s interaction to flip their spins, and then move
back to their original locations. If these two electrons live in
the same orbital with opposite spins, say, two dxy electrons
but in two parallel layers, then we can find another electron
in dzx orbitals. We first choose the dxy electron with the spin
opposite to that of dzx , and switch their spins. Then combine
the new configuration of the dzx and the other dxy electron,
and switch their spins. The net effect is that two dxy-electron
spins are flipped, and the dzx-electron spin is restored.

Having proved nonpositivity and transitivity, we can follow
the same steps in Theorem 1 to prove this corollary, which will
not be repeated here.
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