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Exotic quantum phase transitions of strongly interacting topological insulators
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Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a
bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between
the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial
phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point
between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting
fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin
and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification
of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is
a topological phase transition described by a bosonic O(4) nonlinear sigma model field theory with a � term.

DOI: 10.1103/PhysRevB.91.115121 PACS number(s): 64.70.Tg, 73.43.Cd, 02.70.Ss

I. INTRODUCTION

The interplay between topology and interactions can lead
to very rich new physics. For bosonic systems, it is understood
that strong interactions can lead to many symmetry-protected
topological (SPT) phases [1,2] that are fundamentally different
from the standard Mott insulator and superfluid phases. In
addition to producing various topological orders, for fermionic
systems strong interactions can also reduce the classification
of free fermion topological insulators and superconductors
[3–11]. That is, interactions can drive free fermion topological
superconductors to a trivial phase; namely the edge states of
the free fermion topological superconductor can be gapped
out without degeneracy by symmetry-preserving short-range
interactions without going through a bulk quantum phase
transition. The most famous example is the 3He-B topological
superconductor protected by time-reversal symmetry, whose
boundary is described by a (2 + 1)d Majorana fermion χ with
the Hamiltonian H = ∫

d2x χᵀ(iσ z∂x + iσ x∂y)χ . Without
interactions, 3He-B has a Z classification; therefore for
arbitrary copies of 3He-B, its boundary remains gapless as long
as time-reversal symmetry is preserved [12–14]. In other words
any fermion-bilinear mass term χ

ᵀ
a σ yχb at the boundary would

break the time-reversal symmetry. However, once interactions
are turned on, the classification of 3He-B is reduced to
Z16; i.e., with 16 copies of 3He-B, its boundary can be
gapped out by interactions while preserving the time-reversal
symmetry [9,10]. In other words, the boundary is fully gapped
by interactions with 〈χᵀ

a σ yχb〉 = 0, for a,b = 1 · · · 16.
Although the classification of interacting 3He-B has been

understood, the following question remains: if the interactions
are tuned continuously, can there be a direct second-order
quantum phase transition between the weakly interacting
gapless boundary and the strongly interacting fully gapped
nondegenerate boundary state? Even if such a second-order
phase transition exists, its field theory description is unknown
because the standard field theory that describes a phase
transition of interacting Dirac or Majorana fermions is the
Gross-Neveu model [15], which corresponds to the order-
disorder phase transition of a bosonic field φab that couples to
a fermion bilinear mass operator: φabχ

ᵀ
a σ yχb [41]. Therefore

in the Gross-Neveu model, the gap of the Majorana fermion is

induced by a nonzero expectation value of a fermion bilinear
mass: 〈χᵀ

a σ yχb〉 �= 0, which would break the time-reversal
symmetry at the boundary of 3He-B.

In this paper we will demonstrate that such a novel direct
second-order transition indeed exists, which is fundamentally
different from the standard Gross-Neveu theory. But instead of
studying the boundary of a 3d system (which is numerically
challenging), we will just study a 2d lattice model, whose
low-energy field theory Lagrangian is identical to the boundary
of 16 copies of 3He-B, although its fields transform very
differently under symmetry groups (the exact boundary field
theory of 3He-B cannot be realized in 2d). We will demonstrate
that in this 2d lattice model there is indeed a direct second-
order quantum phase transition between 16 flavors of gapless
(2 + 1)d Majorana fermions (8 copies of Dirac fermions) and
a fully gapped phase that does not break the symmetry of
the lattice model. This shows that the fermion gap does not
correspond to any fermion bilinear mass.

We will also study another exotic quantum phase transition
between the weakly interacting quantum spin Hall (QSH)
insulator with spin Sz conservation and spin topological
number 2, and the fully gapped and symmetric phase in the
strong interaction limit mentioned in the previous paragraph.
In the noninteracting limit, the phase transition between the
topological insulator and trivial insulator is driven by closing
the Dirac mass gap, which requires that the single-particle
excitation is gapless at the critical point. However, in this
paper we demonstrate that, with interaction, at this quantum
phase transition the spin and charge gaps both close, while
the single-particle excitation remains gapped. Therefore, this
quantum phase transition only involves bosonic degrees of
freedom, which allows this quantum phase transition to be
described by a bosonic field theory. We propose that the field
theory for this transition is an O(4) nonlinear sigma model field
theory with a � term. The QSH insulator and the trivial phase
correspond to π < � � 2π and 0 � � < π , respectively,
while the quantum critical point corresponds to � = π .

II. MODEL HAMILTONIAN

The Hamiltonian we study is an interacting spin-1/2
fermion system defined on a bilayer honeycomb lattice
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FIG. 1. (Color online) The bilayer honeycomb lattice. In each
layer, t and λ are the nearest- and next-nearest-neighbor hopping.
The Hubbard interaction U acts on each site, and the Heisenberg
interaction J acts across the layers.

(Fig. 1):

H = T + T ′ + W,

T = −t
∑
〈ij〉

∑
	,s

(c†i	scj	s + H.c.),

T ′ = iλ
∑
〈〈ij〉〉

∑
	

νij c
†
i	σ

zcj	,

W = U

2

∑
i,	

(ni	 − 1)2

+ J
∑

i

[
Si1 · Si2 + 1

4
(ni1 − 1)(ni2 − 1) − 1

4

]
,

(1)

where s = ↑,↓ and 	 = 1,2 denote the spin and layer in-
dexes. T + T ′ corresponds to two layers of the Kane-Mele
model [16], and W describes both the on-site and the interlayer
interactions. We will set t = 1 as the energy unit throughout
this paper. We also define ni	 = ni	↑ + ni	↓, S

μ

i	 = 1
2c

†
i	σ

μci	,

and ni	s = c
†
i	sci	s . 〈〈i,j 〉〉 stands for a next-nearest-neighbor

lattice link. νij = ±1 depending on whether the hopping path
defined by the nearest-neighbor bonds connecting sites i and
j bends to the right or to the left. With only the T term, the
low-energy limit of this model is described by 8 flavors of
(2 + 1)d massless Dirac fermions (or 16 Majorana fermions)
in its Brillouin zone.

In the noninteracting limit, i.e., U = J = 0, a nonzero λ

will cause the T ′ term to gap out T and drive the system into
a QSH phase with spin topological number Cs = ±2 which
corresponds to the quantized spin Hall conductance σ

spin
H =

e
2π

Cs . The U term in the Hamiltonian W is a Hubbard repulsion
while the J term consists of an antiferromagnetic Heisenberg
spin interaction between the two layers and a density-density
interaction. In this paper we will fix J/U = 2 (with positive U

and J ). The interaction tends to gap out the charge fluctuations
and couples the spins across the layers into the singlet state on
each site. Then in the strong interacting limit, the ground state
is simply a product state of interlayer spin singlets,

|�〉 =
∏

i

(c†i1↑c
†
i2↓ − c

†
i1↓c

†
i2↑)|0〉, (2)

FIG. 2. (Color online) A schematic phase diagram of the bilayer
honeycomb model. The red line is the phase boundary between the
two QSH phases of opposite spin Hall conductivity, where both the
single-particle and the spin/charge gaps are closed. The blue line is
the phase boundary between the QSH phase � = ±2π and the trivial
gapped phase � = 0, where the single-particle gap remains open but
the spin/charge gaps are closed. Uc is the tricritical point, above which
the topological number defined in Eq. (6) changes inside the trivial
phase (without gap closing) through the dashed line; also see Fig. 3.

which is a trivial gapped state that respects all of the symmetry.
Obviously this strongly interacting trivial state should not have
any spin Hall responsef; thus it must be separated from the
weak interacting QSH states by phase transitions. The phase
diagram of this model is depicted in Fig. 2 (see also Fig. 3).
Note that the spin topological number Cs shown in the phase
diagram is calculated from the single-particle Green’s function
[to be discussed later in Eq. (6)], and in the strong interacting
regime, Cs is no longer related to the spin Hall conductance
σ

spin
H . In fact, σ

spin
H = 0 holds for the entire trivial insulating

phase despite Cs = ±2.
It is also worth mentioning that if we fix the ratio J/U � 1

and increase the interaction gradually, then an intermediate
antiferromagnetic (AF) phase could set in between the trivial

FIG. 3. (Color online) The topological number defined in Eq. (6)
as a function of λ for both models at U = 2. The topological
number was calculated at the dots using determinant QMC data via
the methods discussed in Appendix F. This demonstrates that this
topological number Eq. (6) is nonzero even in the strongly interacting
trivial phase.
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phase and the QSH phase, because a nearest-neighbor AF
interaction ∼t2/U could be generated through superexchange.
However we will leave this intermediate AF phase for future
investigation, and focus on the J/U = 2 case where the trivial
and the QSH phases are separated by only one single phase
transition which turns out to be more exotic.

III. PHASES AND EXCITATION GAPS

Before we present our results for the 2d model, we will first
consider a 1d system composed of two coupled chains. In this
1d system, T ′ becomes

T ′
1d = −λ

2

∑
i,	,s

(−)i(c†i+1,	,sci,	,s + H.c.). (3)

In the noninteracting limit, λ < 0 corresponds to 4 copies
of the Su-Schrieffer-Heeger model of polyacetylene [17] or 8
copies of the Kitaev’s 1d topological superconductor [42] with
a nontrivial boundary state, while λ > 0 corresponds to a trivial
state [3]. We are interested in connecting the λ < 0 SPT phase
to the λ > 0 trivial phase without a phase transition. (This
demonstrates the already known fact that λ < 0 and λ > 0 are
actually in the same phase under interaction [3].) Fidkowski
and Kitaev demonstrated how to do this in one dimension
using an interaction term [3] which corresponds to W but with
a simpler J term: +J Si,1 · Si,2. We modify Fidkowski and
Kitaev’s interaction term slightly so that it can be simulated
by quantum Monte Carlo (QMC) without a sign problem [18].
This modification will not change the qualitative results of the
model.

Our results are depicted in Figs. 4(a) and 4(b). With
λ = 0, the system is gapped out immediately with infinitesimal
interaction, because as was computed explicitly, the four-
fermion term is marginally relevant at λ = 0. The gap we
measure scales exponentially with 1/U , which is consistent
with the renormalization group calculation. With finite λ, there
is no phase transition at finite U [see Fig. 4(b)]; namely the
entire phase diagram of this 1d system is one trivially gapped
phase except for the isolated gapless point λ = U = J = 0.

Now let us move on to the honeycomb lattice. It is well
known that a weak short-range interaction is irrelevant for a
massless (2 + 1)d Dirac/Majorana fermion, which implies that
the interaction can gap out the fermion only when it is strong
enough. Thus along the λ = 0 axis in Fig. 2, a semimetal-
insulator phase transition is expected at finite U/t . Indeed,
our numerical results suggest that with increasing U/t , there
is one continuous phase transition at finite Uc/t ∼ 1 where
the single-particle gap opens up gradually from zero, and
the single-particle gap increases monotonically afterwards.
In the large U/t limit, this model is exactly soluble, and
the ground state is a trivial direct product of on-site spin
singlets between the two layers as in Eq. (2). Therefore in
the large U/t limit this gapped phase does not correspond
to any fermion quadratic mass term. But it is still possible
that some other symmetry-breaking order parameters may
emerge for intermediate U/t . To verify that this is not the
case, we performed a mean-field analysis where we focus
on the order parameters that minimize the energy of the
interaction term at the mean-field level. The details of this

FIG. 4. (Color online) Single particle and spin gap for the 1d

coupled chain model with J/U = 2. (a) When λ = 0, the system is
gapped out immediately by an infinitesimal interaction with a gap of
the form ea−b/U for small U (dotted black line with a = 2.60 and
b = 2.65). (b) When λ = 0.25, there are no phase transitions when
λ �= 0 and U > 0.

mean-field analysis are presented in Appendix A. We identify
three order parameters that could potentially minimize the
interaction energy: the antiferromagnetic spin density wave
(SDW) order, the interlayer spin singlet Cooper pairing, and
the interlayer exciton excitation. Among them, the SDW order
and the exciton order can be rotated to each other under an
SO(5) symmetry emerged at J = 2U point (see Appendix C).
So we only need to check the SDW and the pairing orders. Our
numerical results suggest that none of these order parameters
emerge and stabilize in the entire phase diagram (spin and
charge gaps open up continuous from the same critical point
as the single-particle gap). Thus we conclude that there can
indeed be a continuous quantum phase transition between the
gapless Dirac/Majorana fermion phase in the weak interacting
limit and the fully gapped symmetric trivial phase in the strong
interaction limit.

Since the quantum phase transition is continuous, there
must be a field theory description for this phase transi-
tion. Furthermore, this field theory must be described by a
Lagrangian with 16 flavors of (2 + 1)d Majorana fermions
with four-fermion short-range interactions, but its physics
and universality class must be fundamentally different from
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the standard Gross-Neveu model. The same field theory
Lagrangian must be applicable to the interaction-driven mass
gap at the boundary of 16 copies of the 3He-B phase. The
only difference is that at the 2d boundary of 3He-B a fermion
bilinear mass term is prohibited by time-reversal symmetry
only, while in our 2d lattice model crystalline symmetry is
required to prevent fermion bilinear mass terms.

We also note that a similar phase transition between gapless
Dirac fermions and a symmetric gapped phase was recently
also studied in high energy physics communities [19].

Now let us consider the case with finite λ. In the noninter-
acting limit, a finite λ term will drive the system into a quantum
spin Hall insulator with spin topological number Cs = 2;
i.e., the Chern number for a spin-up (spin-down) fermion is
+2 (−2) [see Eq. (6) for definition]. Because our system has Sz

conservation, this state is still a nontrivial topological insulator
with stable boundary states. While increasing U/t , there
must be a quantum phase transition between this topological
insulator and the strongly coupled trivial gapped state (blue line
in the phase diagram Fig. 2). In the noninteracting limit, the
transition between a topological insulator and trivial insulator
is driven by closing the Dirac fermion gap. In Fig. 5(b) we can
see that there is indeed a quantum phase transition at finite U/t ,
but at this quantum critical point the single-particle gap does
not close, while our data suggest that the gaps for the SDW
fluctuation [N̂x ∼ (−1)i+	c

†
i,	σ

xci,	, N̂y ∼ (−1)i+	c
†
i,	σ

yci,	]
and the pairing fluctuation (�̂ ∼ c

ᵀ
i,1iσ

yci,2) (referred to as
the spin and the charge gaps, respectively) both vanish at
the critical point. A similar unconventional phase transition
was also found in 1d systems in Ref. [20], where the gaps
also closed in the collective spin/charge excitations rather
than in the single-particle excitations. This implies that in the
low-energy limit this quantum phase transition only involves
bosonic degrees of freedom, allowing the fermionic excitations
to be integrated out from the field theory.

Close to the quantum critical point, we can define a four-
component unit vector n with n2 = 1, which couples to the
fermions as follows:

n1N̂
x + n2N̂

y + n3Re(�̂) + n4Im(�̂). (4)

We propose that the phase diagram for λ �= 0 can be described
by the following effective bosonic field theory:

S =
∫

d2xdτ
1

g
(∂μn)2 + i�

�3
εabcdn

a∂xn
b∂yn

c∂τn
d, (5)

where �3 = 2π2 is the volume of a three-dimensional sphere
with unit radius. The field theory Eq. (5) can be derived
using the same method as Ref. [21], after integrating out the
fermions. The phase diagram and renormalization group flow
of the (1 + 1)d analog of Eq. (5) were calculated explicitly
in Refs. [22–24], and it was demonstrated that the entire
phase 0 � � < π is controlled by the fixed point � = 0,
while the entire phase π < � � 2π will flow to the fixed
point � = 2π . � = π is the phase transition between the
two phases. The phase diagram of Eq. (5) was studied in
Ref. [25], and again in the disordered phases (phases with
large g) � = π is the quantum phase transition between the
two phases with 0 � � < π and π < � � 2π .

FIG. 5. (Color online) Single-particle gap, spin gap (gap for spin-
1 excitation), and charge gap (gap for charge-2 excitation) on the
bilayer honeycomb lattice with J/U = 2. (a) When λ = 0, there is
a single continuous phase transition from a semimetal to a trivial
insulator at Uc ∼ 1, whose field theory also describes the phase
transition of the boundary of 16 copies of the 3He-B phase. (b) When
λ = 0.25, only the spin and charge gap close at the continuous phase
transition from an SPT to a trivial insulator (which is at Uc ∼ 1.5
for λ = 0.25). We propose that this phase transition is described by
a bosonic O(4) nonlinear sigma model field theory with a � term
[Eq. (5)]. These gaps are calculated as explained in Appendix E. This
involves calculating gaps in finite systems of sizes up to 9 × 9 unit
cells (with 4 sites each) and extrapolating to the infinite-size limit.
Error bars on all figures denote one standard deviation (i.e., ≈68%
confidence).

In Eq. (5), the fixed point � = 2π describes a bosonic
symmetry-protected topological (SPT) state with U (1) × U (1)
symmetry [26], where the two U (1) symmetries correspond
to charge and Sz conservation, respectively. The boundary
of Eq. (5) with � = 2π is a (1 + 1)d O(4) nonlinear sigma
model with a Wess-Zumino-Witten term at level k = 1, which
corresponds to a (1 + 1)d conformal field theory. In the bulk
theory we can define two bosonic rotor fields b1 ∼ n1 + in2

and b2 ∼ n3 + in4. b1 and b2 carry spin-1 and charge-2,
respectively. The fixed point � = 2π in Eq. (5) implies that
a vortex of (n3,n4)(2π vortex of b2, also π flux seen by the
fermions) carries one b1 boson; namely a π flux for fermions
carries spin Sz = 1, which is precisely consistent with the
QSH insulator with spin topological number 2 [27,28]. Thus
the fixed point � = 2π has all the key properties of the QSH
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insulator phase. At the fixed point � = 0, the boundary of
Eq. (5) is trivial. The phase transition between the quantum
spin Hall insulator and the trivial state can be driven by tuning
the parameter �, where the quantum critical point corresponds
to � = π .

IV. SPIN TOPOLOGICAL NUMBER AND
GREEN’S FUNCTION

Having mapped out the phase boundaries in the phase
diagram, let us discuss the topological properties of the various
phases. The gapped ground states of the bilayer honeycomb
model in Eq. (1) belong to the fermion SPT phases protected
by both the charge and the spin U (1) symmetries, which is Z
classified (even with interaction). With this classification, each
SPT state is characterized by a quantized topological number,
the spin Chern number, in analogy to the TKNN integer for
integer quantum Hall states, which can be constructed by the
following fermion Green’s function [29–36] as

Cs = 1

48π2

∫
d3kεμνλTr[−σ zG∂μG−1G∂νG

−1G∂λG
−1],

(6)

where σ z is the spin Sz matrix, G(k) = −〈ckc
†
k〉 is the fermion

Green’s function in the frequency and momentum space
k = (iω,k) with iω being the Matsubara frequency, and ∂μ

here stands for ∂/∂kμ. In the noninteracting limit, the physical
meaning of the topological number Eq. (6) is associated with
the spin Hall conductance σ

spin
H = Cse/2π . Nevertheless, the

formula Eq. (6) is still well defined for interacting systems,
as long as we use the full interacting fermion Green’s
function [29,30,33–36]. However, for interacting systems, this
topological number defined with full Green’s function no
longer necessarily corresponds to the spin Hall response.

In the weak interaction regime, the spin topological number
for the bilayer QSH state is Cs = ±2, depending on the sign
of λ. The two QSH phases are separated by a topological
phase transition at λ = 0 (the red line in Fig. 2), where the
single-particle gap closes, and the Green’s function develops
poles at zero frequency and at the K and K ′ points in the
Brillouin zone. Due to this singularity of the Green’s function,
the spin topological number is allowed to change across the
gapless phase boundary. Above the critical point Uc, this phase
transition is gapped out by interaction, but the topological
number Eq. (6) still changes discontinuously across λ = 0, as
proven in Ref. [37]. The transition of the topological number
(dashed violet line in Fig. 2) hidden in the trivial gapped phase
implies that the Green’s function must have zeros (instead of
poles) at zero frequency. This is based on the observation that
in Eq. (6) G and G−1 are interchangeable, so the topological
number can either change through the poles of G or the zeros
of G (which are poles of G−1) [20,37]. When the fermions are
gapped out by strong interaction, it is impossible to have poles
of G at zero frequency, so the topological number Eq. (6) can
only change through the zeros of G.

The zeros of the Green’s function are a prominent property
of the trivial gapped phase (U > Uc), in contrast to the
poles along the topological phase boundary (U < Uc). It
is found that both the poles and the zeros are located at

FIG. 6. (Color online) Green’s function G(iω,K) as a function
of frequency at the K point with λ = 0 and J/U = 2 on the bilayer
honeycomb lattice for various system sizes. [The largest eigenvalue of
G(iω = 0,K) is shown.] (a) In the free fermion limit when U � Uc ∼
1.5, the Green’s function shows a pole at zero frequency: G(iω,K) �
1/(iω) [Eq. (B2)] (dotted black line). (b) In the strong interacting limit
when U � Uc ∼ 1.5, the Green’s function follows the behavior of
G(iω,K) � (iω)/[(iω)2 − �2] [as calculated in Eq. (B3)] (dotted
black line) where � is the quasiparticle gap. Please note that here
ImG is the imaginary part of the imaginary-time Green’s function,
which is very different from the spectral function.

the K and K ′ points in the Brillouin zone, and can be
verified in our QMC simulation. Along the λ = 0 axis, the
Green’s function at the K point G(ω,K) develops a pole
as ω → 0 when U < Uc [Fig. 6(a)], while it approaches
zero when U > Uc [Fig. 6(b)]. In the strong interaction
limit, Ref. [37] predicts that the Green’s function should
follow the behavior G(ω,K) � ω/(ω2 + �2) (where � ∼ U

is the typical scale of the quasiparticle gap), and in the
zero-frequency limit G(ω,K) ∝ ω approaches to zero linearly
with ω. Our numerical result matches all these predictions
quite well.

V. SUMMARY

In this work we demonstrate that there exist two novel
continuous quantum phase transitions for 16 copies of (2 + 1)d
Majorana fermions; both cases are very different from the
Standard Gross-Neveu model and Ginzburg-Landau theory.
However, a controlled analytical field theory calculation for
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the critical exponents is not known yet; we will leave this to
future studies.
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APPENDIX A: MEAN-FIELD ENERGY OF ORDER
PARAMETERS

In this appendix, we will investigate the order parameters
that are favored at the mean-field level. Since our model only
has on-site interactions, we will only consider on-site order
parameters in this appendix.

We start from the free fermion limit. In momentum space,
the fermion kinetic Hamiltonian takes the form

T + T ′ =
∑

k

∑
	=1,2

[c†kA	 c
†
kB	

]

[
g(k)σ z f ∗(k)
f (k) −g(k)σ z

] [
ckA	

ckB	

]
,

(A1)

where A and B label the sublattice sites in each unit
cell, g(k) = −2λ

(
sin

√
3kx − 2 sin

√
3kx

2 cos 3ky

2

)
, and f (k) =

−t
(
e−iky + 2eiky/2 cos

√
3kx

2

)
. Let us first switch to the Majo-

rana fermion basis

χk =
[
K

K ′

]

valley

⊗
[
A

B

]

sublattice

⊗
[

1
2

]

layer

⊗
[↑
↓
]

spin

⊗
[

Re ck

Im ck

]

particle-hole

, (A2)

then expand the kinetic Hamiltonian T + T ′ around the K =
(+ 4π

3
√

3
,0) and K ′ = (− 4π

3
√

3
,0) points in the Brillouin zone,

T + T ′ = 1

2

∑
k

χ
ᵀ
−k(vkxσ

31000 + vkyσ
02002 + mσ 33032)χk,

(A3)

where σ ijk··· ≡ σ i ⊗ σ j ⊗ σ k ⊗ · · · stands for the direct
product of Pauli matrices, v = 3t/2, and m = 3

√
3λ. We

consider all the fermion bilinear orders �vα	σψ = χᵀσvα	σψχ

that can gap out the fermions at the K and K ′ points to gain a
kinetic energy benefit, implying that σvα	σψ must be a 32 × 32
antisymmetric matrix that anticommutes with both σ 31000 and
σ 02002. We found 136 such matrices that are qualified as the
fermion mass terms.

Next we consider the interaction effect. Among the 136 po-
tential orders, the interaction W will select out the most favor-
able ones. To determine the most favorable orders, we calculate
the mean-field (Hartree-Fock) energy of W for the potential
orders �vα	σψ , such that the interaction term decomposes

TABLE I. Mean-field energy of the interaction favored fermion
bilinear orders. When J/U = 2, there is an SO(5) symmetry
[Eq. (C3)] which mixes the spin density wave and exciton order
parameters so that these order parameters transform like a vector
with n = (�03312,�03320,�03332,�03200,�03102). The degeneracy of
the mean-field energies of the exciton order and the pairing order
is not associated with a symmetry.

wvα	σψ �vα	σψ Physical meaning

−(J + 2U )/4 �03312 �03320 �03332 layer-antiferromagnetic s-wave
spin density wave

−J/2 �03102 �03200 interlayer s-wave exciton order
−J/2 �10121 �10123 interlayer spin-singlet s-wave

superconductivity

into that ordering channel as W = wvα	σψ |�vα	σψ |2 with
the mean-field energy wvα	σψ . The orders that can gain an
interaction energy benefit (i.e., wvα	σψ < 0 given U,J > 0)
are concluded in Table I: the layer-antiferromagnetic spin
density wave, the interlayer exciton order, and the interlayer
spin-singlet pairing order. When λ �= 0, the λ term suppresses
the exciton order and the z component of the spin density wave.
As a result, when λ �= 0 we only consider the XY component of
the Néel order and the pairing order, which exactly corresponds
to the four-component vector n defined in Eq. (4).

APPENDIX B: GREEN’S FUNCTION IN BOTH FREE
AND STRONG INTERACTING LIMITS

In this appendix, we will calculate the fermion Green’s
function analytically in both the free and the strong interacting
limits. Suppose that in the Majorana basis, the kinetic
Hamiltonian takes the most general fermion bilinear form
T + T ′ = ∑

a,b iuabχaχb, where a and b are the combined
label of site, layer, spin, and particle-hole indices, and χa and
χb are the corresponding Majorana fermion operators. The full
Hamiltonian H = T + T ′ + W also includes the interaction
term W = ∑

i

∑
[αk ] wα1α2α3α4χiα1χiα2χiα3χiα4 , where i labels

the site and αk labels the rest of the internal degrees of
freedoms.

Consider the fermion Green’s function, which is defined as
Gab = −〈χaχb〉. In the free fermion limit, the Green’s function
can be simply obtained from the single-particle Hamiltonian
via (G−1)ab = iωδab − iuab. In momentum space (expanded
around the K and K ′ points) and using the Majorana basis, the
kinetic Hamiltonian reads (see the previous appendix)

T + T ′ = 1

2

∑
k

χ
ᵀ
−k(vkxσ

31000 + vkyσ
02002 + mσ 33032)χk.

(B1)
So in the free fermion limit, the Green’s function is

G(iω,k) = (iωσ 00000 − vkxσ
31000 − vkyσ

02002 − mσ 33032)−1

= iωσ 00000 + vkxσ
31000 + vkyσ

02002 + mσ 33032

(iω)2 − (v2k2 + m2)
, (B2)
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where v = 3t/2 and m = 3
√

3λ are determined by the hopping parameters. While in the strong interacting limit, the Green’s
function (at low-frequency limit) has the form

G(iω,k) � iωσ 00000 + ∑∞
n=0 gn (vkxσ

31000 + vkyσ
02002 + mσ 33032)2n+1

(iω)2 − �2
+ O(ω2)

= iωσ 00000 + ∑∞
n=0 gn (v2k2 + m2)n(vkxσ

31000 + vkyσ
02002 + mσ 33032)

(iω)2 − �2
+ O(ω2), (B3)

where gn are coefficients and the single-particle gap � =
U/2 + 3J/4 is determined by the interaction parameters. In
our QMC simulation, we set J = 2U , so � = 2U in the
U → ∞ limit. However for finite U in our simulation, the
single-particle gap � should generally be softer (� < 2U ). As
one can see, Eq. (B3) has the same structure on the numerator
as Eq. (B2), so they should result in the same topological
number. It is also found that g0 = 0 for our model; however,
this does not affect the topological number.

At the K (or K ′) point, we set k = 0. Thus from the above
results, we conclude that along the λ = 0 axis (such that
m = 0) and below Uc ∼ 1.5, the Green’s function shows a pole
at zero frequency: G(iω,K) � 1/(iω) [Fig. 6(a)], while above
Uc, the Green’s function follows the behavior of G(iω,K) �
(iω)/[(iω)2 − �2] [Fig. 6(b)], where � is the quasiparticle
gap. Away from the λ = 0 axis and at zero frequency, the
Green’s function is expected to decay as 1/λ (Fig. 7) in the free
fermion limit. Our numerical results are perfectly consistent
with the predictions made above (see Figs. 6 and 7).

APPENDIX C: CONTINUOUS SYMMETRIES

In this appendix we study the continuous symmetries of our
2d model, which allow us to simplify our analysis. A summary
is given in Table II. The symmetries of our model are easiest
to understand in a Majorana basis, which was introduced in
Appendix A. In the exciton channel, interaction Wi takes the

FIG. 7. (Color online) Zero-frequency Green’s function G(iω =
0,K) at the K point with J/U = 2 on the bilayer honeycomb lattice
for various system sizes. [The largest eigenvalue of G(iω = 0,K) is
shown.] In the free fermion limit when U � Uc ∼ 1.5, the Green’s
function decays as G(iω = 0,K) � 1/3

√
3λ [cf. Eq. (B2)] (dotted

black line).

form

Wi = 2−6
∑

α=0,3

3∑
	=0

∑
ψ=0,2

×
{+U, 	= 0,3,

−J/2, 	= 1,2,

(
χT

i σ α	0ψχi

)2 + const. (C1)

Here there is no valley index on χiα	σψ since χi is written is
real space:

χi =
[
A

B

]

sublattice

⊗
[

1
2

]

layer

⊗
[↑
↓
]

spin

⊗
[

Re ci

Im ci

]

particle-hole

. (C2)

When J/U = 2 and λ = 0, this model has a U (1) × SO(5)
symmetry generated by operators of the form

∑
i

1
8χT

i �χi .
The U (1) charge symmetry is generated by � = σ 0002 while
the SO(5) symmetry is generated by �ab, where

�ab =

⎡
⎢⎢⎢⎢⎢⎣

0 −σ 0032 +σ 0020 −σ 0112 −σ 0210

+σ 0032 0 −σ 0012 −σ 0120 −σ 0222

−σ 0020 +σ 0012 0 −σ 0132 −σ 0230

+σ 0112 +σ 0120 +σ 0132 0 −σ 0302

+σ 0210 +σ 0222 +σ 0230 +σ 0302 0

⎤
⎥⎥⎥⎥⎥⎦

.

(C3)

The σ 0302 matrix corresponds to the conservation of charge
on one layer minus the charge on the other layer. σ 0012,
σ 0020, and σ 0032 correspond to spin rotation symmetry. The
other six matrices will mix the spin density wave and exciton
order parameters (Table I) so that these order parameters
transform like a vector under the above SO(5) symmetry
with n = (�03312,�03320,�03332,�03200,�03102). If J/U = 2
but λ �= 0 then symmetry is reduced to U (1)2 × SU(2). The
U (1) symmetries are charge conservation and spin rotation
about the z axis. The SU(2) symmetry is generated by
�a = σ 0132,σ 0230,σ 0302 (which will mix the Sz spin density

TABLE II. A summary of the symmetries of our model for various
coupling constants.

Coupling
constants Symmetry

J/U = 2,λ = 0 U (1)charge×SO(5)layer charge, SDW↔ exciton, spin

J/U = 2,λ �= 0 U (1)charge×SU(2)layer charge, z-SDW↔exciton×U (1)z−spin

J/U �= 2,λ = 0 U (1)charge×U (1)layercharge×SU(2)spin

J/U �= 2,λ �= 0 U (1)charge×U (1)layercharge×U (1)z−spin
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wave and exciton order parameters and conserve the charge
difference between layers).

When J/U �= 2 and λ = 0 the symmetry is U (1)2 × SU(2),
which corresponds to separate U (1) charge conservation on
each layer and SU(2) spin rotation. If J/U �= 2 and λ �= 0
then the SU(2) spin rotation symmetry reduces to a U (1) spin
rotation symmetry about the z axis.

APPENDIX D: QMC METHODS

The numerical results presented in this paper were calcu-
lated using projector quantum Monte Carlo (QMC), which
is described in detail in Ref. [38]. Projector QMC is a kind
of determinant QMC which focuses on the zero-temperature
ground states of nondegenerate fermion systems. Determinant
QMC is a kind of auxiliary field QMC which uses a (usually
discrete) Hubbard-Stratonovich transformation to decouple an
interacting fermion Hamiltonian into a noninteracting Hamil-
tonian. All of these QMC methods are unbiased, controlled,
and numerically exact numerical methods to calculate expec-
tation values to arbitrary precision. Ground state expectation
values are calculated from the imaginary time evolution of a
trial wave function |�T 〉

〈A〉 = lim
�→∞

〈�T |e−�H/2Ae−�H/2|�T 〉
〈�T |e−�H |�T 〉 ; (D1)

� is a projection parameter which projects the trial wave
function into the ground state. In practice, one must use a

finite but large value for �. We chose to use � = 64/t (where
t is the hopping strength), which we found to be sufficient. As
is typically done, we chose |�T 〉 to be a Slater determinant
in the ground state subspace of the noninteracting part of our
interacting Hamiltonian [T + T ′ from Eq. (1)].

A Trotter decomposition is then applied to the numerator
of Eq. (D1) to separate the exponents into three parts:

e−�H/2 = [e−�τ (T +T ′)e−�τ HU e−�τ HJ ]Nτ + O(�τ )2,

where �τ = �/2Nτ , HU is the U term of H , and HJ is
the J term of H [Eq. (1)]. In our simulations we used
Nτ ≈ �

√
Nsweeps so that the systematic errors due to the

Trotter decomposition remain negligible compared to the
statistical error resulting from the finite number of Monte Carlo
sweeps performed: Nsweeps. A sweep has occurred after all
field variables have been given the chance to update. We used
between 64 and 4096 sweeps for the results shown here. All
observables have been checked against exact diagonalization
simulations on small lattices. The statistical error due to the
finite number of sweeps is shown on all plots as error bars
which denote one standard deviation (i.e., ≈68% confidence).
A Hubbard-Stratonovich transformation is then applied to the
interacting fermion problem to transform it into a free fermion
problem at the expense of adding (discrete) bosonic variables.
We used the same Hubbard-Stratonovich as introduced in [18].
The imaginary numbers due to the Kane-Mele λ term are dealt
with as described in [39].

FIG. 8. (Color online) The exponential decay in imaginary time of correlation functions (red line) for various order parameters (Table I)
on a honeycomb lattice of dimension 3 × 3 with U = 1.4375, which is nearly at the critical point. The shaded red region denotes statistical
errors. The thick green line indicates the fit to e−τ�+c while the two thin green lines denote the uncertainty of the fit. The fit was performed in
the region between the vertical orange lines. The negative of the slope of the fit is the energy gap for the finite-size system, which is used to
make Fig. 9.
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FIG. 9. (Color online) We extrapolate the gaps associated with a single particle (a), spin (b), and charge (c) (Table I) from a system of finite
spatial size to one of infinite size. Extrapolations are shown for λ = 0.25 and interaction strengths below (U = 1), near (U = 1.4375), and
above (U = 2) the gapless critical point at U ∼ 1.5. The results of these extrapolations are used to make Fig. 5(b) (λ = 0.25 and J/U = 2).

APPENDIX E: GAP CALCULATION METHODS

In this appendix we discuss in more detail how the gaps in
Figs. 4 and 5 are calculated. (We use the same approach that
was used in Ref. [40].) First, we measure the rate of exponential
decay in imaginary time of correlation functions for various
order parameters (Fig. 8). (QMC is very efficient at making
this measurement.) This decay has the form 〈Q†Q〉 ∼ e−τ�+c

for large separations in imaginary time (i.e., τ � �−1) where
� is the energy gap associated with the order parameter Q.
We then extrapolate the finite system size gaps � to the gap
for a system with infinite size (Fig. 9).

APPENDIX F: TOPOLOGICAL NUMBER
CALCULATION METHODS

In this appendix we describe how the topological numbers
displayed in Fig. 3 are calculated from the Green’s function.
In one dimension, the topological number can be written as

N = 1

2πi

∫
dk Tr[�G∂kG

−1], (F1)

where G = G(iω = 0,k) is the zero-frequency Green’s func-
tion and � = σ 300 in the basis

ci =
[
A

B

]

sublattice

⊗
[

1
2

]

layer

⊗
[↑
↓
]

spin

. (F2)

To calculate this number using determinant QMC, we first
measure the zero-frequency Green’s function G(iω = 0)k at
the discrete (due to the finite lattice) momenta k. We then
promote G(iω = 0)k to a continuous function G(iω = 0,k)
via interpolation. For example, one could choose a linear

interpolation

G(iω = 0,k) = k2 − k

k2 − k1
G(iω = 0)k1 + k − k1

k2 − k1
G(iω = 0)k2 ,

(F3)

where k1 and k2 are the nearest discrete momenta to the
continuous momentum k. The choice of interpolation method
will not affect the topological number as long as the the lattice
is large enough to sample enough momenta. This is because
N is a topological number and therefore insensitive to local
perturbations. (Imagine calculating the winding number of a
circle around the origin by approximating the circle as a poly-
gon.) Once G(iω = 0,k) has been attained via interpolation,
it can be inserted into the equation for N [Eq. (F1)] to attain
the topological number via numerical integration.

In two dimensions, the topological number can be written
as

Cs = 1

48π2

∫
dωd2k εμνρTr[�G∂μG−1G∂νG

−1G∂ρG
−1],

(F4)

where G = G(iω,k) is the Green’s function and � = −σ 003

in the same basis as above. Now, we measure Giω,k at discrete
Matsubara frequency ω and discrete momenta k and then
interpolate it to G(iω,k). However, the measured Giω,k is only
reliable up to ω ∼ 2πNτ/�. Since G(iω,k) is expected to
approach zero for large ω, we choose to let our interpolation
approach zero at a finite ω ∼ 2πNτ/� and remain at zero for
larger ω. Again, this will not affect the calculated topological
number as long as Nτ/� is sufficiently large. Finally, G(iω,k)
is inserted into the equation for Cs [Eq. (F4)] using numerical
integration.

115121-9



KEVIN SLAGLE, YI-ZHUANG YOU, AND CENKE XU PHYSICAL REVIEW B 91, 115121 (2015)

[1] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,
155114 (2013).

[2] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,
1604 (2012).

[3] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
[4] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).
[5] X.-L. Qi, New J. Phys. 15, 065002 (2013).
[6] H. Yao and S. Ryu, Phys. Rev. B 88, 064507 (2013).
[7] Z.-C. Gu and M. Levin, Phys. Rev. B 89, 201113(R) (2014).
[8] S. Ryu and S.-C. Zhang, Phys. Rev. B 85, 245132 (2012).
[9] C. Wang and T. Senthil, Phys. Rev. B 89, 195124 (2014).

[10] L. Fidkowski, X. Chen, and A. Vishwanath, Phys. Rev. X 3,
041016 (2013).

[11] Y.-Z. You and C. Xu, Phys. Rev. B 90, 245120 (2014).
[12] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP

Conf. Proc. 1134, 10 (2009).
[13] S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, New J. Phys.

12, 065010 (2010).
[14] A. Y. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[15] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[16] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[17] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev.

Mod. Phys. 60, 781 (1988).
[18] F. F. Assaad, Phys. Rev. B 71, 075103 (2005).
[19] V. Ayyar and S. Chandrasekharan, arXiv:1410.6474.
[20] T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami, Phys.

Rev. Lett. 112, 196404 (2014).
[21] A. G. Abanov and P. B. Wiegmann, Nucl. Phys. B 570, 685

(2000).
[22] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett.

51, 1915 (1983).
[23] H. Levine, S. B. Libby, and A. M. M. Pruisken, Nucl. Phys. B

240, 30 (1984); ,240, 49 (1984); ,240, 71 (1984).
[24] A. M. M. Pruisken, M. A. Baranov, and M. Voropaev,

arXiv:cond-mat/0101003.

[25] C. Xu and A. W. W. Ludwig, Phys. Rev. Lett. 110, 200405
(2013).

[26] Z. Bi, A. Rasmussen, and C. Xu, arXiv:1309.0515.
[27] Y. Ran, A. Vishwanath, and D.-H. Lee, Phys. Rev. Lett. 101,

086801 (2008).
[28] X.-L. Qi and S.-C. Zhang, Phys. Rev. Lett. 101, 086802

(2008).
[29] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[30] Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372

(1985).
[31] K. Ishikawa and T. Matsuyama, Z. Phys. C 33, 41 (1986).
[32] G. E. Volovik, The Universe in a Helium Droplet (Clarendon

Press, Oxford, 2003).
[33] Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. Lett. 105,

256803 (2010).
[34] Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 85, 165126

(2012).
[35] Z. Wang and S.-C. Zhang, Phys. Rev. X 2, 031008 (2012).
[36] Z. Wang and S.-C. Zhang, Phys. Rev. B 86, 165116 (2012).
[37] Y.-Z. You, Z. Wang, J. Oon, and C. Xu, Phys. Rev. B 90,

060502(R) (2014).
[38] F. Assaad and H. Evertz, World-line and Determinantal Quan-

tum Monte Carlo Methods for Spins, Phonons and Electrons,
Lecture Notes in Physics Vol. 739 (Springer, Berlin, 2008).

[39] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A.
Muramatsu, and F. F. Assaad, Phys. Rev. B 85, 115132 (2012).

[40] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A.
Muramatsu, Nature (London) 464, 847 (2010).

[41] In the original Gross-Neveu model introduced in Ref. [15], φab is
always an identity matrix. Here we use a generalized definition
of the Gross-Neveu model.

[42] Equation (3) has four flavors of complex fermions, which can
be written as 8 flavors of Majorana fermion chains up to a basis
transformation, i.e., 8 copies of Kitaev’s 1d topological SC.

115121-10

http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1088/1367-2630/15/6/065002
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.88.064507
http://dx.doi.org/10.1103/PhysRevB.89.201113
http://dx.doi.org/10.1103/PhysRevB.89.201113
http://dx.doi.org/10.1103/PhysRevB.89.201113
http://dx.doi.org/10.1103/PhysRevB.89.201113
http://dx.doi.org/10.1103/PhysRevB.85.245132
http://dx.doi.org/10.1103/PhysRevB.85.245132
http://dx.doi.org/10.1103/PhysRevB.85.245132
http://dx.doi.org/10.1103/PhysRevB.85.245132
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevB.89.195124
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1103/PhysRevB.90.245120
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://dx.doi.org/10.1103/PhysRevB.71.075103
http://arxiv.org/abs/arXiv:1410.6474
http://dx.doi.org/10.1103/PhysRevLett.112.196404
http://dx.doi.org/10.1103/PhysRevLett.112.196404
http://dx.doi.org/10.1103/PhysRevLett.112.196404
http://dx.doi.org/10.1103/PhysRevLett.112.196404
http://dx.doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/10.1016/S0550-3213(99)00820-2
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1103/PhysRevLett.51.1915
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90277-3
http://dx.doi.org/10.1016/0550-3213(84)90278-5
http://dx.doi.org/10.1016/0550-3213(84)90278-5
http://dx.doi.org/10.1016/0550-3213(84)90278-5
http://dx.doi.org/10.1016/0550-3213(84)90279-7
http://dx.doi.org/10.1016/0550-3213(84)90279-7
http://dx.doi.org/10.1016/0550-3213(84)90279-7
http://arxiv.org/abs/arXiv:cond-mat/0101003
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://dx.doi.org/10.1103/PhysRevLett.110.200405
http://arxiv.org/abs/arXiv:1309.0515
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086801
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.101.086802
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1007/BF01410451
http://dx.doi.org/10.1007/BF01410451
http://dx.doi.org/10.1007/BF01410451
http://dx.doi.org/10.1007/BF01410451
http://dx.doi.org/10.1103/PhysRevLett.105.256803
http://dx.doi.org/10.1103/PhysRevLett.105.256803
http://dx.doi.org/10.1103/PhysRevLett.105.256803
http://dx.doi.org/10.1103/PhysRevLett.105.256803
http://dx.doi.org/10.1103/PhysRevB.85.165126
http://dx.doi.org/10.1103/PhysRevB.85.165126
http://dx.doi.org/10.1103/PhysRevB.85.165126
http://dx.doi.org/10.1103/PhysRevB.85.165126
http://dx.doi.org/10.1103/PhysRevX.2.031008
http://dx.doi.org/10.1103/PhysRevX.2.031008
http://dx.doi.org/10.1103/PhysRevX.2.031008
http://dx.doi.org/10.1103/PhysRevX.2.031008
http://dx.doi.org/10.1103/PhysRevB.86.165116
http://dx.doi.org/10.1103/PhysRevB.86.165116
http://dx.doi.org/10.1103/PhysRevB.86.165116
http://dx.doi.org/10.1103/PhysRevB.86.165116
http://dx.doi.org/10.1103/PhysRevB.90.060502
http://dx.doi.org/10.1103/PhysRevB.90.060502
http://dx.doi.org/10.1103/PhysRevB.90.060502
http://dx.doi.org/10.1103/PhysRevB.90.060502
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1103/PhysRevB.85.115132
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1038/nature08942



