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It was recently pointed out that Halperin’s 113 topological order explains the transport experiments in the
quantum Hall liquid at filling factor ν = 5/2. The 113 order, however, cannot be easily distinguished from other
likely topological orders at ν = 5/2 such as the non-Abelian Pfaffian and anti-Pfaffian states and the Abelian
Halperin 331 state in Fabry-Pérot interferometry. We show that an electronic Mach-Zehnder interferometer
provides a clear identification of these candidate ν = 5/2 states. Specifically, the I -V curve for the tunneling
current through the interferometer is more asymmetric in the 113 state than in other ν = 5/2 states. Moreover,
the Fano factor for the shot noise in the interferometer can reach 13.6 in the 113 state, much greater than the
maximum Fano factors of 3.2 in the Pfaffian and anti-Pfaffian states and 2.3 in the 331 state.
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I. INTRODUCTION

The fractional quantum Hall (FQH) state at filling factor
ν = 5/2 has attracted much interest since its discovery [1].
Unlike the common FQH states at filling factors with odd
denominators, the ν = 5/2 FQH state cannot be explained by
a hierarchical construction [2] of variational wave functions
based on the Laughlin state. The fact that the filling factor
has an even denominator indicates the possibility of electron
pairing. Along this line, a number of models [3–11] were
proposed to explain the ν = 5/2 FQH state (see Ref. [10] for an
overview of the proposed models). In some of those proposals,
quasiparticle excitations with non-Abelian statistics were
predicted. A collection of non-Abelian quasiparticles span a
degenerate ground-state manifold which may be useful for
topological quantum computation [12,13]. Such non-Abelian
models [3–7,10] include the Pfaffian state, the SU (2)2 state, the
anti-Pfaffian state, and the anti-SU (2)2 state. At the same time,
models [8–10] predicting “ordinary” Abelian quasiparticles,
such as the Halperin 331 state, the K = 8 state, and their
particle-hole dual states, were also constructed.

In all the proposed models, a fundamental quasiparticle
charge of e/4 was predicted. This fundamental charge follows
from a general argument [14] for the even-denominator quan-
tum Hall states and has been observed experimentally [15–17].
On the other hand, different models have different implications
for the topological nature of the ν = 5/2 state. Several exper-
iments [17–26] were designed to probe the topological order
at ν = 5/2. References [17–19] measured the temperature
and voltage dependence of quasiparticle tunneling through
a quantum point contact. In the weak-tunneling regime, the
zero-bias tunneling conductance G scales with temperature T

according to a power law, G ∼ T 2g−2, where the exponent g

depends on the topological order in the bulk, a manifestation of
the edge-bulk correspondence [2] in FQH systems. The results
of the tunneling experiments were argued [10] to agree with
the Halperin 331 state after taking into account the effect of
long-range electrostatic interaction near the tunneling point.
On the other hand, the chiral 331 state does not explain the
observation [20] of an upstream neutral mode on the edge of the
ν = 5/2 liquid. Overall, none of the above-mentioned models
seems to fit in the constraints set by the experiments, assuming
the effect of edge reconstruction is less important. Edge
reconstruction is likely in a pure ν = 5/2 liquid [27,28] but

is expected to be suppressed in real samples with disorder, as
is evidenced by the recent experiment [29] showing relatively
weak signals associated with edge reconstruction and that such
signals disappear at long distances [20].

In a recent paper [30], it was argued that Halperin’s
113 topological order provides a consistent explanation of
the transport data in the ν = 5/2 FQH liquid. The 113
order is Abelian and comes with both spin-unpolarized
and spin-polarized versions. It supports an upstream neutral
edge mode and predicts the correct scaling behavior of the
zero-bias conductance observed in the tunneling experiments.
Distinguishing the 113 state from the other possibilities,
especially the 331 state, is a subtle experimental task. The
predictions of the 113 state and the 331 state are quite
close in the tunneling experiments, whose difference lies
within experimental uncertainty [10,30]. The measurements
of spin polarization [21–24] are controversial and do not help,
since the 113 state and the 331 state allow both zero- and
full-spin polarizations [10,11,30]. Data of bulk thermopower
measurement [25] showed features that may be associated with
non-Abelian quasiparticles [31], but the 113 and 331 states
may exhibit similar features if they host different quasiparticle
species that are degenerate in energy. Results [16,26] of an
electronic Fabry-Pérot interferometer were interpreted [32] to
be compatible with the non-Abelian states. However, the 113
state and the 331 state can produce similar signatures in the
presence of approximate or exact symmetry in the tunneling
behaviors of different species of quasiparticles [30,33]. The
existence of an upstream neutral edge mode favors the 113
state and the anti-Pfaffian state over the 331 state and the
Pfaffian state. However, more experimental effort based on a
variety of methods [34–39] is needed before one can draw a
definite conclusion about the existence of an upstream mode.
Thus, it is necessary to have an alternative approach which
offers additional data to test the proposal of the 113 topological
order.

In this paper, we show that an electronic Mach-Zehnder
interferometer [40–51] provides a clear identification of the
113 state, the 331 state, and the Pfaffian state, while it exhibits
identical characteristics in the Pfaffian and anti-Pfaffian states.
We have not included other ν = 5/2 states in the analysis,
because they are less probable candidates as revealed by
the experiments [17–20]. We compute the tunneling current
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through the interferometer in the 113 state and compare it
with the currents [45,48] in the 331 state and in the Pfaffian
(or anti-Pfaffian) state. In all of the four topological orders
considered, the current depends periodically on the magnetic
flux enclosed by the interferometer and is asymmetric under
the change of the sign of the applied voltage. The I -V curve
is most asymmetric in the 113 state. We have also studied
the low-frequency shot noise of the tunneling current and
found that the Fano factor, defined as the noise-to-current ratio,
also oscillates periodically with the magnetic flux. The Fano
factor can achieve 13.6 in the 113 state, much greater than
the maximum achievable Fano factors in the 331 state and
in the Pfaffian (or anti-Pfaffian) state, which were previously
found [46,48] to be 2.3 and 3.2, respectively. These results,
based on quasiparticle braiding statistics, are not sensitive
to the edge structure, including edge reconstruction. Thus,
a Mach-Zehnder interferometer can serve as a useful probe of
the topological order at ν = 5/2.

The paper is organized as follows. In Sec. II, we review the
statistical properties of the 113 topological order. In Sec. III,
we explain the structure of an electronic Mach-Zehnder
interferometer and its operation in the 113 state. In Secs. IV
and V, we calculate the tunneling current and shot noise in
the 113 state at zero temperature and compare the results
with those obtained in the 331 state and in the Pfaffian and
anti-Pfaffian states. The zero-temperature limit describes the
situation where the temperature is much lower than the applied
voltage in the interferometer. We explain the reason for the
asymmetric I -V curve and large shot noise in the 113 state.
We conclude in Sec. VI.

II. STATISTICAL PROPERTIES OF THE 113
TOPOLOGICAL ORDER

The 113 topological order has a spin-unpolarized version
and a spin-polarized version [30]. Its statistical properties are
captured by the standard K-matrix formalism [2].

The spin-unpolarized 113 state has the K matrix

K =
(

1 3
3 1

)
, (1)

which encodes information about quasiparticle statistics,
and the charge vector q = (1,1), which describes how the
excitations couple to the electromagnetic gauge field. Its two
fundamental quasiparticles, denoted by a and b, are repre-
sented by the vectors la = (1,0) and lb = (0,1), respectively,
both with a quarter electron charge. The statistical phase a
fundamental quasiparticle acquires after it makes a full circle
around another fundamental quasiparticle of different or the
same flavor is

φab = φba = 2π laK−1lTb = 3π/4 (2)

or

φaa = φbb = 2π laK−1lTa = −π/4, (3)

respectively. The two flavors of the fundamental quasiparticles
in the spin-unpolarized 113 state may be intuitively understood
as being related to the two electron-spin species. A generic
quasiparticle excitation can be viewed as a linear combination
of the fundamental quasiparticles. For instance, the electron

operators, defined as quasiparticles having unit electron charge
and obeying fermionic statistics, are represented by the vectors
(3,1) and (1,3).

The spin-polarized 113 state can be interpreted as a
hierarchical FQH state, formed by condensing charge-2e

quasiholes on top of a ν = 1 integer quantum Hall state. Its K

matrix is

K ′ =
(

1 2
2 −4

)
(4)

and charge vector is q′ = (1,0). The two fundamental quasi-
particles in the spin-polarized 113 state are represented by the
vectors (0,1) and (1,−1), both with e/4 charge and the same
statistical phases as described in Eqs. (2) and (3).

The two 113 states belong to the same topological or-
der [30]. Indeed, their K matrices and charge vectors are
related by an SL(2,Z) transformation W : K = WT K ′W and
q = q′W , where

W =
(

1 1
0 1

)
. (5)

This means that the two states have the same collection
of quasiparticle species in terms of charge and braiding
statistics. As a result, Mach-Zehnder interferometry based
on quasiparticle braiding is unable to distinguish between
the spin-unpolarized and spin-polarized 113 states. In the
following sections, we discuss the tunneling current and shot
noise in the context of the spin-unpolarized 113 state.

III. ELECTRONIC MACH-ZEHNDER INTERFEROMETER

The structure of a Mach-Zehnder interferometer is sketched
in Fig. 1. Charge propagates from source S1 to drain D1 and
from source S2 to drain D2 along the FQH edges Edge1 and
Edge2, respectively, as indicated by the arrows. In Fig. 1,
A and B are two points on Edge1 and Edge2, respectively.
Quasiparticles can tunnel at the quantum point contacts QPC1
and QPC2. In the 113 state, the most relevant quasiparticles
that participate in tunneling at low temperatures are the
fundamental quasiparticles a,b with e/4 charge [30]. In a
FQH liquid, low-energy excitations only exist on the edge.
The Hamiltonian of the interferometer has the form

Ĥ = Ĥedge +
∑

μ=a,b

[(
�

μ

1 T̂
μ

1 + �
μ

2 T̂
μ

2

)
e−i eV

4 t + H.c.
]
, (6)

D1S1

D2

FQH liquid

QPC1 QPC2 
S2

A

B

Edge1

Edge2

FIG. 1. The structure of an electronic Mach-Zehnder interferom-
eter. The arrows denote the direction of charge propagation from the
sources S1 and S2 to the drains D1 and D2. Quasiparticles can tunnel
at the quantum point contacts QPC1 and QPC2, between Edge1 and
Edge2.
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where Ĥedge is the Hamiltonian of Edge1 and Edge2, T̂
μ

1,2 are
the tunneling operators for quasiparticle flavor μ at QPC1 and
QPC2 with tunneling amplitudes �

μ

1,2, and eV is the chemical
potential difference between the two FQH edges. If S1 is kept
at a higher chemical potential than S2, then there is a net flow
of quasiparticles from Edge1 to Edge2, eventually absorbed
by D2. In writing the Hamiltonian we have set � = 1.

The tunneling amplitudes for different quasiparticle flavors
are in general different. An interesting situation happens
when both flavors of fundamental quasiparticles have identical
tunneling behaviors, �a

1,2 = �b
1,2. In such a limit, the interfer-

ometer exhibits elegant transport functions, as we show in
Secs. IV and V.

We assume small tunneling amplitudes at the point contacts
so that the quasiparticle tunneling rate between Edge1 and
Edge2 can be calculated using perturbation theory. The as-
sumption means that the average time between two consecutive
tunneling events at the point contacts is much longer than
the duration of an individual tunneling event. Moreover, we
assume that the tunneled quasiparticles are fully absorbed
by the drain D2, leaving only their topological charges,
characterized by their statistical phases. With this assumption,
individual tunneling events can be considered independent.
The residual topological charge at D2 can be understood as
a result of the entanglement between Edge1 and Edge2: The
topological charges on the two edges must add up to vacuum.
The quasiparticle tunneling rate depends on the Aharonov-
Bohm (AB) flux � enclosed by the loop A-QPC2-B-QPC1-A
in the interferometer, the topological charge accumulated at
D2 after the previous tunneling event, and the flavor of the
quasiparticle being tunneled. For a quasiparticle of type μ, the
tunneling rate from Edge1 to Edge2 is found to be

w+
s→s+μ = α

(∣∣�μ

1

∣∣2 + ∣∣�μ

2

∣∣2)+ (
β�

μ∗
1 �

μ

2 ei(φAB+φμs ) + c.c.
)
,

(7)

where s and s + μ are the topological charges at D2 before
and after the tunneling event, respectively; φμs is the statistical
phase acquired by quasiparticle μ after it makes a full circle
about the topological charge s at D2; φAB = 2π�/(4�0) with
�0 = hc/e the flux quantum is the Aharonov-Bohm phase
due to the magnetic flux through the interferometer; and α,β

are functions of the voltage bias V , the temperature T , and
the form factor of the interferometer, assumed independent
of the quasiparticle flavor μ for simplicity. For our purpose,
we do not need the explicit expressions of α,β, which depend
on the details in the Hamiltonian (cf. Ref. [44]). However,
we point out that α,β are in principle not sensitive to the
absolute distances between QPC1 and QPC2 but depend
on the difference of the distances between the QPCs along
different FQH edges. This property is a general advantage
of Mach-Zehnder interferometry [44,52,53], which allows for
the observation of quantum interference at large system sizes.
From Eq. (7), we see that the tunneling rate depends on the
history of quasiparticle tunneling through the interferometer.

At finite temperature, quasiparticle tunneling happens from
Edge2 at a lower chemical potential to Edge1 at a higher
chemical potential. The tunneling rate for such an inverse
tunneling process is related to that for tunneling from Edge1
to Edge2 by the principle of detailed balance: w−

s+μ→s =

exp[−eV/(4kBT )]w+
s→s+μ. At low temperatures, w−

s+μ→s is
suppressed. We assume in the later calculations that the
temperature is much lower than the applied voltage at the
quantum point contacts, so that w−

s+μ→s can be neglected.
In Sec. V, we study the shot noise of the tunneling current

through the interferometer. We focus on the noise at low
frequency. As was shown in Ref. [46], high-frequency noise
does not carry information about quasiparticle statistics, while
it manifests the fractional charge of the tunneled quasiparticles.

To calculate tunneling current and shot noise in the
Mach-Zehnder interferometer, one needs to understand the
topological degeneracy as seen by the tunneling quasiparticle,
i.e., all possible inequivalent topological charges that can be
present at drain D2. In the 113 state, these topological charges
are linear combinations of the fundamental quasiparticles.
Assuming there have been Na quasiparticles a and Nb

quasiparticles b absorbed by D2, their total topological charge
can be represented by [Na,Nb]. Certain linear combinations
result in trivial topological charge (trivial statistical phase as
the tunneling quasiparticle encircles D2), for instance, [3,1],
[1,3], and their integer multiples. The inequivalent topological
charges are defined as [Na,Nb] (mod [3,1],[1,3]). In Abelian
states, the fusion channels of quasiparticles are unique and
the topological degeneracy admits the algebraic structure of
a finite Abelian group, encoded in the K matrix. The level of
degeneracy, or the group order, equals the determinant of the K

matrix [54], given the topology of the interferometer in Fig. 1.
For the 113 state, the group isZ8 with the generator being either
of the fundamental quasiparticles. Tunneling of quasiparticles
defines multiplication of group elements. In Fig. 2(a), we show
the structure of topological degeneracy in the 113 state. We
use solid arrows and dashed arrows to denote the transitions
between inequivalent states due to tunneling of quasiparticles
a and b, respectively, at zero temperature. The tunneling
current and shot noise measured at D2 are the averaged
quantities over all inequivalent states in the degeneracy.

The classification of the algebraic structure of topological
degeneracy does not alone determine the current and noise in
the interferometer. One also needs the explicit transition rates
between inequivalent states in the degeneracy, defined by the
quasiparticle tunneling rates at the point contacts. In Table I,

[0,0] [4,0] 

[0,1][1,0]

[1,1][2,0]

[3,0] [2,1] 

p2p6

p3p7

p0 p4

p1 p5

[0,0] [2,1]

[1,1][1,0]

 ]1,0[ ]0,2[

[4,0]

(a) (b)

[3,0]

FIG. 2. The structure of topological degeneracy in the 113 state
(a) in the general situation and (b) in the presence of flavor symmetry.
The vertices represent the eight inequivalent states in the degeneracy.
The solid and dashed arrows denote transitions due to tunneling of
quasiparticles a and b, respectively, at zero temperature. Transition
rates are labeled explicitly for the flavor-symmetric case in (b).
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TABLE I. Zero-temperature transition rates from the state with
topological charge s to the states with topological charges s + a and
s + b in the topological degeneracy.

s [0,0] [1,0] [2,0] [3,0] [4,0] [0,1] [1,1] [2,1]

w+
s→s+a pa

0 pa
7 pa

6 pa
5 pa

4 pa
3 pa

2 pa
1

w+
s→s+b pb

0 pb
3 pb

6 pb
1 pb

4 pb
7 pb

2 pb
5

we list the transition rates at zero temperature. We define a set
of functions

p
μ

k = Rμ[1 + cμ cos(2π�/(4�0) + πk/4 + δμ)], (8)

where k = 0,1, . . . ,7, Rμ = α(|�μ

1 |2 + |�μ

2 |2), cμ =
2|β�

μ

1 �
μ

2 |/[α(|�μ

1 |2 + |�μ

2 |2)], and δμ = arg(β�
μ∗
1 �

μ

2 ).
In the presence of flavor symmetry in quasiparticle
tunneling, �a

1,2 = �b
1,2, we define R = Ra = Rb, c = ca = cb,

δ = δa = δb, and pk = pa
k = pb

k , and draw the kinetic diagram
in Fig. 2(b), where we have labeled explicitly the transition
rates. We merged the vertices representing topological charges
[1,0] and [0,1] into a single vertex, because the two vertices
are identical from a kinetics point of view. The same happened
to the vertices [3,0] and [2,1]. We emphasize that there are

always eight inequivalent states in the topological degeneracy,
whether or not there is flavor symmetry.

IV. TUNNELING CURRENT

We now compute the tunneling current through the inter-
ferometer. We focus on the steady-state current at zero tem-
perature and neglect the contribution from inverse tunneling
processes. The tunneling current is the averaged of transition
rates over all inequivalent states in the topological degeneracy,

I = e

4

∑
s,μ

fsw
+
s→s+μ, (9)

where s runs over the eight inequivalent topological charges,
μ = a,b, and the transition rates are given in Table I. The
probability fs that the interferometer is in the state with
topological charge s satisfies the master equations

dfs

dt
=

∑
μ

(fs−μw+
s−μ→s − fsw

+
s→s+μ), (10)

with the normalization condition
∑

s fs = 1. At steady state,
dfs/dt = 0, and we solve the equations for the current. Using
Fig. 2(b), we find the expression of current in the presence of
flavor symmetry,

I = e

4
R

2 − 2c2 + c4

4 (1 − cos (2π�/�0 + 4δ))

1 − (
3
4 + 1

4
√

2

)
c2 + c4

16

[(
1 + 1√

2

)
(1 − cos (2π�/�0 + 4δ)) + 1√

2
sin (2π�/�0 + 4δ)

] . (11)

The current depends periodically on the magnetic flux through
the interferometer with the period of one flux quantum �0. This
agrees with the Byers-Yang theorem [55]. Under the change
of the sign of voltage bias at the point contacts, the current
acquires an overall minus sign and the change of the sign
in front of sin (2π�/�0 + 4δ) in the denominator. The I -V
curve is thus asymmetric, like what was found [45,48] in the
Pfaffian state and in the 331 state. In Fig. 3(a), we plot the
current in the 113 state with flavor symmetry and compare
it with those in the Pfaffian state and in the flavor-symmetric
331 state. The current in the anti-Pfaffian state is identical to
that in the Pfaffian state [48]. We see that the current in the
113 state is more asymmetric than those in the other ν = 5/2
topological orders.

It is useful to quantify the asymmetry of current curves
in Fig. 3(a). To this end, we notice that the currents in
all three ν = 5/2 states can be written in the general form
I ∝ 1+r1 cos (2π�/�0)

1+r2 cos (2π�/�0)+r3 sin (2π�/�0) = 1+r1 cos (2π�/�0)
1+A cos (2π�/�0−φ) , up to

an overall factor, where A =
√

r2
2 + r2

3 and φ = tan−1 (r3/r2).
It is easy to verify that A < 1. The quantity A characterizes
the degree of asymmetry of the current curve: A = 0 for fully
symmetric current, while a large nonzero A implies large
asymmetry. Substituting the settings in Fig. 3(a), we find
A = 0.11, 0.28, and 0.64 for the 331, Pfaffian, and 113 states,
respectively.

Without flavor symmetry, the expression of tunneling
current is lengthy and not enlightening. In Fig. 3(b), we plot the
current at different values of γ = Rb/Ra . The minima in the
current correspond to the flux at which most of the transition
rates in the kinetic diagram are suppressed. The special case

γ = 0 is particularly interesting. In this limit, pb
k = 0 so that

only quasiparticle a can tunnel. The current becomes fully
symmetric with the period of the Aharonov-Bohm oscillation
cut in half. The new period is easily understood with the help
of Fig. 2(a). When only one flavor of quasiparticles can tunnel,
the system must experience eight tunneling events to complete
a cycle and return to the same state at an earlier time, e.g., by
following those solid arrows, with a total tunneled charge of
8 × (e/4) = 2e. This is in contrast to the situation where both
flavors of quasiparticles can tunnel and a complete cycle only
consists of four tunneling events. The 2e tunneled charge per
cycle gives the �0/2 period of the Aharonov-Bohm oscillation,
the same periodicity one finds in the physical quantities in a
superconducting state with annular geometry.

The asymmetric current at γ �= 0 and the symmetric current
at γ = 0 can be understood in the following. For γ �= 0, let
us consider the simple limit of flavor-symmetric tunneling.
Suppose now we tune the magnetic field such that �/�0 is an
integer multiple of 4; then the transition rate p4 ≈ 0, assuming
c ≈ 1 and δ = 0 in Eq. (8). Among the other transition rates, p3

and p5 are relatively small compared to p0, p1, and p7, while
p2 and p6 are intermediate in magnitude. Imagine initially the
system is in the state with topological charge [4,0]. After a
period of time through several tunneling events, the system
will return to the same initial state. More than one path in
the kinetic diagram can be chosen for this return process. For
example, one may follow the “hard” path [4,0] → [0,1] →
[1,1] → [2,1] → [4,0] with a smaller probability p4p3p2p5,
or the “easy” path [4,0] → [0,1] → [2,0] → [2,1] → [4,0]
with a larger probability p4p7p6p5. The system can even go
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I
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(a)

(b)

FIG. 3. Steady-state tunneling current as a function of the
Aharonov-Bohm flux �. (a) Comparison of the currents in the 113
state, the 331 state, and the Pfaffian (or anti-Pfaffian) state. We assume
flavor symmetry in both the 113 and 331 states. For the 113 state,
we set R = c = 1 and δ = 0. The current in the 331 state is acquired
from Eq. (9) in Ref. [48], with u = 1 and δ = 0. The current in the
Pfaffian state is acquired from Eq. (8) in Ref. [45], with λ = 1 and
δ = 0. For a better comparison, we have rescaled the heights of the
currents in the 331 and Pfaffian states to match the current in the 113
state. (b) Current in the 113 state at different γ = Rb/Ra values. For
the cases without flavor symmetry, we set Ra = 1, ca = cb = 1, and
δa = δb = 0.

through multiple cycles by visiting the [0,0] state before it
arrives at the [4,0] state for the first time. Now imagine one
gradually changes �/�0 from 0 to 1. As �/�0 varies, some
of the easy paths deform into hard paths, and vice versa. In
the 113 state, hard paths convert to easy paths at a slower
rate from �/�0 = 0 to 0.5 than the rate at which easy paths
convert to hard paths from �/�0 = 0.5 to 1. As a result, the
current is asymmetric as shown in the figure. In general, the
larger the inhomogeneity in the probability among different
paths connecting the same initial and final states in the kinetic
diagram, the larger the difference in rate between the hard-to-
easy conversion of paths in the first half of the period of the
Aharonov-Bohm oscillation and the easy-to-hard conversion
of paths in the second half of the period, and thus the larger the
asymmetry of the current. Fully symmetric I -V curves were
found in the Laughlin states [44], where no bypaths exist in
the kinetic diagrams. Our analysis finds that this is also the
case in the 113 state at γ = 0, which thus exhibits symmetric
current.

In the 331 state or in the Pfaffian state, the probability
is more balanced along different paths connecting the same
two states in the kinetic diagram. Thus, the currents are less

asymmetric in those topological orders than the current in the
113 state.

In practice, the shape of the current helps distinguish the 113
state from other topological orders, provided that the system
is not too far away from the flavor-symmetric point. The 331
state and the Pfaffian state may not be easily distinguished via
current measurement, in which case shot-noise measurement
is needed, as we show in the next section. At γ ≈ 0, the
113 state and the 331 state have very similar current features.
Nonetheless, in this limit the Abelian orders differ from the
non-Abelian orders in the periodicity of the current.

V. SHOT NOISE

As shown in Ref. [46], low-frequency shot noise in
the Mach-Zehnder interferometer contains information about
quasiparticle statistics in the FQH state. In the following we
calculate the shot noise in the 113 state at zero temperature
and compare it with the results [46,48] in the Pfaffian (or
anti-Pfaffian) state and in the 331 state.

We define shot noise as the Fourier transform of the current-
current correlation function

S(ν) = 1

2

∫ +∞

−∞
〈Î (0)Î (t) + Î (t)Î (0)〉eiνtdt. (12)

The low-frequency shot noise can be related to the tunneling
current through the definition of an effective charge e∗, Sν→0 =
e∗I . The ratio e∗/e is the Fano factor. As we show below, the
Fano factor in the 113 state can be as large as 13.6, well
exceeding the maximum Fano factors in the Pfaffian (or anti-
Pfaffian) state and in the 331 state.

Shot noise at low frequency can be viewed as the fluctuation
in tunneled charge Q(τ ) through the interferometer over a long
measurement time τ ,

Sν→0 = δQ2(τ )/τ, (13)

where the bar denotes average over all possible tunneled

charges after time τ and δQ2(τ ) = Q2(τ ) − Q(τ )
2
. The

steady-state tunneling current I = Q(τ )/τ . Without loss of
generality, let us assume that initially the topological charge
at drain D2 is [0,0], and that Q(0) = 0. After time τ , we may
observe at D2 that n quasiparticles have tunneled through the
point contacts whose topological charges altogether fuse into
the topological charge s. The tunneled electric charge during
τ is then Q(τ ) = ne/4. Let fs,n(τ ) be the probability of such
an observation; fs,n satisfies the master equations

dfs,n(τ )

dτ
=

∑
μ

(fs−μ,n−1w
+
s−μ→s − fs,nw

+
s→s+μ), (14)

where we note that s and n are not independent in fs,n. For
example, if drain D2 is found to be in the state with topological
charge s = [0,0] after time τ , then the tunneled quasiparticles
must altogether fuse into trivial topological charge and n

can only be an integer multiple of 4. We solve Eq. (14)
for the steady-state situation where τ is chosen to be long
enough such that fs,n no longer depends on τ , dfs,n/dτ = 0.
Following Ref. [46], we introduce the generating function
fs(x,τ ) = ∑

n fs,n(τ )xn, where n runs over all possible values
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for the given s. We can write

Q(τ ) =
∑
s,n

ne

4
fs,n(τ ) = e

4

∑
s

d

dx
fs(x,τ )

∣∣∣∣
x=1

,

Q2(τ ) =
∑
s,n

(
ne

4

)2

fs,n(τ ) =
(

e

4

)2∑
s

d

dx
x

d

dx
fs(x,τ )

∣∣∣∣
x=1

,

(15)

and the master equations

dfs(x,τ )

dτ
=

∑
μ

(xfs−μw+
s−μ→s − fsw

+
s→s+μ)

≡
∑
s ′

Mss ′ (x)fs ′ (x,τ ), (16)

where we have defined the kinetic matrix M(x), which has a
finite rank. At steady state, dfs(x,τ )/dτ = 0. Thus, fs(x,τ )
is the kernel of matrix M(x), subject to the normalization
condition

∑
s fs(1,τ ) = 1. We apply the Rorbach theorem [56]

to solve the eigenvalue problem of M(x). Let λ(x) be the largest
eigenvalue of M(x). At x = 1, all diagonal elements of the
matrix are negative, all off-diagonal elements are non-negative,
and the sum of the elements in each column equals zero. By the
theorem, λ(1) = 0 and is nondegenerate. All other eigenvalues
are negative. At x close to 1, λ(x) is close to zero and is
still nondegenerate. Thus, for large τ , one can neglect the
subleading terms and write fs(x,τ ) = ηs exp[λ(x)τ ], where
ηs is some constant. We find

I = e

4
λ′(1),

Sν→0 =
(

e

4

)2

[λ′(1) + λ′′(1)], (17)

e∗

e
= 1

4

[
1 + λ′′(1)

λ′(1)

]
,

where λ′(1) and λ′′(1) can be obtained by differentiating the
characteristic polynomial of M(x) [46]. In the presence of
flavor symmetry, Eq. (17) reproduces the current obtained in
the previous section, and the Fano factor

e∗

e
= 1

ζ 2

[
8 + 2

3∑
k=0

p2k+1

p2k

(
2R

p2k

+ p2k+3

p2k+2

)

−
(

3∑
k=0

p2k+1

p2k

)2
⎤
⎦ , (18)

where ζ = 4 + ∑3
k=0(p2k+1/p2k) and we have used the

convention pk = pk+8l with l an integer. In Fig. 4, we plot
the Fano factor in the flavor-symmetric 113 state, along
with the Fano factors in the flavor-symmetric 331 state and
in the Pfaffian state. The anti-Pfaffian state has the same
shot-noise profile as the Pfaffian state. We set c = 1 for the
113 state to maximize the visibility of the Aharonov-Bohm
oscillation. Experimentally, c = 1 can be realized by adjusting
the bias voltages at QPC1 and QPC2 such that �1 = �2 and
α = β. The latter condition is fulfilled at small bias voltage
V and low temperature T , i.e., eV,T < hv/L, where v is the

0.0 0.5 1.0 1.5 2.0 2.5 00
2
4
6
8
10
12

e e

Pfaffian

331

113

FIG. 4. Comparison of the Fano factors in the 113 state, the 331
state [48], and the Pfaffian (or anti-Pfaffian) state [46] as functions of
the Aharonov-Bohm flux �. We assume flavor symmetry in the 113
and 331 states.

velocity of the slowest edge excitation and L is the difference
of the distances between QPC1 and QPC2 on Edge1 and
Edge2 [44,52,53]. In all these ν = 5/2 topological orders, the
Fano factors are periodic functions of the magnetic flux with
the period �0, in agreement with the Byers-Yang theorem [55].
The Fano factor in the 113 state peaks at the height of 13.6,
much higher than the Fano factor peaks at 3.2 in the Pfaffian
state and 1.4 in the flavor-symmetric 331 state. The peaks of the
Fano factors occur near the minima of the tunneling currents,
where charge transfer is suppressed.

The large Fano factor in the 113 state arises from the
same reason for the asymmetric I -V characteristics, i.e., the
large difference in the probabilities between different paths
connecting the same initial and final states in the kinetic
diagram, Fig. 2(b). Again, let us imagine that initially the
system is in the [4,0] state and �/�0 has been tuned to be
an integer multiple of 4 such that p4 ≈ 0. In such a case, the
system will dwell in the initial state for a long time before it
moves to the next state via tunneling of a quasiparticle. Once
the system leaves the initial state, it quickly passes through
the other states in the kinetic diagram before it gets trapped
again in the [4,0] state for another long stay. If there were only
one unique path connecting successive prolonged stays in the
[4,0] state and the time the system spent in the [4,0] state was
much longer than the total time it spent in all other states,
then the effective charge e∗ equals the total charge tunneled in
each cycle, between two successive [4,0] states. This is what
happens in a Laughlin state [46]. However, this is not the case
in the 113 state with flavor symmetry. For example, there is a
large probability that the system goes over multiple cycles via
the states in the left half of Fig. 2(b), before it returns to the
[4,0] state. As a result, the effective charge e∗ can be very large
in the 113 state. In the 331 state and the Pfaffian state, there
are also bypaths connecting two states (or the same state) in
the kinetic diagrams. However, the probabilities on different
bypaths are close in these two topological orders, giving rise
to much smaller Fano factors.

In the absence of flavor symmetry, the height e∗
peak/e of

the Fano factor peaks in the Aharonov-Bohm oscillation is a
function of the ratio γ = Rb/Ra between tunneling amplitudes
of two quasiparticle flavors and the phase difference � = δb −
δa , as shown in Fig. 5. � vanishes in the flavor-symmetric case
but is nonzero in general. We find that e∗

peak/e is a periodic
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FIG. 5. (Color online) The height e∗
peak/e of the Fano factor peaks

in the Aharonov-Bohm oscillation in the 113 state, as a function of
γ = Rb/Ra and � = δb − δa .

function of �. This is expected from Eq. (8) where the phases
δa,δb are defined collinear with the Aharonov-Bohm phase.
Our numerics show that the maximal value e∗

max(γ )/e of e∗
peak/e

at a given γ decreases monotonically with γ , from e∗
max(1)/e =

13.6 to e∗
max(0)/e = 2. At γ = 0, the 113 state behaves like a

Laughlin state and e∗
max equals the total tunneled charge 2e per

cycle.
In reality, neither flavor-symmetric tunneling (γ = 1) nor

single-flavor tunneling (γ = 0) may happen. A more likely
situation is in between [57]. Nonetheless, e∗

max/e well exceeds
the maximum achievable Fano factor of 3.2 in the non-Abelian
topological orders, provided that γ > 0.1. At the same time,

the domain in the parameter space for the Fano factor to exceed
2 in the 331 state is small [48]. In general, the maximum
achievable Fano factor in the 113 state is larger than those in
the 331 and Pfaffian states for most values of the parameters.
Experimentally, we expect such differences to be measurable
with current instrumental precision [58].

VI. CONCLUSIONS

In conclusion, we have shown that an electronic Mach-
Zehnder interferometer can be used as a tool to identify
different topological orders at ν = 5/2. We have calcu-
lated the zero-temperature tunneling current and shot noise
through the interferometer in the Halperin 113 state and
compared the results with those in the Halperin 331 state and in
the non-Abelian Pfaffian and anti-Pfaffian states, the latter two
states having identical interference characteristics. We find that
the I -V curve in the 113 state is more asymmetric than those in
the 331 state and in the Pfaffian state. In addition, the maximum
Fano factor of 13.6 in the 113 state, found in the case of
flavor-symmetric quasiparticle tunneling, is much greater than
the maximum Fano factors 2.3 in the 331 state and 3.2 in the
Pfaffian and anti-Pfaffian states. In practice, the combination
of tunneling current and shot-noise measurements can provide
clear discrimination of these ν = 5/2 topological orders.
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