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We show how a ground-state trial wave function of a Fermi liquid can be systematically improved by introducing
a sequence of renormalized coordinates through an iterative backflow transformation. We apply this scheme to
calculate the ground-state energy of liquid 3He in two dimensions at freezing density using variational and
fixed-node diffusion Monte Carlo. Compared with exact transient estimate results for systems with a small
number of particles, we find that variance extrapolations provide accurate results for the true ground state
together with stringent lower bounds. For larger systems these bounds can in turn be used to quantify the
systematic bias of fixed-node calculations. These wave functions are size consistent and the scaling of their
computational complexity with the number of particles is the same as for standard backflow wave functions.
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I. INTRODUCTION

To overcome the fermion-sign problem, many fermion
quantum Monte Carlo (QMC) calculations rely on the fixed-
node (FN) approximation where the nodes of a trial wave
function, ψT , are imposed as a boundary condition on the
many-body Schrödinger equation, which can then be solved
by projector Monte Carlo methods [1]. Since the nodal
surfaces of the exact ground-state wave function are in general
unknown, the energies of FN calculations do not converge
to the exact ground-state energy but remain above it by an
unknown amount. Although methods which do not rely on
the FN approximation have been developed [2–6], they are
in general limited to small systems, as their computational
cost grows exponentially with the system size. Therefore,
FN-QMC calculations still provide the most accurate values
of ground-state properties of extended fermion systems.

Modification of the nodes of a many-fermion wave function
to explicitly include correlations remains a formidable task.
Slater determinants based on backflow (BF) coordinates
present one possibility [7–10], and BF wave functions have
been routinely used over the past years in QMC calculations
of the electron gas [11–13] and liquid 3He [14–18]. Generaliza-
tion of the BF wave function to include three-body correlations
was shown to be necessary to stabilize the unpolarized phase
of liquid 3He against spin polarization [19].

Here we propose new correlated trial wave functions based
on iterative BF transformations and use them to study liquid
3He in two dimensions. We show that this new class of
trial wave functions systematically lowers the energy and its
variance. Our results illustrate the possibility of extrapolating
variational Monte Carlo (VMC) and FN diffusion Monte Carlo
(DMC) calculations to zero variance to approach very closely
the exact ground-state energy. Since their evaluation remains
of similar complexity and scaling with increasing system size
as the usual BF wave function, their use is not limited to small
systems. We explicitly demonstrate the size consistency of
our new trial wave functions and discuss the possibility of
obtaining lower bounds to the ground-state energy.

II. ITERATED RENORMALIZATION OF WAVE FUNCTION

Let us start by considering the standard Slater-Jastrow-type
trial wave function with BF:

�
(0)
T = det φk(qi[R])e−U [R]. (1)

Antisymmetry is ensured by the Slater determinant of single-
particle orbitals, φk(r), k = 1, . . . ,N , where, instead of the
bare coordinates ri , i = 1, . . . ,N , many-body BF coordi-
nates, qi , are used as arguments. Both BF coordinates, Q =
(q1, . . . ,qN ), and the symmetric Jastrow potential, U , depend
explicitly on all coordinates, R = (r1,r2, . . . ,rN ), as indicated.
In the standard form, U = ∑

i<j u(rij ) + ∑
i Gi(R) · Gi(R),

with Gi = ∑
j (ri − rj )ξ (rij ), qi = ri + ∑

j (ri − rj )η(rij ),
and rij = |ri − rj |. The radial functions u, ξ , and η can be
parametrized and optimized by minimization of the variational
energy. Generalizations to include higher correlations into
both BF and Jastrow potentials are possible [19] but are not
considered here.

Once the BF and Jastrow potentials have been determined
[20], different occupations of the orbitals inside the Slater
determinant of Eq. (1) can be used to approximate also
low-lying excited states of the systems, in close analogy
to Landau’s Fermi liquid description. As in the correlated
basis functions approach [21,22], let us consider the effective
Hamiltonian within these nonorthogonal basis states. For a
Fermi liquid, we expect nondiagonal matrix elements of the
effective Hamiltonian to be strongly suppressed compared
to those of the bare plane-wave states. However, instead of
diagonalizing the effective Hamiltonian, let us search again
for a trial wave function to represent the ground state of the
effective Hamiltonian. Assuming a smoothly varying effective
interaction, we may again consider representing it as a BF wave
function, �

(1)
T . However, this time, the new BF coordinates,

q(1)
i , and the new Jastrow potential, U (1), are built upon the old

BF coordinates, Q(1)[Q(0)], and U (1)[Q(0)] with Q(0) ≡ Q. Thus
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we are naturally led to an iterative renormalization procedure,

�
(α)
T → �

(α+1)
T = det φk

(
q(α+1)

i

)
e−U (α+1)

, (2)

with a renormalized Jastrow potential

U (α) =
∑
β�α

⎡⎣∑
i<j

u(β)
(
q

(β−1)
ij

)+
∑

i

G(β)
i (Qβ−1) · G(β)

i (Qβ−1)

⎤⎦
(3)

and renormalized BF coordinates

q(α)
i = ri +

∑
β�α

y(β)
i ,

(4)
y(α)

i [Q(α−1)] =
∑
j �=i

(
q(α−1)

i − q(α−1)
j

)
η(α)(q(α−1)

ij

)
[in Eqs. (3) and (4), Q(−1) stands for R]. At each iteration
new potentials parametrizing the additional Jastrow and BF
functions are introduced, and all the potentials u(β), ξ (β), and
η(β), with β � α, have to be optimized.

In the Appendix we show how the evaluation of the
renormalized wave functions and their derivatives needed to
calculate the local energy can be efficiently implemented with
a number of operations proportional to N3. Thus, the overall
cost of calculation is not dramatically altered compared to that
of the usual (zeroth-order) BF wave function. For a system
of N = 26 particles we find that the CPU time to move all
the particles and calculate the local energy with iterated BF
of order 1 to 4 is a factor of 5, 9, 13, and 17 larger than
that of the zeroth order, respectively; furthermore, for N = 58,
fourth-order BF takes 12.5 times longer than for N = 26, close
to the N3 scaling. The corresponding figures for the efficiency
of the calculation of the energy are even more favorable,
because the variance is lower for improved wave functions.

III. TWO-DIMENSIONAL LIQUID 3He
AT FREEZING DENSITY

In order to illustrate the accuracy of the renormalization
procedure to describe the ground-state wave function of
highly correlated Fermi liquids, we perform calculations for
the ground-state energy of liquid 3He in two dimensions at

a density ρ = 0.060 Å
−2

, near freezing [4]. We compare
VMC and FN-DMC energies to exact results obtained by the
nominally exact transient estimate (TE) method of Ref. [3],
for systems of N = 26 (N = 29) unpolarized (polarized) 3He
atoms interacting with the HFDHE2 potential [23]. Further-
more, we test the size consistency of our trial functions,
comparing the gain in variational energy obtained by the
renormalization procedure for the unpolarized system at two
sizes, N = 26 and N = 58. The results are listed in Table I.

Every iteration introduces three new potentials (for BF,
two-body, and three-body Jastrow function), each of which,
generically indicated here as f (r), is parametrized in the form

f (r) =
{

(rC − r)3
[∑5

n=1 anr
n−1 + a6/ra7

]
if r < rC,

0 if r � rC.

(5)

For the BF and three-body Jastrow potentials we set rC = 7 Å
and drop the McMillan term (a6 = 0), while for the two-body
Jastrow potential we choose a cutoff value rC close to half the
size of the simulation box. In Fig. 1 we show the optimized
potentials u(α), ξ (α), and η(α) of the �

(4)
T wave function

for a system with N = 26 and ζ = 0. The BF coordinate
transformations across different iterations implicitly build up
many-body correlations at all orders, so that eventually not all
of the optimized potentials have an obvious physical interpre-
tation: for instance, the pair distribution functions g of the bare
coordinates and of the renormalized coordinates at subsequent
iteration levels, shown in Fig. 2, feature increasingly wide
correlation holes and high peaks for increasing level, despite

TABLE I. Ground-state energy per particle (in K) of liquid 3He in two dimensions at ρ = 0.060 Å
−2

, obtained with variational (ET /N ) and
fixed-node diffusion Monte Carlo (EDMC/N ) using different types of trial wave functions: the Slater-Jastrow wave function without backflow
(PW) and with α-times-iterated backflow [BF(α)]. ζ is the spin polarization and N is the number of particles. � is the gain in variational
Monte Carlo (VMC) energy per particle relative to the PW value, and σ 2 is the variance of the VMC total energy. TE indicates unbiased
results calculated with the transient estimate method of Ref. [3]. VMCext, DMCext, and LBext are the extrapolations to zero variance of ET /N ,
EDMC/N , and the lower bound (ET − √

σ 2)/N , respectively. Statistical uncertainties on the last digit(s) are given in parentheses. All values
are given for periodic boundary conditions ( point) without tail corrections [23].

N = 26, ζ = 0 N = 58, ζ = 0 N = 29, ζ = 1

ET /N σ 2/N � EDMC/N ET /N σ 2/N � EDMC/N ET /N σ 2/N � EDMC/N

PW 3.011(1) 28.29 2.419(2) 2.900(1) 28.07 2.373(2) 2.5831(6) 7.51 2.402(1)
BF(0) 2.688(1) 13.05 0.323 2.353(2) 2.584(1) 13.34 0.316 2.283(2) 2.5133(5) 5.34 0.070 2.4005(6)
BF(1) 2.471(1) 4.58 0.540 2.336(2) 2.356(2) 4.93 0.544 2.4383(3) 2.20 0.145 2.3918(5)
BF(2) 2.4258(8) 2.86 0.585 2.3284(9) 2.313(2) 3.25 0.587 2.4193(3) 1.54 0.164 2.3877(4)
BF(3) 2.4049(9) 2.47 0.606 2.3223(4) 2.297(2) 2.67 0.603 2.4136(2) 1.36 0.170 2.387(1)
BF(4) 2.400(1) 2.29 0.611 2.323(1) 2.292(1) 2.49 0.608 2.232(1) 2.4109(7) 1.25 0.173 2.3869(5)

VMCext 2.338(5) 2.217(2) 2.384(6)
DMCext 2.317(3) 2.216(3) 2.379(1)
LBext 2.275(14) 2.149(12) 2.390(26)

TE 2.307(7) 2.375(3)
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FIG. 1. Optimized potentials of the trial function �
(4)
T for N =

26, ζ = 0. Lines are broken where the pair distribution functions of
the relevant (quasi)coordinates become negligibly small, g(r) � 10−3

(see Fig. 2).

the two-body potentials u(α) turning from repulsive for α = 0
to attractive for α = 4. Note that all the g’s feature the structure
of simple liquids (albeit with increasingly classical character),
which supports the heuristic derivation given in Sec. II: each
iteration essentially renormalizes the Slater Jastrow wave
function without qualitative changes.

With the choice of Eq. (5), the renormalization procedure
requires 17 variational parameters per level, and the corre-
sponding optimization procedure (carried out by correlated
sampling [24] in this work) becomes rather demanding.
Therefore we have tried two simpler iterative schemes, one
in which no renormalized Jastrow is present and one in
which only the new potentials added at the αth iteration

 0
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g(
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FIG. 2. Pair correlation functions calculated in a VMC simulation
with the BF(4) trial function using the bare coordinates {ri} (solid line)
and the renormalized backflow coordinates {q(0)

i }, {q(2)
i }, and {q(4)

i }
(dotted, dash-dotted, and dashed lines, respectively). The statistical
noise reaches its maximum value, ∼0.003, at the highest peak.

are optimized, leaving the others unchanged from previous
iterations. However, these simpler options lead to higher
values in energy, for both the VMC and the DMC. We have
also considered an improved wave function with different
BF potentials for parallel and antiparallel spins. The gain in
energy is ∼10 mK in the VMC but hardly visible in the DMC
(�1 mK) beyond the second BF iteration. Finally, we have
tested the accuracy of using potentials optimized for N = 26
to perform simulations with N = 58 particles: at the fourth
BF iteration, the DMC energy is higher by a non-negligible
amount, 5 ± 2 mK. All these results are listed in Table II.

IV. ZERO-VARIANCE EXTRAPOLATION AND
LOWER BOUNDS

Our VMC and FN-DMC results for the energy expectation
values EX = 〈�X|H |�X〉 of the different (normalized) wave
functions provide strict upper bounds for the true ground-
state energy, E0 � EX, where the subscript X stands for T or
DMC as appropriate and �DMC is the FN ground state. Within

TABLE II. Some of the energies in Table I compared to the corresponding values obtained with downgraded or upgraded wave functions.
Entries 0, energies from Table I; entries I, downgraded wave functions with omitted Jastrow factors of the quasicoordinates; entries II,
downgraded wave functions with Jastrow and backflow potentials from previous iterations not repotimized; entries III, upgraded wave
functions with different like-spin and unlike-spin backflow potentials; entries IV, downgraded wave functions for N = 58 with Jastrow and
backflow potentials optimized for N = 26.

N = 26, ζ = 0 N = 58, ζ = 0

ET /N EDMC/N ET /N EDMC/N

0 I II III 0 I II III 0 IV 0 IV

PW 2.900(1) 2.909(2)
BF(0) 2.584(1) 2.592(2) 2.289(2) 2.288(1)
BF(1) 2.471(1) 2.599(2) 2.515(1) 2.461(1) 2.336(2) 2.337(2) 2.337(2)
BF(2) 2.4258(8) 2.585(2) 2.480(1) 2.413(1) 2.3284(9) 2.335(2) 2.332(1) 2.3256(9)
BF(3) 2.4049(9) 2.584(2) 2.472(1) 2.398(1) 2.3223(4) 2.335(2) 2.326(1) 2.3215(4)
BF(4) 2.400(1) 2.580(2) 2.470(1) 2.390(2) 2.323(1) 2.331(1) 2.325(3) 2.324(1) 2.292(1) 2.298(2) 2.232(1) 2.237(1)
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the VMC, we also have access to the variance of the energy
in the trial state, σ 2 = 〈�T |(H − ET )2|�T 〉. As the variance
approaches 0 for any exact eigenstate, its value for a given
trial wave function can be used to quantify the distance to
the closest eigenfunction. Under the assumption that the trial
energy is closer to the ground-state energy than to any of the
other eigenstates, the inequality σ 2 � (E0 − ET )2 leads to a
lower bound for the ground-state energy [25–27]:

E0 � ET −
√

σ 2. (6)

Note that the above assumption for the validity of this bound
implies that the trial energy per particle approaches the exact
ground-state energy per particle for extended systems in the
thermodynamic limit, which would make the bound of rather
limited interest. However, in the following, we show that the
lower-bound expression remains valid under much weaker
assumptions and applicable for finite systems of commonly
used sizes. Further, we use the information on the variance
obtained by VMC to extrapolate trial energies to the exact
ground-state energy.

Let us first analyze in more detail how the trial wave func-
tion approaches the ground-state wave function. Expanding
our trial wave function in the exact eigenstates, |Ej 〉, of energy
Ej , we have |�T 〉 = ∑

j cj |Ej 〉, where cj are the expansion
coefficients, with

∑
j |cj |2 = 1 assuming normalized states.

We can now write

ET = E0 + �T CT , (7)

with CT = ∑M
j �=0 |cj |2 and �T ≡ ∑

i(Ei − E0)c2
i /CT � �,

where � ≡ E1 − E0 denotes the energy gap between the
ground and the first excited state of the system. Similarly,
we obtain for the variance

σ 2 = �2
T CT − (�T CT )2 , (8)

where �2
T ≡ ∑

i(Ei − E0)2c2
i /CT � �2

T .
Using Eqs. (7) and (8) we have

ET −
√

σ 2 = E0 − �T CT

[√
�2

T

�2
T CT

− 1 − 1

]
, (9)

and we see that the expression for the lower bound, Eq. (6),
remains valid for CT � �2

T /2�2
T or ET − E0 � �2

T /2�T .
Note that this condition is less stringent than the assumption
that ET is closer to the ground-state energy than to any of the
other eigenstates used previously.

To go further, let us assume that the trial wave function
has a significant overlap only with the ground-state wave
function, whereas the components of excited states, ci with
i > 0, are broadly distributed. We expect this assumption to
be reasonably satisfied for extended systems, where the excited
states approach a continuum in the thermodynamic limit.
Improving the wave function via our iterative renormalization,
the excited-state contributions decrease almost uniformly, such
that CT → 0 whereas �T and �2

T remain roughly constant.
In this case we can neglect terms of order C2

T in Eq. (8), insert
it in Eq. (7), and obtain

ET = E0 + Aσ 2 for σ 2 → 0, (10)
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FIG. 3. (Color online) VMC and DMC energies per particle of
N = 26 unpolarized 3He atoms in two dimensions as a function of
the variance σ 2/N . Each point corresponds to a different trial function
[PW and BF(α) with α = 0 to 4, from higher to lower variance]. The
TE energy has been subtracted. Their dependence is nearly linear,
and their extrapolations to zero variance, the entries VMCext and
DMCext in Table I, are very close to the exact result. We further show
the energy lower bound (ET − √

σ 2)/N , whose extrapolation to zero
variance, the entry LBext in Table I, is also very close to the exact
result. The dashed line is a rough estimate of the first excited state
(the difference between the two slowest exponential decay constants
in the fermionic signal of the TE procedure [3]). It shows that the
conditions for the validity of the energy lower bound (see text) are
met by the iterated backflow trial functions. The dotted line is the
alternate estimate 1/(2AN ) of Eq. (11) for the validity of the lower
bound.

with A = �T /�2
T . Therefore, with good enough trial func-

tions, we expect that a (nearly) linear extrapolation of the
variational energy to zero variance closely approaches the
exact ground-state energy, with the coefficient of the linear
term providing a numerical estimate of the validity of the
lower bound of Eq. (6); i.e.,

ET − E0 � 1/(2A). (11)
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FIG. 4. (Color online) Same as Fig. 3, for N = 29 spin-polarized
3He atoms. Both the estimate of the first excited state, ∼0.6 K, and
the value of 1/(2AN ), 0.772 K, are off scale.
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FIG. 5. (Color online) Same as Fig. 3, for N = 58 unpolarized
3He atoms. Due to the lack of TE results, we take a reference energy
E0/N halfway between VMCext and LBext. Also, we do not have an
estimate of the first excited state. Comparison of the dotted line here
with that in Fig. 3 shows that the range of ET − E0 where the lower
bound is expected to be valid shrinks as 1/N .

The lower bound, in turn, can be made stricter by extrapolation
to zero variance of ET −

√
σ 2 with a leading square-root term.

These variance extrapolations are shown in Figs 3, 4, and 5
and listed in Table I.

All of the above extrapolations are valid for CT → 0. Using
a general estimate for the overlap of the trial wave function
with the ground state [28], CT ≡ 1 − c2

0 � 1 − exp[−(ET −
E0)2/2σ 2] ≈ 1 − exp[−A2σ 2], we can a posteriori check
the consistency of the energy-versus-variance extrapolation,
leading to the condition that A2σ 2 be significantly smaller
than 1.

Finally, one would like to use variance extrapolation with
the FN energies to obtain even better results. However, within
the DMC, the variance 〈�DMC|(H − EDMC)2|�DMC〉 is 0
inside any nodal pocket [29] and can no longer be used as a
measure of the quality of the wave function. The most natural
assumption is then to postulate that the variance σ 2 calculated
in the VMC is a good measure of the quality of the wave
function in the DMC as well. This allows us to use the same
extrapolation for DMC energies as in the case of the VMC, as
shown in Figs. 3–5, but without obtaining a lower bound. The
DMC energy extrapolated to zero variance, listed in Table I,
happens to differ from the TE value by just the combined error
bar, 10 mK for ζ = 0 and 4 mK for ζ = 1.

V. CONCLUSIONS

In this paper we have introduced new, highly correlated
wave functions for accurate descriptions of normal Fermi liq-
uids based on generalized BF coordinates which are iteratively
improved. For unpolarized liquid 3He at freezing density, the
energy gain of these wave functions at the fourth iteration
compared to the usual BF trial wave function (0 iterations) is
about 290 mK within the VMC and 50 mK (30 mK) for the
FN-DMC with N = 58 (N = 26) atoms. More important, we
have shown that the true ground-state energy can be obtained
by variance extrapolation with intrinsic a posteriori checks of

the consistency and validity of the extrapolation. For a small
number of atoms, N ∼ 26, we have shown that the obtained
results are in agreement with unbiased calculations using TEs,
but variance extrapolation can also be used to quantify the FN
error of larger systems. For systems with N = 58 atoms, the
FN error of our best wave function is around 15 mK.

Thus, apart from significant VMC and FN-DMC energy
gains, the iterative BF renormalization procedure also leads to
a general strategy to quantify the FN error of the calculations.
In combination with finite-size extrapolations based on the
analytical informations contained in the trial wave function
[30,31], the methods presented in the paper provide an
important step towards the control of the accuracy of QMC
calculations suffering from a Fermion sign problem.
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APPENDIX: COMPUTATIONAL DETAILS

Let us suppose that qα
i are BF coordinates i = 1, . . . ,N and

α = 1, . . . ,d, where d is the spatial dimension, and we have
already computed the following partial derivatives:

Q
αβ

ij ≡ ∇α
i q

β

j , (A1)

Q̃
β

j ≡ �q
β

j ≡
∑
iα

∇α
i ∇α

i q
β

j . (A2)

We further need

Q
βγ

lm =
∑
iα

Q
αβ

il Q
αγ

im , (A3)

which is already needed for computation of the local energy
of the Slater determinant using orbitals based on the above BF
coordinates [11], which we shortly review.

1. Backflow determinant

The gradient and the Laplacian of a determinant, D =
det ϕki , with BF coordinates in the orbitals, ϕki ≡ ϕk(qi), can
be calculated as

∇α
i log D =

∑
jβ

F
β

jjQ
αβ

ij , (A4)

� log D =
∑
iα

F α
ii Q̃

α
i +

∑
iαβ

[∑
m

Vimϕ
αβ

mi

]
Q

αβ

ii

−
∑
ijαβ

F α
ijF

β

jiQ
αβ

ji , (A5)

where

ϕα
ki ≡ ∂ϕki

∂qα
i

, ϕ
αβ

ki ≡ ∂2ϕki

∂qα
i ∂q

β

i

, F α
ij =

∑
k

Vikϕ
α
kj (A6)
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and Vik is the inverse of the BF matrix,

Vik = 1

D

∂D

∂ϕki

,
∑

k

Vikϕkj = δij . (A7)

The computational complexity is of order N3 for the inversion
of the orbital matrix, Vik , as well as for the computation of the

matrices Fα
ij and Q

αβ

ij .
Note that this part of the calculations does not depend on

the specific form of the BF coordinates. The computation
of the gradient and Laplacian of the local energy based on
Eq. (A4) and Eq. (A5) depends only on the actual values of the
orbital matrix, ϕki , and its partial derivatives, Eq. (A6), and on
the gradient and Laplacian of the BF coordinates, Eqs. (A1)
and (A2). Therefore, Eqs. (A4) and (A5) can still be used to
calculate the local energy of determinants containing iterated
BF coordinates, as long as their derivatives are provided in the
form of Eqs. (A1), (A2), and (A3).

2. Iterated Jastrow correlations

We can now build a Jastrow factor based on the distances
between two quasiparticles,

U =
∑
l<m

u(qlm), (A8)

where u denotes the function and u′ (u′′) its first (second)
derivative. The gradient of the Jastrow factor can then be
calculated by the chain rule,

∇α
i U =

∑
lβ

V
β

l Q
αβ

il , V
β

l =
∑
m�=l

u′(qlm)

qlm

q
β

lm, (A9)

and

�U =
∑
lβ

V
β

l Q̃
β

l +
∑
l �=m

∑
βγ

W
βγ

lm

[
Q

βγ

ll − Q
βγ

lm

]
, (A10)

with

W
βγ

lm =
(

u′′(qlm) − u′(qlm)

qlm

)
q

β

lmq
γ

lm

q2
lm

+ δβγ

u′(qlm)

qlm

. (A11)

We see that the overall cost of the quasiparticle Jastrow factor
and its derivatives needed for the local energy is of the order

of N3, needed to build the matrix Q
βγ

lm , Eq. (A3). Since this
matrix is already needed in the calculation of the usual BF
wave function [11], the iterated Jastrow does not lead to a
significant slowdown compared to the usual BF.

3. Iterated BF coordinates

We now construct new BF coordinates,

yα
i =

∑
j �=i

qα
ij η(qij ), (A12)

where η is the corresponding potential. In order to calculate
the local energy for BF orbitals in the Slater determinant based
on yα

i , we need the following derivatives:

Y
αβ

ij ≡ ∇α
i y

β

j , Ỹ α
i ≡ �yα

i . (A13)

In order to calculate them, we use the chain rule, based on the
partial derivatives

∂y
β

j

∂qα
i

= δij

∑
n

ẏ
αβ

in − ẏ
αβ

ij ,

∂2y
γ

k

∂qα
i ∂q

β

j

= δijk

∑
n

ÿ
αβγ

kn − δjkÿ
αβγ

ki − δij ÿ
αβγ

jk − δikÿ
αβγ

kj ,

where

ẏ
αβ

ij = η′(qij )

qij

qα
ij q

β

ij + η(qij )δαβ,

ÿ
αβγ

ij =
[
η′′(qij − η′(qij )

qij

]
qα

ij q
β

ij q
γ

ij

q2
ij

+ η′(qij )

qij

[
qα

ij δβγ + q
β

ij δαγ + q
γ

ij δαβ

]
,

and we have used that ẏ
αβ

ii = ÿ
αβγ

ii = 0.
The final derivatives needed, Eq. (A13), can then be written

as

Y
αβ

ij =
∑
nγ

ẏ
γβ

jn

[
Q

αγ

ij − Q
αγ

in

]
,

Ỹ α
i =

∑
nβ

ẏ
αβ

in

[
Q̃

β

i − Q̃β
n

]+
∑
nαβ

ÿ
αβγ

in

[
Q

βγ

ii + Q
βγ

nn − 2Q
βγ

in

]
.

(A14)

Again, these operations can be done in the order of N3

computations.

4. Iterated n-body correlations

Above we have explicitly shown how to calculate the
gradient and Laplacian of a scalar two-body Jastrow poten-
tial and of quasiparticle coordinates constructed from BF
coordinates. The structure of our three-body correlation in
Eq. (3) is actually a scalar product between two vectors with
identical structure as the BF coordinates. The gradient and
Laplacian of the three-body term can therefore be calculated
from those of the vectors using the chain rule. Generalizations
to build iterated many-body Jastrow and BF coordinates based
on quasiparticle tensors [19] are straightforward and do not
increase the complexity of the calculation.

5. Higher order iterations

At the zeroth order of iteration, the BF coordinates, qi ,
are symmetric functions of the bare coordinates. Higher order
iterations of the BF are built from symmetric expressions based
on the previous BF coordinates, such that the overall wave
function remains antisymmetric. Above, we have explicitly
shown how to calculate the gradient and the Laplacian of
the quasiparticle coordinates of the first BF iteration, q(1)

i ≡
qi + yi , without increasing the overall complexity of the
calculation. These are the only additional information needed
to calculate the local energy of the first iterated BF determinant,
and from the structure it is clear that this procedure can be
iterated to higher order without increasing the complexity of
the calculations.
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