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Diagrammatic expansion for positive density-response spectra: Application to the electron gas
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In a recent paper [Phys. Rev. B 90, 115134 (2014)] we put forward a diagrammatic expansion for the
self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to
the density-response function. We write the generic diagram for the density-response spectrum as the sum of
“partitions.” In a partition the original diagram is evaluated using time-ordered Green’s functions on the left
half of the diagram, antitime-ordered Green’s functions on the right half of the diagram, and lesser or greater
Green’s function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to
every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects
for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by
summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction,
yield a positive spectrum. We develop the theory using bare Green’s functions and subsequently extend it to
dressed Green’s functions. We further prove a connection between the positivity of the spectral function and
the analytic properties of the polarizability. The general theory is illustrated with several examples and then
applied to solve the long-standing problem of including vertex corrections without altering the positivity of the
spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel
oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest
approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order
vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the
three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and
densities.
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I. INTRODUCTION

Many-body perturbation theory (MBPT) has played an
important role in the understanding of the excitation properties
of many-electron systems ranging from molecules to solids.
An important class of excitations are the neutral excitations
in which (in an approximate physical picture) electrons are
excited from occupied to unoccupied states. These excitations
can, for instance, be induced by external light fields and
indeed the optical properties of materials, e.g., the index of
refraction, are completely determined by neutral excitations.
For the understanding of the excitation spectrum many-body
effects are of crucial importance as interactions lead to
qualitatively new excited states of the system like plasmons
and excitons in solids or the autoionizing states in molecules.
In many-body theory the neutral excitation spectrum is
obtained from the density-response function χ which can be
calculated by diagrammatic methods. In practice one does
not approximate χ directly but instead its irreducible part P ,
called the polarizability. The density-response function and
the polarizability are related through the integral equation
χ = P + Pvχ where v represents the two-body interaction
between the electrons. The simplest approximation to P is the
random phase approximation (RPA) introduced by Bohm and
Pines [1] to study plasmons in the electron gas. However, many
physical phenomena, such as excitons, are not described within
the RPA. More complicated approximations involve typically

a summation of an infinite class of diagrams, which is usually
carried out with the Bethe-Salpeter equation [2]. For instance,
by summing ladder diagrams with a static screened interaction
the excitonic properties of many solids are well described [2].
Nevertheless, there are several other circumstances for which
even the static ladder approximation is not enough. In fact, this
approximation only allows for single excitations and therefore
double and higher excitations are not incorporated [3,4]. High
excitations can significantly contribute to the spectrum of
molecular systems. This is, for instance, the case in conjugated
polymers, e.g., the polyenes, where the lowest lying singlet
states have a double-excitation character [5]. Also for metallic
systems there are several physical situations that require a
theoretical treatment beyond the RPA [6,7]. The calculation of
plasmon lifetimes [8,9] is one example. Another example is the
calculation of the correlation induced double-plasmon excita-
tions [6,7] which has recently been studied both experimentally
and theoretically for the simple metals. We also mention that
beyond-RPA approximations have been investigated actively
in time-dependent density functional theory [10] (TDDFT),
a widely used framework to study optical properties of
molecules and solids. A key quantity within the TDDFT
formalism is the so-called exchange-correlation kernel which
depends entirely on corrections beyond the RPA. Several
parametrizations of this kernel based on the homogeneous
electron gas exist [11–13] but their application to finite systems
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is problematic and the development of better approximations
is an active research area.

From the viewpoint of diagrammatic MBPT the theoretical
description of many-body interactions beyond RPA involves
the inclusion of vertex corrections in the Feynman diagrams
for the polarizability. Vertex corrections have been studied
in several works [14–23] on the homogeneous electron gas.
For this system it was found that first-order vertex corrections
give rise to negative spectral functions [17,22]. Also for finite
systems it was found that by either restriction to a certain class
of diagrams [3,24] or by truncation to a certain order in the
iteration of the Hedin equations [25] the spectral function can
become negative. This has two important consequences. First
of all, it destroys the physical picture of the photo-absorption
spectrum as a probability distribution and secondly it can lead
to a density-response function with poles off the real axis
in the complex frequency plane thereby ruining its analytic
and causal properties. Wrong analytic properties were, for
instance, found in a study of atomic photo-absorption spectra
with vertex corrections included to first order [24]. Concomi-
tantly it was also shown that the absorption spectrum becomes
negative around the energy of the inner-shell transitions. In
this work we prove that a density-response function with a
positive spectrum has the correct analytic properties.

The problem of negative spectra lies in the structure of the
vertex correction and therefore the solution must be sought
in the way diagrammatic theory is used. In a recent paper
[26] we showed that a similar problem occurs in the spectrum
of the Green’s function (which describes the photo-emission
spectrum rather than the photo-absorption spectrum). For that
case we solved the problem by introducing the concept of
“half-diagrams” which we then used to construct a diagram-
matic expansion distinct from MBPT. In the present work we
show that a similar procedure works for the polarizability, too.
We apply the theory to derive the lowest order vertex correction
which preserves the positivity of the spectrum. We also
evaluate this correction for the homogeneous electron gas by
using a combination of analytical frequency integrations and
numerical Monte Carlo momentum integrations to evaluate the
diagrams.

The paper is divided as follows. In Sec. II A we introduce
the spectral function for the density-response function and
the polarizability and give a diagrammatic proof of their
positivity. The basic idea of the proof consists in cutting
every diagram into two halves in all possible ways and in
recognizing the half-diagrams as the fundamental object of the
diagrammatic expansion. Here we also derive the connection
between the analytic properties and the positivity of the
spectral function. In Sec. III we put forward a diagrammatic
method to generate approximate polarizability with positive
spectra. The method is first developed using bare Green’s
functions and then extended to dressed Green’s functions.
In Sec. IV we provide some illustrative examples of positive
approximations and show how to turn an MBPT approximation
into a positive one by adding a minimal set of diagrams.
We also address the positivity of approximations generated
through the Bethe-Salpeter equation in Sec. V. In Sec. VI
we evaluate the lowest-order vertex correction which yields
a positive spectrum in the homogeneous electron gas. Our
conclusions and outlooks are drawn in Sec. VII.

II. THEORETICAL FRAMEWORK

A. The density-response function

We study the properties of the reducible and irreducible
response function within the Keldysh Green’s function theory.
Although this theory is usually applied in the context of
nonequilibrium physics we have found that it also provides
a natural and powerful framework for the calculation of
equilibrium spectra.

We consider a system of interacting fermions with Hamil-
tonian,

Ĥ =
∫

dx ψ̂†(x)ĥ(x)ψ̂(x)

+1

2

∫
dxdx′ ψ̂†(x)ψ̂†(x′)v(x,x′)ψ̂(x′)ψ̂(x), (1)

where the field operators ψ̂ , ψ̂† annihilate and create a fermion
at position-spin x = (rσ ), and v(x,x′) is the Coulomb interac-

tion. The one-body part of the Hamiltonian is ĥ(x) = −∇2

2m
+

qV (x), with V the scalar potential and q the fermion charge.
Within the Keldysh formalism the correlators are defined on
the time-loop contour C going from −∞ to +∞ (minus-branch
C−) and back to −∞ (plus-branch C+). Operators on the minus
branch are ordered chronologically while operators on the plus
branch are ordered antichronologically. The Green’s function
G(x1z1,x2z2) (like any other two-time correlator) with times
z1 and z2 on the contour embodies four different functions
Gαβ , α,β = +/−, depending on the branch C−,C+ to which
z1 and z2 belong [26,27]. For both times on the minus branch
we have the time-ordered Green’s function G−− whereas for
both times on the plus branch we have the anti-time-ordered
Green’s function G++. The time-ordered and anti-time-ordered
Green’s functions can be expressed in terms of G−+ ≡ G<

and G+− ≡ G> as follows (omitting the dependence on the
position-spin variables):

G±±(t1,t2) = θ (t1 − t2)G≷(t1,t2) + θ (t2 − t1)G≶(t1,t2). (2)

The four functions Gαβ form the building blocks of the
following diagrammatic analysis.

The central object of this work is the density-response
function χ defined as the contour-ordered product of density
deviation operators,

χ (x1z1,x2z2) = −i〈TC[�n̂H (x1z1)�n̂H (x2z2)]〉,

where �n̂(x) = n̂(x) − 〈n̂(x)〉, the subscript “H” implies oper-
ators in the Heisenberg picture and TC is the contour-ordering
operator. The average 〈. . .〉 is performed over the many-body
state of the system. The greater χ+− ≡ χ> and lesser χ−+ ≡ χ<

response functions read

χ>(x1t1,x2t2) = −i〈�n̂H (x1t1)�n̂H (x2t2)〉, (3)

χ<(x1t1,x2t2) = −i〈�n̂H (x2t2)�n̂H (x1t1)〉, (4)

and fulfill the symmetry relation,

iχ≶(x1t1,x2t2) = [iχ≶(x2t2,x1t1)]∗. (5)
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The quantity of interest for the excitation spectrum is the
retarded response function,

χR(x1t1,x2t2) = −iθ (t1 − t2)〈[n̂H (x1t1),n̂H (x2t2)]〉
= θ (t1 − t2)(χ> − χ<)(x1t1,x2t2).

In equilibrium the Green’s functions Gαβ as well as the
response functions χαβ depend on the time difference t − t ′
and can therefore be conveniently Fourier transformed with
respect to this time difference. In the remainder of the paper
we often suppress the dependence on spatial and spin indices
and regard all quantities as matrices with one-particle labels.
It is easy to verify that the Fourier transform of the retarded
response function is given by

χR(ω) =
∫

dω′

2π

B(ω′)
ω − ω′ + iη

, (6)

with η a positive infinitesimal and spectral function,

B(ω) = i[χ>(ω) − χ<(ω)]. (7)

The matrix function B contains information on the energy
of the neutral excitations and can be measured in optical
absorption experiments. From the relation in Eq. (5) we see that
iχ>(ω) and iχ<(ω) are self-adjoint and, therefore, B is self-
adjoint, too. The matrix function iχ>(ω) vanishes for ω < 0
and its average is proportional to the probability of absorbing
light with frequency ω for ω > 0. In fact, iχ>(ω) is a positive
semidefinite (PSD) matrix as it follows directly from the
Lehmann representation. Similarly it can be shown that iχ<(ω)
is PSD and vanishes for ω > 0. Thus B(ω) is PSD for positive
frequencies and negative semidefinite for negative frequencies.
Another property which follows directly from the definitions
in Eqs. (3) and (4) is the relation iχ<(ω) = [iχ>(−ω)]∗. For
Hamiltonians with time-reversal symmetry, such as in Eq. (1),
this relation can also be written as iχ<(ω) = [iχ>(−ω)]†

which implies that B(ω) = −B(−ω). It is worth noticing for
the present work that the PSD property is not guaranteed in
diagrammatic approximations to the response function. How
to construct PSD diagrammatic approximations is the topic of
the next section.

B. Positivity of the exact response function

The PSD property of the exact iχ≶(ω) is manifest from
the Lehmann representation of this quantity. It is instead less
obvious to prove the PSD property from the diagrammatic
expansion. Here we provide such a proof and bring to light
a diagrammatic structure which forms the basis of a general
scheme to construct PSD approximations (or to turn non-PSD
approximations into PSD ones by adding a minimal set of
diagrams). We follow the same line of reasoning as in the
recently published work on the PSD property of the self-energy
[26]. The main difference is that the proof for the response
function involves intermediate states consisting of particle-
hole pairs rather than particle-hole pairs plus a particle or a
hole. Since the derivation is otherwise similar we only outline
the basic steps and refer to Ref. [26] for more details. Moreover
since the derivation for χ> is essentially the same as for χ<

we restrict the attention to χ<.

The starting point is Eq. (4) for χ<. Writing explicitly the
time-evolution operator Û in �n̂H we get

iχ<(1,2) = 〈�0|Û(t0,t2)�n̂(x2)Û(t2,t1)�n̂(x1)Û(t1,t0)|�0〉,

where |�0〉 is the nondegenerate ground state and the short-
hand notation 1 = x1t1 and 2 = x2t2 has been introduced.
Under the adiabatic assumption the state |�0〉 = Û(t0,τ )|�0〉
is obtained by propagating the noninteracting ground state |�0〉
from the distant future time τ (eventually we take τ → ∞)
to some finite time t0 with an adiabatically switched-on
interaction. Therefore,

iχ<(1,2) = 〈�0|Û(τ,t2)�n̂(x2)Û(t2,τ )
∑

i

|ϕi〉〈ϕi |

× Û(τ,t1)�n̂(x1)Û(t1,τ )|�0〉, (8)

where we inserted the completeness relation in Fock space∑
i |ϕi〉〈ϕi | = 1. The only states in Fock space which con-

tribute in Eq. (8) have the form,∣∣ϕ(N)
pq

〉 ≡ ĉ†qN
. . . ĉ†q1

ĉpN
. . . ĉp1 |�0〉,

where ĉk , ĉ
†
k annihilate and create a fermion in the kth

eigenstate of the noninteracting problem. In Eq. (8) we can
therefore replace

∑
i

|ϕi〉〈ϕi | →
∞∑

N=1

1

N !

1

N !

∑
pq

∣∣ϕ(N)
pq

〉〈
ϕ(N)

pq

∣∣, (9)

where
∑

pq denotes integration or summation over the sets
p = (p1, . . . ,pN ) of occupied states and q = (q1, . . . ,qN ) of
unoccupied states. The sum starts from N = 1 since the only
state with N = 0 particle-hole pairs is |�0〉 and 〈�0|�n̂|�0〉 =
0. The prefactor in Eq. (9) originates from the inner product
of the intermediate states,

〈
ϕ(N)

pq

∣∣ϕ(N ′)
p′q ′

〉 = δN,N ′
∑

P,Q∈πN

(−)P+QδP (p),p′δQ(q),q ′ ,

where P and Q run over the set πN of all possible permutations
of N indices and (−)P and (−)Q are the parities of the
permutations P and Q, respectively. Using Eq. (9) in Eq. (8)
we can rewrite the lesser response function as

iχ<(1,2) =
∞∑

N=1

1

N !

1

N !

∑
pq

S (N)
pq (2)S (N)∗

pq (1), (10)

where the amplitudes S read

S (N)∗
pq (1) = 〈

ϕ(N)
pq

∣∣Û(τ,t1)�n̂(x1)Û(t1,τ )|�0〉, (11)

S (N)
pq (2) = 〈�0|Û(τ,t2)�n̂(x2)Û(t2,τ )

∣∣ϕ(N)
pq

〉
. (12)

The adiabatic assumption implies that turning the interaction
slowly on and off the state �0 changes at most by a phase
factor: Û(τ, − τ )|�0〉 = eiα|�0〉. Hence we can rewrite the
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amplitudes as (for more details see Ref. [26])

S (N)∗
pq (x1t1) = 〈�0|T

{
e−i

∫ τ

−τ
dτ̄ Ĥ (τ̄ )ĉ

†
p1 (τ+) . . . ĉ

†
pN

(τ+)ĉq1 (τ ) . . . ĉqN
(τ )�n̂(x1t1)

}|�0〉
〈�0|T

{
e−i

∫ τ

−τ
dτ̄ Ĥ (τ̄ )

}|�0〉
, (13a)

S (N)
pq (x2t2) = 〈�0|T̄

{
ei

∫ τ

−τ
dτ̄ Ĥ (τ̄ )�n̂(x2t2)ĉ†qN

(τ ) . . . ĉ
†
q1 (τ )ĉpN

(τ+) . . . ĉp1 (τ+)
}|�0〉

〈�0|T̄
{
ei

∫ τ

−τ
dτ̄ Ĥ (τ̄ )

}|�0〉
, (13b)

with T and T̄ the time-ordering and anti-time-ordering
operators, respectively. The time argument in the fermion
creation and annihilation operators specifies the position of
the operators on the time axis, and τ+ denotes a time
infinitesimally larger than τ . Equations (13a) and (13b) show
that S (N)∗ is an interacting time-ordered (N + 1)-Green’s
function whereas S (N) is an interacting anti-time-ordered
(N + 1)-Green’s function. Hence they can be expanded
diagrammatically using Wick’s theorem [28]. The general
structure of a S, S∗ diagram is illustrated in Fig. 1 and
resembles half a χ diagram. The left half corresponds to
S (N)∗ with lines given by noninteracting time-ordered Green’s
functions g−− whereas the right half corresponds to S (N)

with lines given by noninteracting anti-time-ordered Green’s
functions g++ (here and in the following we use the letter g to
denote the noninteracting Green’s function).

It is now easy to show that iχ<(ω) is PSD. By Fourier
transforming S with respect to t2 and S∗ with respect to t1 we
find (omitting the dependence on the spatial and spin variables)

iχ<(t1,t2) =
∞∑

N=1

1

N !N !

∫
dω

2π

dω′

2π

× e−iωt2+iω′t1
∑
pq

S (N)
pq (ω)S (N)∗

pq (ω′). (14)

In equilibrium χ< is invariant under time translations, i.e., it
depends on t1 − t2 only. Imposing time translational invariance
on the right-hand side leads to

∞∑
N=1

1

N !N !

∑
pq

S (N)
pq (ω)S (N)∗

pq (ω′) = F(ω)δ(ω − ω′), (15)

with F some matrix function of the frequency ω. Since for
ω = ω′ the left-hand side is a sum of PSD matrices we
conclude that F is PSD. Inserting Eq. (15) back into Eq.
(14) we see that F(ω) is the Fourier transform of iχ< which,
therefore, is PSD, too.

FIG. 1. (Color online) Typical diagram for S∗(1) (left) and S(2)
(right) forming the lesser reducible response function. Labels p and
q on the arrows denote quantum numbers of particles and holes,
respectively; see Eq. (13).

C. Positivity of the exact polarizability

In MBPT it is often more convenient to calculate the
irreducible part P of χ defined by the equation,

χ (z1,z2) = P(z1,z2)

+
∫
C
dzdz′ P(z1,z)v(z,z′)χ (z′,z2), (16)

where all quantities are matrices in position-spin space and
matrix product is implied. The two-body interaction in Keldysh
space is given by v(z,z′) = vδ(z,z′). Diagrammatically P
is obtained by removing from χ all diagrams that can be
separated into two pieces by cutting a single interaction line.
Like the retarded response function in Eq. (6) the retarded
polarizability has the spectral representation,

PR(ω) =
∫

dω′

2π

B̃(ω′)
ω − ω′ + iη

, (17)

with spectral function,

B̃(ω) = i[P>(ω) − P<(ω)]. (18)

The matrix functions P≶ and χ≶(ω) are related by

χ≶(ω) = [1 − PR(ω)v]−1P≶(ω)[1 − vPA(ω)]−1, (19)

where the advanced polarizability PA(ω) = [PR(ω)]†. As the
exact χ≶ is PSD this relation implies that P≶ is PSD, too,
since [1 − PRv]† = [1 − vPA].

Alternatively we can use the diagrammatic expansion of the
exact polarizability to show that P has the PSD property. In
fact, the diagrammatic PSD proof for χ can easily be adapted
for P . The removal of (interaction-line) reducible diagrams
from χ is equivalent to the removal of S diagrams that can be
separated into a piece containing the external χ vertex (either 1
or 2) and a piece containing the pq vertices by cutting a single
interaction line. We refer to these S diagrams as irreducible S
diagrams or irreducible half-diagrams. It is easy to realize that
the product between two irreducible half-diagrams yields an
irreducible χ diagram. If we define S̃ as the sum of irreducible
half-diagrams then the lesser polarizability can be written as

iP<(1,2) =
∞∑

N=1

1

N !

1

N !

∑
pq

S̃ (N)
pq (2)S̃ (N)∗

pq (1). (20)

Fourier transfroming S̃∗ with respect to t1 and S̃ with respect
to t2, and carrying out the same analysis as in the case of χ ,
see Eq. (14), we find that

∞∑
N=1

1

N !N !

∑
pq

S̃ (N)
pq (ω)S̃ (N)∗

pq (ω′) = F̃(ω)δ(ω − ω′), (21)
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where F̃(ω) is a PSD matrix function of the frequency ω. Since
F̃ is the Fourier transform of iP< then iP< is PSD, too.

D. Partitions and cutting rule

For the subsequent development of a PSD diagrammatic
theory we need to introduce the concept of partitions of a
P< diagram. This concept naturally arises when we multiply
two half-diagrams, as we shall show below. Due to the
anticommuting nature of the fermionic operators we see from
Eq. (13) that a permutation P of the p labels and a permutation

Q of the q labels changes the sign of S (N)
pq (and hence of S̃ (N))

by a factor (−)P+Q. Let then {D(j )
pq } with j ∈ IN be the set

of topologically inequivalent diagrams for S̃ (N)
pq that are not

related by a permutation of the p and q labels. By construction
we have the expansion,

S̃ (N)
pq =

∑
j∈IN

∑
P,Q∈πN

(−)P+QD
(j )
P (p)Q(q). (22)

Inserting this expansion in Eq. (20) and using the fact that πN

is a group we get (for more details, see Ref. [26])

iP<(1,2) =
∞∑

N=1

∑
j1,j2∈IN

∑
P,Q∈πN

(−)P+Q

×
∑
pq

D(j2)
pq (2)D(j1)∗

P (p)Q(q)(1). (23)

Next we observe that the in- and outgoing Green’s functions
with labels p and q are evaluated at the largest time τ and,
therefore, they are either a greater or a lesser Green’s function.
At zero temperature the noninteracting lesser Green’s function
g< satisfies the property,∑

p

g<
xp(tx,τ )g<

py(τ,ty) = ig<
xy(tx,ty), (24)

with a similar relation for the greater Green’s function. Hence,
in the sum

∑
pq D

(j2)
pq (2)D(j1)∗

P1(p)Q1(q)(1) we can replace the

product of two g≶ with a single g≶ connecting two internal
vertices. The result is a polarizability diagram in which the
lines of the left half are time-ordered Green’s functions, the
lines of the right half are anti-time-ordered Green’s functions,
and the lines connecting the two halves are either lesser or
greater Green’s functions. To represent this type of diagram
we label every internal vertex with a + or a − and introduce the
graphical rule according to which a line connecting a vertex
with label α = ± to a vertex with label β = ± is a gαβ . Let
us name partition a P< diagram with decorated ± vertices.
The full P< diagram is given by the sum of all partitions. The
reverse operation of splitting a partition into two half-diagrams
consists in cutting all the Green’s function lines between − and
+ vertices. In the following we refer to this reverse operation
as the cutting rule.

Before concluding this section we notice that in Keldsyh
formalism a P<(t1,t2) diagram is obtained from the corre-
sponding Keldysh diagram P(z1,z2) by placing the contour
time z1 on the minus-branch C−, the contour time z2 on the
plus-branch C+ and by integrating every internal contour time
over C. Thus the P< diagram is the sum of diagrams with

internal vertices decorated in all possible ways. Our derivation
shows that decorated diagrams which fall into multiple disjoint
pieces by cutting the lines between − and + vertices do not
contribute, i.e., they sum up to zero. In fact, these diagrams
cannot be written as the product of two half-diagrams.

E. Connection between positivity and analytic properties

It follows from the Lehmann representation that the retarded
density-response function χR(ω) has poles at ±�j − iη where
�j are the neutral excitation energies of the system. These
poles lie just below the real axis in the complex frequency plane
(in the continuous part of the spectrum these are smeared out
to a branch cut). Therefore the function χR(z) of the complex
variable z is an analytic function in the upper half plane
Im z > 0. This analytic property is important in diagrammatic
perturbation theory as the density response is an essential
ingredient in the calculation of the screened interaction W as
is, for instance, used in the GW approximation. A violation of
the analytic properties of χR would lead to incorrect analytic
properties of the Green’s function. It is therefore a relevant
question to ask whether any approximate expression for the
polarizability PR(ω) gives the correct analytic properties of
χR(ω). We show here that this is the case whenever PR is
PSD and the interaction matrix v is PSD as well (repulsive
interaction).

From the Dyson Eq. (16) for the response function we can
write the retarded component in terms of the polarizability as

χR(ω) = PR(ω)(1 − vPR(ω))−1. (25)

For our proof it turns out to be advantageous to look at the
function v1/2χRv1/2 which can be written as

v1/2χRv1/2 = v1/2PR(ω)v1/2

1 − v1/2PR(ω)v1/2
, (26)

where we used the PSD property of v to take the square root
operation. The advantage of this expression is that v

1
2 PR(ω)v

1
2

is PSD whereas vPR(ω) does not need to be PSD. Clearly since
v1/2 is frequency independent it does not change the analytic
properties of χR(ω).

We want to know whether χR(z) has a pole in the upper
half of the complex plane, i.e., for z = x + iy with y > 0.
This is either the case when PR(z) has a pole at z or when
1 − v1/2PR(z)v1/2 has a zero. From Eq. (17) we have

PR(x + iy) =
∫

dω′

2π

B̃(ω′)
x − ω′ + iy

, (27)

and, therefore,

ImPR(z) = −y

∫
dω′

2π

B̃(ω′)
(x − ω′)2 + y2

, (28)

RePR(z) =
∫

dω′

2π

(x − ω′)B̃(ω′)
(x − ω′)2 + y2

, (29)

where we used the short-hand notation ImPR=(PR−PA)/2i

and RePR = (PR + PA)/2. Since y > 0 and B̃ is an inte-
grable function both integrals are finite and PR(z) does not
have a pole. It remains to be considered the possibility that the
operator 1 − v1/2PR(z)v1/2 has a zero eigenvalue. If this was
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the case then there would exist an eigenvector |λ〉 for which
(1 − v1/2PR(z)v1/2)|λ〉 = 0, and hence

〈λ| 1 − v1/2RePR(z)v1/2 |λ〉 = 0, (30a)

〈λ| v1/2ImPR(z)v1/2 |λ〉 = 0. (30b)

Using Eq. (28) we rewrite Eq. (30b) as

〈λ|v1/2ImPR(x + iy)v1/2|λ〉

= −y

∫ ∞

0

dω′

2π
〈λ|v1/2B̃(ω′)v1/2|λ〉�(ω′), (31)

where we took into account that B̃(ω) = −B̃(−ω) to write
the integral between 0 and ∞, and defined the function �(ω)
according to

�(ω) =
[

1

(x − ω)2 + y2
− 1

(x + ω)2 + y2

]
. (32)

The function �(ω) is odd and positive (negative) for
positive frequencies and for positive (negative) x values.
Therefore �(ω) has a definite sign on the positive fre-
quency axis when x is nonzero. Let us first consider this
case, i.e., x 
= 0. Since we assumed that y > 0 and since
〈λ|v1/2B̃(ω′)v1/2|λ〉 � 0 for positive frequencies the only
way to have 〈λ| v1/2ImPR(z)v1/2 |λ〉 = 0 is to demand that
〈λ|v1/2B̃(ω′)v1/2|λ〉 = 0 for all ω′. This, however, would
imply from Eq. (29) that also 〈λ|v1/2RePR(z)v1/2|λ〉 = 0
which in turn would imply that 〈λ|1 − v1/2PR(z)v1/2|λ〉 = 1
in contradiction with the assumption. We conclude that χR(z)
cannot have poles in the upper half plane when x = Re z 
= 0.
This leaves us with the case x = 0. For x = 0 the function
�(ω) = 0 and Eq. (30b) is automatically satisfied. Instead
Eq. (30a) reads

〈λ|1 − v1/2RePR(z)v1/2|λ〉

= 1 + 2
∫ ∞

0

dω′

2π

〈λ|v1/2B̃(ω′)v1/2|λ〉ω′

ω′2 + y2
� 1, (33)

since v1/2B̃v1/2 is PSD for positive frequencies. In this case,
too, Eq. (30a) cannot be satisfied and therefore χR cannot have
poles in the upper half plane when PR and v are PSD.

We mention that the situation is different for negative
semidefinite interactions. In this case a similar formula can be
defined but with a minus sign in front of the integral. In fact,
for a strong enough attraction the right-hand side of Eq. (33)
can be zero for a well-chosen value of y and consequently χR

can have poles at z = iy in the upper half plane. The violation
of the analytic property occurs, for instance, in the attractive
Hubbard dimer [29]. As a final remark we note that in a similar
fashion one can prove that when the spectral function of the
self-energy is PSD then the Green’s function is analytic in the
upper half of the complex frequency plane.

Implications to the f-sum rule. The connection between
positivity and the analytic structure has important conse-
quences for the f-sum rule, which relates the first momentum
of the retarded density-response function to the equilibrium

density n0(x),∫
ωχR(x,x′ω) dω = −iπ∇′ · ∇(n0(x′)δ(r − r′))δσσ ′ . (34)

The derivation of the f -sum rule assumes that the integral over
the retarded response function can be closed on the upper half
plane [27], i.e., χR is analytic in this region. In accordance with
the results of this section the analytic assumption is verified
for those approximations which fulfill the PSD property.

III. PSD DIAGRAMMATIC EXPANSION

A. Formulation with noninteracting Green’s functions

In Sec. II A we have given a diagrammatic proof of the
PSD property of the exact polarizability. We further showed
that this PSD property is essential to guarantee the correct
analytic structure of the density-response function. In practice,
however, the polarizability is calculated in an MBPT fashion
by considering a subclass of Feynman diagrams and hence
the PSD property is not, in general, a built-in property of the
approximation. The proof given in Sec. II C paves the way
for a diagrammatic theory of PSD polarizabilities which is
alternative to the more standard MBPT. We have seen that the
PSD property follows from the formation of perfect squares
and that these squares are the sum of partitions. In contrast
MBPT gives a sum of diagrams where each diagram is a
sum of partitions but, in general, do not form perfect squares.
The most general MBPT approximation to the polarizability
when written in terms of partitions (or equivalently in terms
of products of half-diagrams) reads

iP<(1,2) =
∞∑

N=1

∑
(j1,j2)∈IN

∑
P ∈ π

(j1j2)
N,p

Q ∈ π
(j1j2)
N,q

(−)P+Q

×
∑
pq

D(j2)
pq (2)D(j1)∗

P (p)Q(q)(1), (35)

where IN is a subset of the product set IN × IN and for any
given couple (j1,j2) the sums over P and Q run over a subset
π

(j1j2)
N,p and π

(j1j2)
N,q of the permutation group πN . The minimal

number of additional partitions to add in order to turn the
MBPT approximation into a PSD approximation is found by
imposing on P< the mathematical structure in Eq. (23). This
is achieved as follows; see also Fig. 2. Let {Ĩ α

N } be a set of
disjoint subsets of IN with the property that the union of the
product sets, ⋃

α

Ĩ α
N × Ĩ α

N ⊃ IN, (36)

and contains the least number of elements of IN × IN . Since
the subsets Ĩ α

N are disjoint the sets Iα
N = IN ∩ (Ĩ α

N × Ĩ α
N ) are

disjoint too and due to Eq. (36) we have that
⋃

α Iα
N = IN .

For any given α we then consider the smallest subgroups of
the permutation group πN with the property that

π̃α
N,p ⊃

⋃
(j1j2)∈Iα

N

π
(j1,j2)
N,p , (37)

π̃α
N,q ⊃

⋃
(j1j2)∈Iα

N

π
(j1,j2)
N,q . (38)
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FIG. 2. (Color online) Decomposition
⋃

α Iα
N = IN of the IN

subset (denoted as three disjoint gray areas) into a union of
(two in this example) product sets.

By construction the polarizability,

iP<
PSD(1,2) =

∞∑
N=1

∑
α

∑
j1,j2∈Ĩ α

N

∑
P ∈ π̃α

N,p

Q ∈ π̃α
N,q

(−)P+Q

×
∑
pq

D(j2)
pq (2)D(j1)∗

P (p)Q(q)(1), (39)

contains all partitions of Eq. (35) plus the minimal number
of additional partitions to form perfect squares. Consequently
the polarizability in Eq. (39) is a diagrammatic PSD approxi-
mation. More precisely we can say that a PSD diagrammatic
approximation to P is not the sum of MBPT diagrams, rather
it is the sum of partial or decorated diagrams (the partitions)
with internal vertices either on the minus or the plus branch
of the Keldysh contour. Examples of the PSD procedure are
presented in Sec. IV.

As a final remark we mention that another cutting procedure
based on time-ordered half-diagrams has been used by Sangalli
et al. [3] for the Bethe-Salpeter kernel of the so-called second
RPA approximation. In that work the Lehmann product struc-
ture was important to satisfy an identity for the determinant of
the Bethe-Salpeter kernel which guarantees that no spurious
poles occur in the density-response function obtained by
solving the Bethe-Salpeter equation. However, the procedure
proposed in Ref. [3] cannot be used to obtain a direct expres-
sion for the spectral function, thus making it difficult to address
the PSD property. The difficulty has its origin in the fact that the
standard time-ordered formalism is not the natural formalism
to express the spectral function. As it has been shown in this
work the Keldysh contour technique facilitates enormously
the calculation of the spectral function of any diagram, the
result being a product of time-ordered and anti-time-ordered
half-diagrams joined by lesser and greater Green’s function
lines.

B. Formulation with dressed Green’s functions

In the previous section we discussed how to generate
PSD diagrammatic approximations for the polarizability. A
diagrammatic approximation is the sum of partitions and for
the PSD property to be satisfied the product of half-diagrams
resulting from the cut partitions has to form the sum of perfect
squares. The possibility of cutting a partition relies on Eq. (24),
according to which the product of two g≶ yields a single
g≶. This property, however, is valid only for noninteracting
Green’s functions. It would be extremely useful to formulate a
cutting rule for partitions written in terms of dressed Green’s
functions. The main advantage of a dressed PSD formulation
is the absence of polarizability diagrams with self-energy
insertions, thus enabling us to work exclusively with skeleton
diagrams.

Here we consider partitions with dressed Green’s function
lines and show how to write these partitions as the product of
two half-diagrams. We therefore need to replace Eq. (24) with
some other equation where G≶ is expressed as the “product”
of two functions. The main idea has been discussed in detail
in our recent work on the self-energy [26]. In frequency space
the greater and lesser Green’s function read

G≷(x1t1,x2t2) = ∓i

∫
dω

2π
A≷(x1,x2; ω)e−iω(t1−t2), (40)

where A<(ω) ≡ f (ω)A(ω) is the removal part of the spectral
function A(ω) whereas A>(ω) ≡ (1 − f (ω))A(ω) is the ad-
dition part of A(ω), and f (ω) is the zero temperature Fermi
function. If the self-energy is PSD then both A> and A< are
PSD. We expand the matrix A≷(ω) in terms of its eigenvalues
a

≷
n (ω) � 0 and eigenvectors un(ω,x),

A≷(x1,x2; ω) =
∑

n

a≷
n (ω)un(ω,x1)u∗

n(ω,x2), (41)

and define the square root matrix as√
A≷(x1,x2; ω) =

∑
n

√
a

≷
n (ω)un(ω,x1)u∗

n(ω,x2). (42)

We then make the rule that when cutting a partition the internal
lines are G−− for the left half, G++ for the right half, and√

G≷(x1t1,x2t2) =
∫

dω

2π

√
A≷(x1,x2; ω)e−iω(t1−t2) (43)

for the dangling lines of the two halves. For the reverse
operation of gluing the two halves we make the rule that the
“product” of two dangling lines is defined according to∫

dydt
√

G<
x1y(t1,t)

√
G<

yx2 (t,t2) = iG<(1,2), (44a)∫
dydt

√
G>

x1y(t1,t)
√

G>
yx2 (t,t2) = −iG>(1,2). (44b)

These equations replace Eq. (24) and the analogous for
g> in the dressed case. Except that for an additional time-
integration Eq. (44) has the same matrix-product structure as
in the undressed case and it is straightforward to verify that the
gluing of two half-diagrams gives back the original partition.
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FIG. 3. (Color online) Partition and decomposition in half-
diagrams of the RPA bubble diagram.

This implies that if a certain sum of partitions with undressed
Green’s functions g is PSD, and hence it can be written as in
Eq. (39), then the same sum of partitions with dressed Green’s
functions G is PSD, too, since the corresponding polarizability
can be written as

iP<
PSD(1,2) =

∞∑
N=1

∑
α

∑
j1,j2∈Ĩ α

N

∑
P ∈ π̃α

N,p

Q ∈ π̃α
N,q

(−)P+Q

×
∫

d1p . . . dNp

∫
d1q . . . dNq

×D
(j2)
1p...Np,1q ...Nq

(2) D
(j1)∗
P (1p...Np)Q(1q ...Nq )(1), (45)

where we introduced the short-hand notation, np = (pn,t
(p)
n )

(n = 1, . . . ,N ) and mq = (qm,t
(q)
m ) (m = 1, . . . ,N) as well as∫

dnp =
∑
pn

∫
dt (p)

n ;
∫

dmq =
∑
qm

∫
dt (q)

m . (46)

In Eq. (45) the D’s represent the half-diagrams with dangling
lines

√
G≶ and external vertices in 1p . . . Np,1q . . . Nq .

IV. EXAMPLES

In this section we consider some commonly used diagram-
matic approximations to the polarizability and address the PSD
property for each of them.

(a) Zeroth order. In Fig. 3 we show the RPA bubble.
This diagram can be partitioned in only one way and the
decomposition in terms of half-diagrams is shown on the right
of the equality sign. According to the cutting rules for dressed
diagrams we have

D∗
1p1q

(1) =
√

G<
x1p1

(
t1,t

(p)
1

)√
G>

q1x1

(
t

(q)
1 ,t1

)
,

D1p1q
(2) =

√
G<

p1x2

(
t

(p)
1 ,t2

)√
G>

x2q1

(
t2,t

(q)
1

)
,

and it is straightforward to verify that the RPA bubble can be
written as

P<
RPA(1,2) = −i

∫
d1pd1q D1p1q

(2) D∗
1p1q

(1). (47)

The RPA P has clearly the structure of Eq. (45) and therefore
the spectrum for the response function is positive.

(b) Simplest vertex. In Fig. 4(a) we consider the lowest
order (in bare Coulomb interaction) vertex diagram for P .
The cutting rules yield only two partitions (on the right of
the equality sign) since the bare interaction is local in time
and hence v≶ = 0. From the decomposition in half-diagrams
we see that the vertex diagram does not have the structure
of Eq. (45). Therefore the PSD property is not guaranteed.
The minimal set of partitions to add follows directly from
the rules of Sec. III A. The result is shown in Fig. 4(b). By

FIG. 4. (Color online) (a) Partition and decomposition in half-
diagrams of the vertex diagram. The wiggly line denotes the bare
interaction v. (b) The minimal set of additional partitions to restore
the PSD property.

multipling the half-diagrams in the curly brackets we get
two additional diagrams: the RPA bubble and a partition of
the second-order ladder diagram. Here and in the following
we use the convention that an internal vertex without −/+
labels implies a summation over −/+. From this example
we also infer that the sum of only the RPA bubble and the
vertex diagram is not, in general, PSD. Noteworthy this sum
constitutes the so-called exact exchange (EXX) approximation
to the kernel of time-dependent density functional theory
(TDDFT). The EXX kernel has been calculated in Ref. [24]
for the case of closed shell atoms and it was found that it
has poles in the upper half of the complex frequency plane.
This incorrect analytic behavior is a direct consequence of
the relation between the PSD and the analytic properties, as
discussed in Sec. II E. The correct analytic properties of the
EXX kernel can be restored by adding the partition of the
second-order ladder diagram shown in Fig. 4(b).

(c) RPA screening. In bulk systems the electron screening
plays a crucial role and, therefore, one usually works with
interaction-skeletonic diagrams in which the bare interaction
v is replaced by some screened interaction W . Below we
apply the theory developed in Sec. III A to a few diagrammatic
approximations in which W is the RPA screened interaction,
i.e., W = v + vP0W where P0 = −iGG. Taking into account
that partitions with isolated +/− islands do not contribute
to the polarizability we immediately conclude that W−− and
W++ should not be cut along the internal Green’s function
lines. For the lesser/greater W lines we note that W< =
W−−P<

0 W++ and W> = W++P>
0 W−−; see Fig. 5. Therefore

the cut of a W≶ amounts to a cut of the two Green’s function
lines in P≶

0 .
The simplest diagrammatic approximation in terms of W

is given by the four partitions of Fig. 4(b) in which v → W ;
see Fig. 6. We observe that the sum of them does not give
the full vertex diagram since the partitions with W−+ = W<

and W+− = W> are missing. These partitions would vanish
if, instead of the RPA W , we used an externally given static
W like, e.g., a Yukawa-type interaction. We will come back to
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FIG. 5. Decomposition of the screened interaction (thick wiggly
line) W< in half-diagrams. The decomposition of W> is analogous
and given by the bottom diagram with − ↔ +.

this example in Sec. VI where we give explicit expressions of
the diagrams of Fig. 6 for the electron gas and show the crucial
role played by the second-order ladder diagram for the PSD
property.

(d) First order. The decomposition into half-diagrams of
the full first order (in screened Coulomb interaction) vertex
diagram is shown in Fig. 7(a). Since the times of the internal
vertices can be different (nonlocal interaction) we have four
different partitions. In two of them we only cut the G lines
while in the other two we also cut the W line (the cut of the W

line leads to half-diagrams with four dangling lines). Thus, we
have two half-diagrams with one particle hole (D(a) and D(b))
and two half-diagrams with two particle holes (D̃(a) and D̃(b)).
Naming each half-diagram as shown in Fig. 7(b) we can write
(omitting the integrals over the vertices to be glued as well as
dependence on the external vertices)

iP< = D(a)D(b)∗ + D(b)D(a)∗ + D̃(a)D̃(b)∗ + D̃(b)D̃(a)∗ , (48)

which does not have the structure of Eq. (45) and hence it is
not PSD. Applying the rules of Sec. III A we find the minimal
set of partitions to add in order to restore the PSD property,

iP<
PSD =

∑
ij=a,b

D(i)D(j )∗ +
∑

ij=a,b

D̃(i)D̃(j )∗ , (49)

where in each of the sums the indices i and j independently
take values a, b. The resulting diagrammatic approximation
to P is illustrated in Fig. 7(c). The important message of this
example is that the additional diagrams are not necessarily
skeletonic in G (occurrence of self-energy insertions, viz. the
last two diagrams in the figure). Thus attention has to be paid
when restoring the PSD property using a dressed G. In order
to avoid double countings one should not dress the G with
the same self-energy appearing in the diagrams of the PSD
polarizability.

(e) GW exchange-correlation kernel. We conclude this sec-
tion with another important example. In Ref. [30] it was shown

FIG. 6. (Color online) The simplest PSD approximation to the
polarizability in terms of the screened interaction W (thick wiggly
line).

FIG. 7. (Color online) (a) Decomposition of the vertex diagram
with screened interaction line into half-diagrams. (b) Constituent
half-diagrams. (c) The resulting PSD polarizability.

how to generate conserving approximations to the TDDFT
kernel using a variational principle à la Luttinger-Ward [31].
The underlying variational functional of Luttinger-Ward is a
functional of the bare interaction v and the Green’s function G.
To lowest order in v one can show that the variational principle
leads to the EXX approximation. It is possible to extend the
Luttinger-Ward idea to functionals of the screened interaction
W and the Green’s function G [32]. In this case the lowest
order approximation is the “time-dependent GW” (TDGW )
approximation; and the TDDFT kernel (more precisely its
convolution with twoP0’s) is given by the sum of the diagrams
in Fig. 8(a) (see also Sec. III.B of Ref. [30]). These are the
same diagrams evaluated by Sternemann et al. [7] and by
Huotari et al. [6] for the electron gas in order to explain
the double-plasmon shoulder in the absorption spectrum of
sodium. By partitioning each diagram of the approximate
polarizability we find that P< can be written in terms of four
half-diagrams with one particle hole and three half-diagrams
with two particle holes. Some of them have already been
introduced in Fig. 7(b); the new ones are shown in Fig. 8(b)
and the expression of P< in terms of them is (again omitting
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FIG. 8. (Color online) (a) Diagrammatic approximation to the
polarizability. (b) Constituent half-diagrams in addition to those
presented in Fig. 7(b).

integrals and the dependence on the external vertices)

iP< = D̃(a)
(
D̃

(a)
PQ + D̃(b) + D̃

(b)
PQ + D̃

(c)
P + D̃

(c)
Q

)∗

+ D̃(b)
(
D̃

(b)
PQ + D̃(a) + D̃

(a)
PQ + D̃

(c)
P + D̃

(c)
Q

)∗

+ D̃(c)
(
D̃(c) + D̃

(c)
PQ + D̃

(a)
P + D̃

(a)
Q + D̃

(b)
P + D̃

(b)
Q

)∗

+D(a)(D(b) + D(c) + D(d))∗

+ (D(b) + D(c) + D(d))D(a)∗ , (50)

where the half-diagrams with subindex P (and/or Q) are
calculated at permuted values 2p,1p (and/or 2q,1q). For
instance, D̃(c)D̃

(c)∗
PQ is a short form of the integral,∫

d1pd2p

∫
d1qd2q D̃

(c)
1p2p1q 2q

(2) D̃
(c)∗
2p1p2q1q

(1).

The polarizability of Eq. (50) is not, in general, PSD since it
does not have the form of Eq. (45). The minimal addition to
restore the PSD property follows from the rules of Sec. III A
which give

iP<
PSD =

∑
ij=a,b,c,d

D(i)D(j )∗ +
∑

ij=a,b,c

∑
P,Q∈π2

D̃(i)D̃
(j )∗
PQ. (51)

The first sum leads to 4 × 4 = 16 partitions whereas the second
sum leads to 3 × (22 × 3) = 36 partitions. In Fig. 9 some
representative ones are shown.

V. ON THE POSITIVITY OF THE
BETHE-SALPETER KERNEL

So far we have studied only approximations to the ir-
reducible response function consisting of a finite number
of diagrams. However, typically approximations beyond the
RPA involve an infinite series of diagrams conveniently
resummed through the Bethe-Salpeter equation (BSE) [2,33].
A natural question to ask is whether the corresponding
spectral function is PSD. To answer we have to find the
diagrammatic structure encoded in the kernel of the BSE.
The BSE is a Dyson-like equation for the four-point reducible
polarizability L(12; 34) and it is obtained as the response to a

FIG. 9. (Color online) A few additional partitions of Eq. (51).

nonlocal scalar potential u(4,3) [2],

L(12; 34)

=−δG(1,2)

δu(4,3)
= L0(12; 34)

+
∫

d(5678)G(1,5)G(7,3)K(56; 78)L(82; 64), (52)

where L0(12; 34)=G(1,4)G(2,3) and the four-point reducible
kernel K is given by K(12; 34)= − iδ�(1,3)/δG(4,2).
The variation of the Green’s function is related to the two-
particle Green’s function and therefore L is related to the
two-particle excitation spectrum. By taking the limit 3 → 1+
and 4 → 2+ we obtain an equation for the response function
since χ (1,2) = iL(12; 1+2+).

From standard approximations to the self-energy, e.g.,
Hartree-Fock (HF), second-order Born (2B) or the GW

approximation, we can derive a diagrammatic expression for
the kernelK; see Fig. 10. By defining a two-particle irreducible
and one interaction line irreducible kernel K̃ as [see also
Fig. 11(a)]

K̃(12; 34) = K(12; 34) − iδ(1,3)δ(2,4)v(1,2), (53)

we can write the polarizability as an infinite series of response
diagrams,

P(1,2) = P0(1,2) + i

∫
d(3456) G(5,1)G(1,3)K̃(34; 56)

×G(4,2)G(2,6) + · · · , (54)

whereP0(1,2) = −iG(1,2)G(2,1). The diagrammatic expres-
sion for this equation is shown in Fig. 11(b). By using the
kernels in Fig. 10 we obtain the approximations shown in
Fig. 12. The HF approximation for the BSE kernel yields the
diagrams shown in Fig. 13, which we can easily be seen to
be PSD. From this example we also deduce that if a kernel
cannot be partitioned then the corresponding polarizability is
PSD. A commonly used approximation to study the exitonic
properties of solids is the static GW approximation [2,3,29]
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FIG. 10. (Color online) Self-energy and the corresponding BSE
kernel for (a) Hartree-Fock, (b) second-order Born, and (c) GW

approximations.

with the kernel,

K̃(0)
GW(12; 34) = iδ(1,2)δ(3,4)W (1,3), (55)

where the functional derivative of W with respect to G is
neglected.

This approximation leads to the polarizability of Fig. 13
in which the bare interaction lines are replaced by statically
screened ones. Therefore, the static GW approximation yields
PSD spectra. For the full GW approximation some of the
half-diagrams already have been worked out in Fig. 8 and the
resulting diagrams after the gluing procedure have been shown
in Fig. 9. From this figure we see that the PSD procedure
leads to new types of diagrams which are not obtained via
the iteration of the BSE. Thus, we conclude that the BSE

FIG. 11. (Color online) (a) Two-particle irreducible and one in-
teraction line irreducible kernel K̃. (b) The diagrammatic expression
for the polarizability in terms of BSE kernel K̃.

FIG. 12. (Color online) Approximations for the polarizability by
using the BSE kernel with various self-energy approximations.
(a) 2B polarizability. (b) GW polarizability.

polarizability with the GW kernel does not necessarily have
PSD spectra. The same is true for the 2B approximation as can
be seen from the half-diagrams generated by the last diagram
on the first line of Fig. 12. By applying the PSD procedure we
will generate diagrams which are not obtained via iteration of
the BSE. Therefore, even the 2B approximation is not a PSD
approximation for the BSE. These simple examples show that
the kernels generated by conserving �-derivable self-energies
[31,34,35] do not need to be PSD.

VI. NUMERICAL RESULTS

As an illustration of our method we compute the spectral
functions B̃(k,ω) of the polarizability P(k,ω) for the three-
dimensional (3D) homogeneous electron gas. For convenience
we introduce here the spectral functions for the positive
B̃>(k,ω) and negative B̃<(k,ω) frequencies and scale them
by the factor of 8παrs in order to make the zeroth order (the
Lindhard polarization function) density independent,

B̃(0)(k,ω) =
{

ω
k

|ω|
k

� 2 − k,

1
k

− 1
4k

(
k − ω

k

)2 |2 − k| <
|ω|
k

� 2 + k,

(56)

where we expressed k in units of the Fermi momentum kF =
1/(αrs) and ω in units of the Fermi energy εF = k2

F /2. Here
α = [4/(9π )]1/3 and rs is the standard measure of the system’s

FIG. 13. (Color online) The polarizability calculated from the
HF BSE kernel is PSD.
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density—the Wigner-Seitz radius—expressed in units of the
Bohr radius.

In 1958 J. Hubbard diagrammatically studied the correla-
tion energy of a free-electron gas [36] and introduced what is
now known as the local field factor [f (k,ω); same notation
as in the original manuscript is used]. A very interesting
introduction to the historical development of this concept
and its importance for the density functional theory can be
found in Ref. [37]. In essence, it provides a simple way to go
beyond RPA both in the treatment of the density-response
function and the total energy of a many-body system and
relates between the exact and zeroth order polarizabilities
v(k)f (k,ω) = [P(k,ω)]−1 − [P (0)(k,ω)]−1. Thus, every ad-
vancement in the calculation of the proper density-response
function leads to our improved knowledge of the local field
factor and, correspondingly, of the density functionals. After
Hubbard’s original static approximation f (k,ω) ≈ k2/(k2 +
k2
F ) there were numerous works to compute the local field

factor using the above relation, notably the exact long
and short wavelength limits (see Ref. [37] and references
therein). Diagrammatically, the simplest case of the first-
order diagrams (in terms of the bare Coulomb interaction)
was computed in a concise form by Engel and Vosko
[23] for the static case. Importantly, they considered two
types of diagrams, the proper first-order response and the
first-order self-energy insertions and demonstrated a rather
large cancellation between these two contributions. In a full
generality the frequency-dependent first-order results were
obtained by Holas, Aravind, and Singwi [17]. However, the
analytic form is rather complicated and can only be expressed
in terms of a one-dimensional (1D) integral. We will use
these results for a comparison and, therefore, numerical details
concerning the evaluation of this integral are presented in
Appendix. In fact, already the first-order vertex diagram
of Fig. 4(b) demonstrates the problem of standard MBPT.
In Fig. 14 we depict its momentum and energy-resolved
spectral function B̃(1) computed according to the expression of
Ref. [17]. The pink shaded area denotes a part of the particle-
hole continuum where the first-order spectral function is
negative.

In order to solve this problem we use our method and
consider the irreducible polarizability diagrams shown in
Figs. 4(b) and 6: A particular second-order diagram must be
added in order to compensate for the negative sign of B̃(1). The
two sets of diagrams are topologically identical, however, the
first one is given in terms of bare Coulomb, while the second
contains screened interacting lines. To be general we will start
with the second more complicated case and derive the first
case by making the limit w(k) → �(k) → ∞ in the plasmon
pole approximation for the screened Coulomb interaction:

W−−
0 (k,ω) = v(k)

2

[
w(k)

ω − �(k) + iη
− w(k)

ω + �(k) − iη

]
.

(57)

In this expression w(k) = t(k)�2(0)/�(k), 0 � t(k) � 1 is
the plasmonic spectral weight, and �(k) is the plasmonic
dispersion with �(0) = 4

√
αrs/(3π )εF , where εF is the Fermi

energy. For the numerical integration we define the bare

FIG. 14. (Color online) Distribution of positive (green) and neg-
ative (pink) values of the first-order spectral function of the vertex
diagram in Fig. 4(b) in the k − ω plane. The lines represent isospectral
curves with values ±0.3 (dashed) ±0.1 (dotted) and 0 (solid).

time-ordered Green’s function as [26]

G−−
0 (k,ω) = B(k)

ω − εk − iη
+ A(k)

ω − εk + iη
. (58)

In noninteracting systems B(k) = nk and A(k) = 1 − nk with
nk denoting the occupation of the state with momentum k. The
frequency integrations can be done completely analytically
[facilitated by the MATHEMATICA computer algebra system
(CAS)] whereas for the remaining momentum integrations
one has to rely on numerics [38]. The starting point are the
four diagrams depicted at Fig. 15. The momentum flows are
explicitly shown. There are in general many possibilities to
assign momenta to propagators. Our choice is dictated by
the matter of convenience and is not unique. In order to

FIG. 15. (Color online) Sum of these zero to second-order polar-
izability diagrams yields positive spectral function. Lines with arrows
denote the electron propagator G0(k,ω), whereas wavy lines stand
for bare or screened Coulomb interaction. Vertices are labeled with
+ (−) if they belong to the positive (negative) time-ordering part of
the Keldysh contour.
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further simplify notations we adopt the following short forms: Ai ≡ A(xi), Bi ≡ B(xi), Ci ≡ 1
2v(yi)w(yi), and introduce the

function,

Hi(a,�) = Ai

a − � − εi

+ Bi

a + � − εi

.

We also recall that B̃>(k,|ω|) = B̃<(k, − |ω|). Therefore, it is sufficient to consider only one case, e.g., ω > 0.
The results of frequency integration are

B̃<
a (z,ζ ) = −π

∫
d3x1

(2π )3
A3B4δ(ζ − ε4 + ε3), (59a)

B̃<
b (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y1

(2π )3

H6(ε4,�1) − H5(ε3,�1)

ε3 − ε4 − ε5 + ε6
C1A3B4δ(ζ − ε4 + ε3), (59b)

B̃<
c (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y2

(2π )3

H2(ε4,�2) − H1(ε3,�2)

ε3 − ε4 − ε1 + ε2
C2A3B4δ(ζ − ε4 + ε3), (59c)

B̃<
d (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y1

(2π )3

∫
d3y2

(2π )3

H6(ε4,�1) − H5(ε3,�1)

ε3 − ε4 − ε5 + ε6

H2(ε4,�2) − H1(ε3,�2)

ε3 − ε4 − ε1 + ε2
C1C2A3B4δ(ζ − ε4 + ε3).

(59d)

They are quite general and can be used to obtain, e.g., plasmonic contribution. If, however, results for bare Coulomb interacting
lines are needed we take the limits and obtain

B̃<
a (z,ζ ) = −π

∫
d3x1

(2π )3
A3B4δ(ζ − ε4 + ε3), (60a)

B̃<
b (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y1

(2π )3
v(y1)

A6 − A5

ε3 − ε4 − ε5 + ε6
A3B4δ(ζ − ε4 + ε3), (60b)

B̃<
c (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y2

(2π )3
v(y2)

A2 − A1

ε3 − ε4 − ε1 + ε2
A3B4δ(ζ − ε4 + ε3), (60c)

B̃<
d (z,ζ ) = −π

∫
d3x1

(2π )3

∫
d3y1

(2π )3

∫
d3y2

(2π )3
v(y1)v(y2)

A6 − A5

ε3 − ε4 − ε5 + ε6

A2 − A1

ε3 − ε4 − ε1 + ε2
A3B4δ(ζ − ε4 + ε3). (60d)

Notice that the spectral functions in Eqs. (59) and (60) are
denoted by the same symbol because their type can always
be inferred from the context. In these equations A, B, and ε

quantities are labeled by the momenta as shown at Fig. 15. For
instance,

B5 ≡
{

1 |x1 − y1 − y2| � kF ,

0 |x1 − y1 − y2| > kF ,

and ε5 = (x1 − y1 − y2)2/2. B̃a(z,ζ ) ≡ B̃(0)(z,ζ ) is obviously
the Lindhard polarization function. B̃b(z,ζ ) and B̃c(z,ζ ) differ
only by the permutation of indices and, therefore, are equal in
view of the left-right symmetry of the corresponding diagrams.
There are no other topologically identical diagrams of the
first order, i.e., B̃b(z,ζ ) + B̃c(z,ζ ) = B̃(1)(z,ζ ). There are two
more partitions of the second order having the same topology
as B̃d (z,ζ ). They have different combinations of pluses and
minuses assigned to the vertices and are not considered here,
hence B̃d (z,ζ ) = B̃(2)(z,ζ ).

Before analyzing numerical results let us first notice a
different proportionality of each perturbative order to the
electron density. Because we scaled all spectral functions
such that B̃(0) is density independent it is easy to see that
B̃(n) = O((αrs)n). Thus, the sum of four terms in Eq. (60)
is given by a quadratic polynomial in terms of αrs . The

requirement of its positivity leads, therefore, to the following
inequality,

D = (B̃<
b (z,ζ ))2 − B̃<

a (z,ζ )B̃<
d (z,ζ ) � 0, (61)

which should hold for all values of frequency and momenta for
at least one density. This ensures the positivity of the spectral
function at all densities. Mathematically, inequality (61) is the
Cauchy-Schwarz inequality applied to the integrals of half-
diagrams.

The first- and second-order expressions [Eq. (60)] as well
as the analytic result of Holas et al. [17] (Appendix) suffer
from the logarithmic singularities of the integrated functions.
This poses additional challenges for numerics. We tackle
this problem by introducing a small imaginary part iδ into
the energy denominators. The Monte Carlo integration is
performed as in Ref. [26] with the use of the Mersenne
twister 19937 random number generator [39]. An additional
complication arises due to the use of bare rather than the
plasmonically screened Coulomb interaction, i.e., even large
momentum transfers are possible. In this case we can still
map the integration variables to the [0,1] interval by the
logarithmic scaling. For instance, we represent the vector y1

as follows: r1 = −p log(x1), cos(θ1) = −1 + 2x2, φ1 = 2πx3,
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where p is some suitably chosen constant1 and xi ∈ [0,1].
Thus, d3y1 = 4πp

x1
dx1dx2dx3.

Let us look now at the results of the Monte Carlo integration
for a density of rs = 3. The full momentum (0.1kF � k �
2.5kF ) and energy (0 � ω � 12εF ) resolved spectral functions
are shown in Fig. 16. On this graph the numerically produced
points are projected on the analytically known results depicted
as surfaces. For the second-order analytical expressions are not
known, therefore, only points are shown. At small momenta
the spectral functions diverge, therefore we introduced some
truncation. The sum of all tree terms, B̃PSD, is always positive
as an example of a cross section at k = 1.2kF in Fig. 17
demonstrates. For some frequencies, however, B̃PSD(k,ω) is
rather small and lies within the error bar of the Monte Carlo
simulation.

The domain where B̃(1)(k,ω) is negative is not bounded;
see again Fig. 14. Thus, corrections originating from B̃(2)(k,ω)
qualitatively modify the behavior of the spectral function at any
momentum. This, in view of the Hilbert transform in Eq. (17),
leads to a modification of the real part of the response function.
The general conclusion is that the cutting procedure for PSD
spectra works as it should. The addition of the second-order
vertex diagram correctly removes the negative parts of the
response function to first order in the vertex.

Cancellation between vertex corrections
and self-energy insertions

Although our example is the simplest one that illustrates
the PSD diagrammatic theory, it is too simple from a physical
point of view. The main reason is that we used bare propagators
G0 and bare interactions v. The first-order vertex diagram is
not the only first-order diagram as we missed two first-order
diagrams that contain exchange self-energy insertions. If we
had used an expansion in dressed Green’s functions G and
dressed interactions W such diagrams would not appear as
in that case we could restrict ourselves to skeleton diagrams.
However, in an expansion in G0 and v they become relevant. In
particular the self-energy diagrams lead to a cancellation of the
divergent small k behavior of the spectral function B̃(1)(k,ω).
For the case ω = 0 this has been explicitly demonstrated by
Engel and Vosko [23]. It would therefore be a natural step to
include the first-order self-energy diagrams as it would, for
instance, guarantee the existence of a gradient expansion for
the exchange-correlation energy (see below). Taken together
these diagrams can be expanded in a power series in terms of
the momenta which plays an important role in determining
the gradient expansion of the exchange-correlation energy
functional in density functional theory. It is well known that
in the lowest order the gradient correction to the exchange-
correlation functional can be expressed as [23,40]

�Exc[n0,δn(q)] = 1

2

∫
d3q

(2π )3
δn(q)

�P(q,0)

[P(q,0)]2
δn(−q),

where δn is the density variation with respect to the density n0

of the homogeneous system, and �P(q,0) denotes corrections

1We set p = 3. We verified that an order of magnitude variation of
this parameter has no impact on the accuracy of calculations.

FIG. 16. (Color online) The scaled spectral function for the
polarizability P of homogeneous electron gas at rs = 3. Surfaces
denote exact analytical results: Zeroth order is given by the Lindhard
function [Eq. (56)] and first order is computed according to 1D
integral representation of Holas et al. [17]. Dots denote numerical
results obtained by the Monte Carlo calculation.
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FIG. 17. (Color online) Cross sections of the results in Fig. 16 for the momentum value of k = 1.2kF and density rs = 3. (Top left)
Zeroth-order contribution B̃(0). (Top right) First-order contribution B̃(1). (Bottom left) Second-order contribution B̃(2). (Bottom right) The sum
of all three contributions B̃PSD which is positive. Dots (blue) denote numerical Monte Carlo results. Solid lines (red) stand for analytical results.

to the response function from the first- and higher order
diagrams. Therefore, the inclusion of B̃(2) will certainly
modify the gradient expansion coefficients, e.g, due to Engel
and Vosko [23]. However, to have a well-defined gradient
expansion one has to add the self-energy diagrams as well.
Unfortunately, a simple addition would destroy the positivity
of the resulting spectral function again. This was noticed, e.g.,
by Brosens and Devreese [22] and is illustrated in Fig. 18,

where we also display the contribution of the self-energy
diagram [B̃(1,Se)(k,ω)] calculated using the analytic expression
of Holas et al. [17]. Therefore, if we desire to include the
self-energy diagrams and still wish to guarantee positivity we
have to apply our PSD theory and consider an extended set of
diagrams. The minimal set that achieves this goal is displayed
in Fig. 19 which apart from additional self-energy diagrams
also contains mixed self-energy and vertex diagrams. Rather

FIG. 18. (Color online) Spectral functions at momentum k = 2.5kF and density rs = 3. (a) In addition to previously considered zeroth
order [B̃(0), dotted] and first order [B̃(1), short dash] a contribution of the diagrams with self-energy insertion [B̃(1,Se), long dash] is shown. (b)
Sum of three terms in (a). (c) Second-order contribution, B̃(2). (d) B̃PSD including the first-order self-energy diagrams (dots), solid line as in (b),
and shaded area denotes second-order contribution. In order to cancel small negative spectral function at the edge of particle-hole continuum
(ω = 1.25εF ) inclusion of more diagrams as shown at Fig. 19 is required.
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FIG. 19. (Color online) PPSD obtained from the cutting procedure
including the first-order self-energy diagrams.

than developing codes to evaluate these additional diagrams
we found it more worthwhile to explore approximations that
involve dressed Green’s functions and interactions. First of all,
the dressing of the interaction reduces the singular behavior of
the diagrams and secondly they reduce the number of diagrams
to be evaluated since we can then stick to skeletonic diagrams.
However, since this requires an extensive discussion by itself
we will address this topic in a future publication. An alternative
route was undertaken by Brosens, Devreese, and Lemmens in
a series of works [18,19,41,42] using the variational solution
of the linearized equation of motion for the electron density
distribution function. They have shown that the first term
in a series expansion of the variational result for the local
field factor yields the lowest order diagrammatic result. Since
such solution also contains higher order terms the spectral
function is positive. However, it is not free from singularities
suggesting again possible benefits of working with dressed
Green’s functions and interactions.

VII. CONCLUSIONS AND OUTLOOK

Vertex corrections in diagrammatic approximations to the
polarizability are known to be crucial for capturing double and
higher particle-hole excitations, excitons, multiple plasmon
excitations, etc., as well as for estimating excitation lifetimes.
However, the straightforward inclusion of MBPT vertex
diagrams can lead to negative spectra, a drawback which
discouraged the scientific community from developing numer-
ical recipes and tools for the evaluation of these diagrams in
molecules and solids. In this work we provided a simple set
of rules to select special combinations of diagrams yielding a
positive spectrum.

In our formulation every MBPT diagram is written as
the sum of partitions, and every partition is cut into half-
diagrams. We recognized that the half-diagrams are the
fundamental quantities for a PSD expansion. In fact, the
sum of squares of half-diagrams corresponds to a special
selection of partitions which is PSD by construction. The
requirement of positivity on the spectrum is important not
only for the physical interpretation of the results but also
for the correct analytic structure of the polarizability. We
demonstrated that a PSD polarizability cannot generate a
(retarded) density-response function with poles in the upper
half of the complex frequency plane. This is a critical property
to converge self-consistent numerical schemes. Although the
PSD diagrammatic expansion put forward in this work applies

equally well to bare as well as dressed Green’s functions a
word of caution is due in the dressed case. The gluing of
skeletonic, i.e., self-energy insertion-free, half-diagrams can
lead to nonskeletonic polarizability diagrams. In order to avoid
the double counting of some of the diagrams it is therefore
necessary to use Green’s functions dressed with self-energy
diagrams distinct from those appearing in P .

A natural way to sum to infinite order a subclass of
polarizability diagrams is through the BSE, an integral
equation with the kernel given by the functional derivative
of the self-energy with respect to the Green’s function. Due
to the popularity of the BSE we also addressed the issue
of whether the polarizability which solves the BSE is PSD
for conserving self-energies, and found a negative answer.
The counterexample is provided by the self-energy in the
second-order Born or GW approximations. Noteworthy these
self-energies yield a positive spectrum for the Green’s function
[26]; therefore neither a conserving nor a PSD self-energy does
necessarily generate a PSD polarizability through the BSE.

The simplest approximation with vertex corrections is the
first-order ladder diagram. This diagram has been calculated
both in finite and bulk systems and it is known to not be
PSD. How to include vertex corrections without altering the
positivity of the spectrum has been a long-standing problem,
which we have solved in this work. By adding a partition
of the second-order ladder diagram we obtained the simplest
PSD approximation with vertex corrections. We then evaluated
this approximation in the 3D homogeneous electron gas and
confirmed numerically the correctness of our PSD theory. We
stress again that the PSD property alone does not necessarily
guarantee physically meaningful spectra. In fact, the PSD
spectrum with vertex corrections has an unphysical divergency
at zero frequency and momentum. The inclusion of bubble
diagrams with first-order exchange self-energy insertions
removes this divergency but destroys the PSD property. We
worked out the minimal set of diagrams to turn this extended
approximation into a PSD one. The evaluation of the resulting
extra diagrams is within reach of our code but it requires a
considerable numerical effort and it goes beyond the scope of
the present work.
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APPENDIX: NUMERICAL EVALUATIONS
OF THE ANALYTICAL EXPRESSIONS FOR

THE FIRST-ORDER POLARIZABILITY

As in the rest of the text we measure the momentum and
the energy in units of the Fermi momentum kF = 1/(αrs)
and the Fermi energy εF = k2

F /2. In older papers k2
F as the

energy unit was used [17]. This must be taken into account
when comparing. Also notice that Engel and Vosko measured
momentum in terms of 2kF . It is natural because the first-order
polarizability has a logarithmic singularity at this point. The
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imaginary part of the dielectric function resulting from the
first-order polarizability is given by

Im ε(q,ω) = 8

π

α2r2
s

k4

(
F Ex

(
k,

ω

2

)
+ F Se

(
k,

ω

2

))
, (A1)

whereas the scaled spectral functions considered in Sec. VI
read

B̃(1)(k,ω) = 4

π

αrs

k2
F Ex

(
k,

ω

2

)
, (A2)

B̃(1,Se)(k,ω) = 4

π

αrs

k2
F Se

(
k,

ω

2

)
, (A3)

with the function F nonzero at two domains in the k − ω plane
(restricted by the Heaviside θ functions):

F Ex,Se(k,ω̄) = θ

[
1 −

(
ω̄

k
− k

2

)2]
�Ex,Se

(
ω̄

k
− k

2
,k

)

− θ

[
1 −

(
ω̄

k
+ k

2

)2]
�Ex,Se

(
− ω̄

k
− k

2
,k

)
,

(A4)

and, in turn,

�Se(ν,k) = kfL([(k + ν)2 + (1 − ν2)]1/2)

−(k + ν)fL(k + ν) + νfL(ν), (A5)

�Ex(ν,k) = −G1(ν) + G2(ν + k,1 − ν2), (A6)

where fL is the Lindhard function,

fL(z) = 1

2
+ 1 − z2

4z
log

∣∣∣∣z + 1

1 − z

∣∣∣∣ ,
and G1 is [cf. Eq. (2.15) of Holas et al. in Ref. [17]]

G1(ν) = 1

4
(1 − ν2)g

(
1 − ν

1 + ν

)
− 1

2
ν((1 − ν) log(1 − ν)

+ (1 + ν) log(1 + ν) − 2 log 2), (A7)

with g(z) = Li2(−z) − Li2(−1/z) represented in terms of
the polylogarithm functions. The second function is more
involved; it is given by the Hilbert transform which has to
be computed numerically:

G2(x,y) = −1

4

∫ 1

−1
dξ

T (ξ,x,y)

ξ − x
. (A8)

If |x| < 1 the simplest way to avoid singularity is to exclude a
small (|xa − xb| < ε) interval x ∈ (xa,xb) ⊂ (−1,1) from the
integration. Finally, the T (ξ,x,y) function is defined as [cf.
Eqs. (2.18)– (2.23) of Holas et al. in Ref. [17]]

T (ξ,x,y) =
(

a1

2t
− a1

2
+ (1 − ξ 2)(1 − t)

)

× log(2t(1 − ξ 2) + a1) − y log(a1)

+ (1 − ξ 2)(t − log(t) − 1), (A9)

in terms of auxiliary functions (γ = x2 + y, a1 = 2(ξ − x)2,
a2 = 4(1 − ξ 2)(ξ − x)2, a3 = 2ξ (ξ − x) − 1, λ = a2

(γ+a3)2 ),
and

t(ξ,x,y) =
⎧⎨
⎩

(ξ−x)2

a3+γ
|λ| � ε,

a3+γ

(1−ξ 2)

√
1+λ−1

2 |λ| > ε.
(A10)

From the imaginary part of the polarization function the real
part can be computed through the Hilbert transform. For the
static case ω = 0 we have

Reχ (1)(k,0) = 2

π3k2

∫ k(k+2)

ε

dω

ω

[
F Ex

(
k,

ω

2

)
+ F Se

(
k,

ω

2

)]

= − 1

π3

[
a

(
k

2

)
+ b

(
k

2

)]
, (A11)

where for a(q) and b(q) there are analytic expressions due to
Engel and Vosko [23]:

b(q) = 1 − q2

8q2
log2

∣∣∣∣1 + q

1 − q

∣∣∣∣ + q + 1

2q
log |1 + q|

− 1 − q

2q
log |1 − q| − log |q|, (A12)

a(q) = (1 − q2)

24q2

∫ q

0

1 − x2

x2
log3

∣∣∣∣1 + x

1 − x

∣∣∣∣ dx

−
(

1 − q2

16q2
log

∣∣∣∣1 + q

1 − q

∣∣∣∣ + 1

8q

)

×
∫ q

0

1 − x2

x2
log2

∣∣∣∣1 + x

1 − x

∣∣∣∣ dx

− (1 − q4)

48q3
log3

∣∣∣∣1 + q

1 − q

∣∣∣∣ − b(q). (A13)

Numerically Eq. (A13) is much faster than the Hilbert
transform (A11). However, it is good to know that both ways
yield identical results that also agree with our Monte Carlo
simulations.
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